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Abstract

The widespread adoption of face recognition has led

to increasing privacy concerns, as unauthorized access

to face images can expose sensitive personal information.

This paper explores face image protection against view-

ing and recovery attacks. Inspired by image compression,

we propose creating a visually uninformative face image

through feature subtraction between an original face and its

model-produced regeneration. Recognizable identity fea-

tures within the image are encouraged by co-training a

recognition model on its high-dimensional feature represen-

tation. To enhance privacy, the high-dimensional represen-

tation is crafted through random channel shuffling, result-

ing in randomized recognizable images devoid of attacker-

leverageable texture details. We distill our methodologies

into a novel privacy-preserving face recognition method,

MinusFace. Experiments demonstrate its high recognition

accuracy and effective privacy protection. Its code is avail-

able at https://github.com/Tencent/TFace.

1. Introduction

Face recognition (FR) is a biometric way to identify persons

through their face images. It has seen prevalent method-

ological and application advancements in recent years. Cur-

rently, considerable parts of FR are implemented as on-

line services to overcome local resource limitations: Local

clients, such as cell phones, outsource captured face images

to an online service provider. Using its model, the provider

extracts identity-representative templates from the face im-

ages and matches them with its database.

It has been common sense that face images are sensitive

biometric data and should be protected. Increasing regula-

tory demands [51] call for privacy-preserving face recog-

nition (PPFR), to avoid leakage of face images during the
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Figure 1. Comparison between SOTAs and MinusFace. (a) SOTAs

gradually remove the most visually informative features. Inade-

quacy of removal can result in successful recovery, which under-

mines privacy. (b) MinusFace first obtains a fully visually uninfor-

mative residue representation, then improves its recognizability. It

exhibits better privacy protection than all SOTAs.

outsourcing. They attempt to ensure that the faces’ appear-

ances are both visually concealed from inadvertent view by

third parties and difficult to recover by deliberate attackers.

State-of-the-art (SOTA) PPFR primarily employs two

approaches: Cryptographic methods protect face images

with encryption or security protocols. Recently, transform-

based methods have gained popularity due to their low la-

tency and budget-saving computational costs. They convert

images into protective representations by minimizing visual

details, rendering them safe to share.

Transform-based methods yet face a persistent challenge

in balancing accuracy and privacy. In face images, the rec-

ognizable identity features and appearance-revealing visual

features are closely intertwined. To achieve privacy while

preserving optimal recognizability, prior arts invest signifi-

cant efforts to locate and minimize the most visually infor-

mative feature components while retaining the rest. They

commonly employ either a heuristic or adversarial training

approach: For instance, some [24, 35, 36, 56] turn face im-

ages into frequency domain and heuristically prune the most

human-perceivable frequency channels. Others exploit deep

steganography [64] or cyclically add adversarial noise [57].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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(a) Original image (b) Residual representations (c) Compressed images

Figure 2. Examples of image compression. Subtle details like

texture are removed from (a) the original image to obtain (c) the

compressed ones. The removed (b) residual representations are

visually uninformative, yet carry descriptive features of the origin.

While these methods succeed in concealing faces from hu-

man inspection, they can be largely susceptible to recovery

attacks [9, 15, 30]. Their challenge lies in ensuring an ad-

equate removal of visual features, as subtle features may

remain, providing attackers with potential leverage.

This paper advocates a novel approach to more effec-

tively minimize visual features, drawing inspiration from

image compression. Image compression reduces image size

while preserving fidelity by discarding subtle features such

as texture details and color variations. The paper observes

that the discarded features, i.e., the residue between original

and compressed images, exhibit properties closely aligned

with the desired protective face representation: They are

both visually uninformative and preserve descriptive fea-

tures of the original image, as shown in Fig. 2.

Emulating the production of discarded features, this pa-

per introduces a trainable feature subtraction strategy to

craft protective representations. In this approach, a genera-

tive model is first trained to faithfully produce a regenera-

tion of the original face, where the regenerated face simu-

lates a compressed image. The residue between the origi-

nal and regenerated faces is expected to be devoid of visual

features if the model is well-optimized. It is later exploited

to produce a protective representation. To retain recogniz-

ability within the residue, a recognition model is co-trained,

taking the residue as input to learn identity features.

Two techniques are subsequently proposed to enhance

both the recognizability and privacy of the residue. To ad-

dress specific training constraints of the FR model (detailed

in Sec. 3.3), the residue is generated as high-dimensional

representations instead of spatial images, enabling better

preservation of identity features. Privacy is heightened

through random channel shuffling, which obscures facial

texture signals and increases randomness to hinder recov-

ery attacks. The shuffled high-dimensional residue is ulti-

mately mapped back as a spatial image, serving as the pro-

tective representation. The methodology is concretized into

a novel PPFR framework, MinusFace. Figure 1 compare

it with SOTA prior arts in paradigm. Experimental results

show that MinusFace achieves high recognition accuracy

and better privacy protection than SOTAs.

This paper presents three-fold contributions:

• It introduces feature subtraction, a new methodology

to generate protective face representation, by capturing

residue between an original image and its regeneration.

• It proposes two specific techniques, high-dimensional

mapping and random channel shuffling, to ensure rec-

ognizability and accuracy for the residue.

• It presents a novel PPFR method, MinusFace. Exper-

imental results demonstrate its high recognition accu-

racy and superior privacy protection to SOTAs.

2. Related work

2.1. Face recognition

Current FR systems identify persons by comparing their

face templates, i.e., one-dimensional feature embeddings.

The service provider trains a convolutional neural network

(CNN) to extract templates from face images. With angular-

margin-based losses [7, 8, 21, 28, 53], the templates are en-

couraged to have large inter-identity and small intra-identity

discrepancies that facilitate recognition.

2.2. Privacy­preserving face recognition

Many approaches have been proposed to protect face pri-

vacy [33, 34, 55]. We divide them into two categories.

Cryptographic methods perform recognition on encrypted

face images. To allow necessary computations in the ci-

pher space, many prior arts employ homomorphic encryp-

tion [11, 18, 20, 23, 43, 62] or secure multiparty compu-

tation [29, 41, 60, 63] to extract encrypted features and

calculate their pair-wise distances. Others leverage dif-

ferent crypto-primitives including matrix encryption [26],

one-time-pad [10], functional encryption [1], and locality-

sensitive hashing [12, 66]. These methods, however, mostly

bear high latency and heavy computational overheads.

Transform-based methods convert face images into pro-

tective representations that cannot be directly viewed. Pio-

neering arts obfuscate the image by adding crafted noise [4,

27, 31, 58, 65], performing clustering [16], or extracting

coarse representations [5, 25, 37, 47]. Some regenerate

the faces’ features to obtain different visual appearances

using autoencoders [38, 48], adversarial generative net-

works [2, 27, 39], and diffusion models [3, 22]. However,

these methods suffer from compromised recognition accu-

racy as the obfuscation and regeneration often indiscrimi-

nately degrade the faces’ visual and identity features. Re-

cent methods locate and modify the images’ most visually

informative components. [24, 35, 36, 56] transform images

to the frequency domain, where human-perceivable low-

frequency channels are pruned. [64] uses deep steganog-

raphy to conceal the face under distinct carrier images and

aligns identity features via contrastive loss. [57] generates

protective features by cyclically adding adversarial noise to

sensitive signals. These methods visually conceal face ap-

pearance quite successfully and maintain decent recognition
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accuracy. However, we later experimentally show that they

can be vulnerable to recovery attacks.

3. Methodology

This section describes our proposed MinusFace. The name

comes from the key methodology to produce the protective

representation, by subtracting between the original face and

its regeneration, i.e., the “minus”. We begin by learning

a visually uninformative representation in Sec. 3.2 via fea-

ture subtraction. In Sec. 3.3, we improve the representa-

tion in high-dimension to let it preserve identity features.

In Sec. 3.4, we further address its privacy and to produce

the final protective representation.

3.1. Motivation

The general goal of transform-based PPFR is to design a

privacy-preserving transformation F that converts any orig-

inal face image X to a protective representation Xp =
F (X). In prior arts, Xp can be concretized as a spatial

image [4, 20, 50, 57] or high-dimensional feature chan-

nels [24, 35, 36, 56, 57]. Either way, we expect Xp to pre-

serve identity features and minimize visual features.

Our approach is enlightened by image compression, a

technique that reduces image size while preserving fidelity.

Specifically, lossy image compression methods [46, 49, 52]

exploit human perceptual insensitivity to discard subtle fea-

tures like texture details or color variations. Interestingly,

the discarded features possess the desired properties for our

Xp: Since they are considered insignificant to image fi-

delity, they should be visually uninformative; otherwise, the

compression would be too lossy. Meanwhile, viewing these

features as the residual representation, denoted as R, be-

tween the original and compressed image, they still contain

the image’s clues. If the residue R can be utilized for recog-

nition, the compression factually provides us with a natural

Xp that is both visually indiscernible and recognizable.

Figure 2(b) demonstrates the residual representations

of an example face image under JPEG [52] and JPEG

2000 [46] compression standards. We can observe feature

clues from both residual representations. Regretfully, we

find directly using them for face recognition ends up quite

ineffective because their features are not specifically manu-

factured to keep the identity. In fact, they behave more like

random noise from the perception of FR models.

3.2. Feature subtraction: minimize visual features

Imitating image compression, we can produce a residual

representation R that is recognizable through a trainable

feature subtraction strategy: To minimize visual features,

we train a model that regenerates a face image X ′ taking

the original face X as input. It simulates the compression

process. We produce R as the subtraction between X and

X ′, i.e. their minus, which should be visually uninformative

𝑋 𝑔 𝑋′ 𝑅
ℒ𝑔𝑒𝑛

Feature subtraction

ℒ𝑓𝑟
𝑓

Figure 3. The core idea of MinusFace. Imitating image compres-

sion, a visually uninformative residue R is generated from feature

subtraction: the original face minus its regeneration. R is also op-

timized with an FR model to preserve identity features.

if the regeneration is successful. Unlike image compres-

sion, crucially, we meanwhile train an FR model that tries

to recognize R. By balancing the training of two models,

R should also preserve identity features once the FR model

is optimized. Such an R hence may serve as our protective

representation Xp. Figure 3 demonstrates our idea.

We first concretize the minimization of visual features.

Specifically, let g be a generative model (wlog., a CNN au-

toencoder). We regenerate a face image from the original

face as X ′ = g (X). To make X ′ visually close to X , we

employ l1-norm as the model’s objective:

Lgen = ∥X,X ′∥
1
. (1)

Prior studies [35, 36] suggest optimizing Eq. (1) is trivial

provided the original face is not further obfuscated, which

is our case. Therefore, we can confidently obtain a regener-

ation with high fidelity, X ′ ≈ X . We produce the residue

as their subtraction, R = X −X ′.

As earlier discussed, prior arts invest huge efforts in re-

moving the most visually informative features from Xp.

However, their removals of features are often inadequate,

resulting in unsatisfactory privacy. Leveraging feature sub-

traction, we efficiently transform the feature-minimizing

objective of Xp to the feature-maximizing goal of X ′,

which is easier to quantify: Instead of explicitly removing

R’s visual features, since Eq. (1) can be rewritten as

Lgen = ∥X,X ′∥
1
= ∥X −X ′, 0∥

1
= ∥R∥

1
, (2)

we can expect R to be visually uninformative simply by

producing high-quality X ′.

3.3. Preserve identity features in high­dimension

Next, we aim to obtain the identity features for R to make

it recognizable. As illustrated in Fig. 3, the most intuitive

strategy is to incorporate an FR model f that takes R as in-

put. Let f be end-to-end trained with the generative model

g, aiming to predict the face’s identity y. Thus, R should

acquire identity features as long as f is also optimized.
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Figure 4. The MinusFace pipeline. (a) It centers around the idea of feature subtraction, where the protective representationXp is derived

from the residue between the original face X and its regeneration X ′. Both regeneration and feature subtraction occur in high-dimension

to preserve identity features within the trained residue r. (b) The residue r further undergoes random channel shuffling and decoding to

produce the protective representation Xp. (c-d) All face figures are experimentally obtained and illustrate their representations faithfully.

However, we find training f can be challenging as it of-

ten ends up in poor convergence. We owe it to a slight draw-

back of feature subtraction: By optimizing Eq. (1), it in fact

indiscriminately removes both visual and identity features,

encouraging R to be blank. In other words, feature subtrac-

tion is trading off recognizability for privacy.

We propose a strategy that circumvents the trade-off, in-

spired by the property of high-dimensional spaces. Specifi-

cally, high-dimensional spaces often contain significant re-

dundancy of features. If we map a spatial image X ∈ M

to a high-dimensional representation x ∈ N, we can expect

X’s visual appearance to be described by very few of x’s

components, i.e., the principal components. The remaining

features of x can then be reorganized without changing X .

Let x, x′ be the high-dimensional representations of X,X ′,

respectively. While feature subtraction enforces X ′ → X ,

likely making the principal components of x, x′ identical,

we can make a difference in their less visually descriptive

and abundant remaining features. This allows us to produce

non-blank high-dimensional residue r = x−x′ ̸= 0, which

can carry identity features.

We establish a pair of differentiable, deterministic en-

coding e : M → N and decoding d : N → M mappings

to handle the conversion between M,N. As properties nec-

essary for later discussions, we require d, e together to be

invertible and d alone to be homomorphic, i.e.,

{

d (e(a)) = a ∀a,

d(a1 + a2) = d(a1) + d(a2) ∀a1, a2.
(3)

Also inspired by image compression, we choose discrete

cosine transform (DCT) and its inverse (IDCT) as d, e, re-

spectively. DCT is a linear transformation employed in

JPEG [52] compression, that converts a (3, H,W ) image

X into a (192, H,W ) high-dimensional x. We provide fur-

ther details in the supplementary material. We opt for DCT,

wlog., for three main reasons: (1) It satisfies Eq. (3); (2) It

produces x that preserves X’s spatial structure and feature

information: Study [61] shows models trained on x achieve

similar performance as those on X; (3) It produces an x

with 192 channels. The abundant channels later enhance

privacy by shuffling their orders. Nonetheless, other d, e

may be chosen provided at least Eq. (3) is satisfied.

Here, we describe producing r via high-dimensional fea-

ture subtraction. Figure 4(a) shows its pipeline. Note that

all face figures here are experimentally obtained from Mi-

nusFace and illustrate their representations faithfully.

Specifically, we begin by encoding the high-dimensional

representation of face image X as x = e(X). Then, we

regenerate x′ = g(x) using the model g, which is modified

to accept a 192-channel input, and subsequently decode it

into a spatial image as X ′ = d(x′). Similar to Eq. (1), g is

trained by minimizing the l1-norm between X and X ′.

Meanwhile, we can avoid a blank residue r by perform-

ing feature subtraction in high-dimension: We obtain the

residue as r = x − x′ ̸= 0 and train the FR model f on r

to help it acquire identity features, as previously discussed.

The FR model f can be optimized using any SOTA FR loss;

Wlog., we opt for the popular ArcFace loss [8]:
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Lfr = larc(f(r), y). (4)

The overall training objective of MinusFace is the combina-

tion of Eqs. (1) and (4), weighted by α, β:

Lminus = α · Lgen + β · Lfr. (5)

We experimentally find both loss terms are optimized

smoothly, and the produced residue r can be recognized by

f with high accuracy, later shown in Sec. 4.6. Hence, by

mapping X into high-dimension, we can acquire an r with

identity features under feature subtraction. This satisfies our

recognizability goal.

Before closing this section, further let R′ = d(r) be the

decoding of r. Interestingly and crucially to the following

discussion, we find R′ = R, i.e., R′ equal to the spatial

residue between X and X ′ that is always blank. The blank-

ness of R′ is contributed by the properties of d, e. Note that

X can be rewritten by Eq. (3) as

X = d(e(X)) = d(x). (6)

Combining Eq. (1) with d’s homomorphism, it always holds

Lgen = ∥X −X ′∥
1

= ∥d(x)− d(x′)∥
1
= ∥d(x− x′)∥

1

= ∥d(r)∥
1
= ∥R′∥

1
.

(7)

In Fig. 4(d), we exhibit sample R′ experimentally gener-

ated, which is indeed blank. We use r and its mapping to a

blank R′ as key tools to produce the final protective Xp.

3.4. Random channel shuffling

The previous section creates a recognizable residue r. It

is important to highlight that r cannot directly function as

Xp since it lacks a guarantee of privacy: Feature subtrac-

tion only ensures removing visual features from R′, but not

necessarily from r. As exhibited in Fig. 4(c), subtle visual

features in sample r persist, compromising its privacy.

To bridge the privacy gap, this section shows that a pro-

tective Xp can be simply derived as perturbing then decod-

ing r, without further training. Specifically, we choose to

perturb r by randomly shuffling its channels. Let r∆ =
s(r; θ) represents the shuffling of r, where the channel or-

der is determined by a sample-wise random seed θ. Thus,

Xp = d(s(r; θ)) serves as our final protective representa-

tion. The process is illustrated in Fig. 4(b). Following, we

explain the motivations behind our design.

We first show shuffling will provably gain Xp with rec-

ognizability. Recall that r is primarily mapped to a blank

R′ = d(r) → 0 devoid of any features, ensured by Eq. (7).

Introducing a slight perturbation ∆r as r∆ = r +∆r plau-

sibly results in a disrupted R′

∆
̸= R′. Note that R′

∆
cannot

be less informative than R′ as the latter is already blank of

(a) Original 𝑿 (b) Sample channels of 𝒓 (c) Randomly generated 𝑿𝒑
Figure 5. By randomly shuffling (b) channels of r, 192! distinct

(c) Xp can be generated from (a) the same X . We exhibit some

channels and Xp. Different Xp possess random texture patterns

that obfuscate the recovery, by the nature of channel shuffling.

identity features. Conversely, it acquires features from the

perturbation ∆r, according to d’s homomorphism:

d(r +∆r) = d(r) + d(∆r) → d(∆r), (8)

with believably ∥d(∆r)∥
1
> 0 unless rare circumstances.

Further to note that shuffling r’ channels equals choosing

∆r = r − s(r; θ) ̸= 0. (9)

Given that r preserves the identity features of the face image

X , we anticipate that its shuffle s(r; θ) and their subtraction

∆r will also be identity-descriptive of X . Consequently,

Xp is able to assimilate the identity features of r through

shuffling. In Sec. 4.2, we experimentally validate that the

learning of identity features is robust, as FR on Xp attains

satisfactory recognition accuracy.

We opt for random channel shuffling over other pertur-

bations as it helps minimize privacy costs. Through pertur-

bation, Xp is bound to unintentionally recover some visual

features from r due to the intertwining of visual and identity

features. In this context, shuffling demonstrates two-fold

privacy benefits: natural obfuscation of visual features and

introduction of randomness to Xp’s representations.

To explain the natural obfuscation, we closely examine

the sample channels of r in Fig. 5(b). We find these chan-

nels reveal consistent signals in structure (e.g., positions

for eyes and noses) but diverse ones in texture (e.g., color

depths). This phenomenon arises from the use of CNN-

based g (and spatial-preserving d, e), wherein CNNs inher-

ently preserve the spatial relations of images and generate

distinct channel-wise signals through various convolutional

kernels. Existing studies [6, 19, 35, 36, 45] suggest that

structural signals play a pivotal role in FR models, while

generative models (say, the attacker’s recovery model) rely

on both structural and texture signals. In our scenario, the

structural signals consistent across channels prove more re-

sistant to shuffling than the texture features with channel-

wise variations. Figure 5(c) illustrates different samples of

Xp generated from the same X under varied θ. These sam-

ples exhibit very subtle facial contours similar to that of X ,

facilitating recognition. In contrast, their facial texture is
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Method Venue PPFR LFW CFP-FP AgeDB CPLFW CALFW IJB-B IJB-C

ArcFace [8] CVPR ’19 No 99.77 98.30 97.88 92.77 96.05 94.13 95.60

PEEP [4] CS ’20 Yes 98.41 74.47 87.47 79.58 90.06 5.82 6.02

InstaHide [20] ICML ’20 Yes 96.53 83.20 79.58 81.03 86.24 61.88 69.02

Cloak [37] WWW ’21 Yes 98.91 87.97 92.60 83.43 92.18 33.58 33.82

PPFR-FD [56] AAAI ’22 Yes 99.69 94.85 97.23 90.19 95.60 92.93 94.07

DCTDP [24] ECCV ’22 Yes 99.77 96.97 97.72 91.37 96.05 93.29 94.43

DuetFace [35] MM ’22 Yes 99.82 97.79 97.93 92.35 96.10 93.66 95.30

PartialFace [36] ICCV ’23 Yes 99.80 97.63 97.79 92.03 96.07 93.64 94.93

ProFace [64] MM ’22 Yes 98.27 93.77 92.81 88.17 93.20 69.39 72.96

AdvFace [57] CVPR ’23 Yes 98.45 92.21 92.57 83.73 93.62 70.21 74.39

MinusFace (ours) Yes 99.78 96.92 97.57 91.90 95.90 93.37 94.70

Table 1. The performance comparison among MinusFace, an unprotected baseline, and PPFR SOTAs on face verification and identification

tasks. MinusFace achieves on-par (±1%) performance with the best frequency-based SOTAs and outperforms the others.

transformed into meaningless color patches. This outcome

of shuffling factually allows us to selectively obfuscate most

visual features while preserving identity features, achieving

an improved privacy-accuracy trade-off.

Privacy is further enhanced through the randomness of

produced Xp. A successful recovery attack [9, 15, 30] ne-

cessitates training the attack model on consistent represen-

tations. Recall that r is a high-dimensional representation

with a shape of (192, H,W ). Randomly shuffling its chan-

nels can produce 192! different Xp with random textures for

the same X . The attacker can neither learn from Xp with

random textures nor determine the seed θ for a specific Xp.

Results in Secs. 4.4 and 4.5 show MinusFace completely

nullifies SOTA recovery attacks.

3.5. Summary

To deploy MinusFace, the service provider first trains f, g

under Eq. (5) that produces r. It discards f , as f does not

serve as the final FR model. It shares frozen g with its

clients. Capturing X , the clients obtain protective repre-

sentation Xp = F (X) with random θ, outsourcing it to the

provider. The provider recognizes Xp on a newly trained

FR model fp. The same FR result is expected regardless of

specific θ. The final privacy-preserving transformation of

MinusFace is F = d(s(r; θ)), where r = e(X)−e(g(X)).

4. Experiments

4.1. Experimental setup

Model and dataset. We employ a U-Net [42] autoencoder

with reduced scale as g, and IR-50 [14] models as f, fp.

Training is carried out on the MS1Mv2 [13] dataset, which

possesses 5.8M face images. We carry out evaluations on 5

regular-size datasets, LFW [17], CFP-FP [44], AgeDB [40],

CPLFW [67] and CALFW [68]. We also use 2 large-scale

datasets, IJB-B [59] and IJB-C [32]. We leave further exper-

imental and training setup to the supplementary material.

4.2. Recognition accuracy

Compared methods. We compare MinusFace with an un-

protected baseline and 9 transform-based PPFR methods.

Specifically1, (1) ArcFace [8], a non-privacy-preserving FR

model trained on original face images; (2) PEEP [4], which

obfuscates images using differential noise (privacy budget

set to 5); (3) InstaHide [20], mixing the face image with 2

other images to conceal appearance; (4) Cloak [37], com-

pressing the image’s feature space (trade-off parameter set

to 100); (5) PPFR-FD [56], shuffling and mixing frequency

channels; (6) DCTDP [24], appending a frequency noise

perturbation mask (privacy budget set to ϵ=1); (7) Duet-

Face [35], pruning frequency components and restoring ac-

curacy via two-party collaboration; (8) PartialFace [36] ex-

ploiting a random subset of frequency channels for recog-

nition; (9) ProFace [64], hiding the image’s appearance

through deep steganography; (10) AdvFace [57], perturb-

ing the image by cyclically adding adversarial noise. These

methods are divided into two branches by their means: the

first three are early works that indiscriminately perturb all

features, while the remaining selectively perturb the most

visually informative features to better maintain accuracy.

Performance analysis. We evaluate MinusFace, baseline

and compared methods on LFW, CFP-FP, AgeDB, CPLFW,

and CALFW, and report results as recognition accuracy.

We also evaluate them on IJB-B and IJB-C, and report

TPR@FPR(1e-4). Results are summarized in Tab. 1.

We observe that early methods [4, 20, 37] experience a

significant performance drop, especially on IJB-B/C, due to

the compromise of identity features in indiscriminate obfus-

cation. Despite being designed to conceal mostly visual fea-

tures, [57, 64] also exhibit considerable accuracy loss, sug-

1We found no open-source code for PPFR-FD and AdvFace. We repro-

duce them to our best effort, recognizing the possibility of inconsistencies.
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Figure 6. Privacy protection of MinusFace, compared with SOTAs. (a) MinusFace and most SOTAs successfully conceal the face image’s

visual appearance. (b) However, SOTAs fail to prevent recovery attacks. MinusFace outperforms all SOTAs as its recovered image is

highly blurred and can hardly distinguish the face’s existence. (c) Quantity results, where MinusFace exhibits the lowest SSIM and PSNR.

gesting inefficient trade-off between identity and visual fea-

tures. Recently, frequency-based methods [24, 35, 36, 56]

achieve notable accuracy by pruning visual appearance

through removing low-frequency channels at a marginal

utility cost. Their performance closely approaches the un-

protected baseline. However, we later show that they can

be susceptible to recovery attacks. MinusFace attains com-

mendable performance, with a small gap (≤ 2%) from the

unprotected baseline. It is on par (±1%) with frequency-

based methods and outperforms all other SOTAs. We argue

that this slight accuracy trade-off is justified, as MinusFace

offers significantly improved protection capability and effi-

ciency, later discussed in Secs. 4.4 and 4.7.

4.3. Concealing of visual information

To evaluate MinusFace’s privacy protection, recall our two-

fold privacy goals: visually concealing the face’s appear-

ance and hindering recovery attacks. Here, we focus on the

first goal and compare MinusFace with PPFR-FD, DCTDP,

DuetFace, PartialFace, ProFace, and AdvFace. These SO-

TAs, similar to ours, treat visual and identity features dis-

criminately. Specifically, we visualize their protective rep-

resentations Xp to determine if visual appearances can be

discerned. Note that Xp are not all in the form of images:

Frequency-based methods produce Xp as frequency chan-

nels, which we convert back via a reverse transform; Adv-

Face generates feature maps, transformed into images using

its shadow model; ProFace directly creates images.

Figure 6(a) displays Xp of each SOTA and MinusFace.

Generally, all methods successfully conceal the face’s ap-

pearance. DuetFace and ProFace provide slightly infe-

rior protection, as their generated Xp reveal some dis-

cernible facial features. DCTDP and AdvFace better con-

ceal visual appearance by applying noise and obfuscation.

In Fig. 6a(7), MinusFace produces Xp that nearly elimi-

nates the face’s structural clues and completely conceals its

texture details, effectively achieving the first privacy goal.

4.4. Protection against recovery

We here analyze the second privacy goal of protecting

against recovery. We find MinusFace provides significantly

better protection than SOTAs. We first describe the attack.

Threat model. We consider a white-box attacker who can

query the PPFR framework and know its detailed protec-

tion mechanism. This attacker is typically envisioned as a

malicious third-party wiretapping the transmission. While

aware of the framework’s general setup, such as hyper-

parameters, the attacker does not know the specific sample-

wise parameters (e.g., θ in our case) used by the client

to generate protective representations Xp. Assume the at-

tacker has access to a training dataset of face images X . It

can first obtain Xp by querying the PPFR framework. Then,

it can train a recovery model f−1 to map Xp back to X , as

argminδ
∥

∥f−1(Xp; δ), X
∥

∥

1
, and exploit f−1 to recover

the client’s shared Xp. We concretely use BUPT [54] of

1.3M images as the attacker’s dataset, and employ a full-

scale U-Net [42] as its f−1.

Comparison with SOTAs. We train an attack model for

MinusFace and each SOTA. Figure 6(b) displays examples

of recovered images. We find that most prior arts provide

insufficient protection against recovery. Specifically, Pro-

Face is not designed to prevent recovery, resulting in a faith-

ful recovered image from its protective Xp in Fig. 6b(5).

Some prior arts [35, 56, 57] suggest resistance to the at-

tack. However, in Fig. 6b(1)(3)(6), we find they can actu-

ally be recovered by a more powerful attacker, e.g., training

f−1 on a much larger dataset. For other methods, the faces’

appearance can also be somewhat recovered. We attribute

the SOTAs’ shortcomings to their setback in ensuring ade-

quate removal of visual features, especially facial textures.

This leaves potential features that attackers can leverage.

In Fig. 6b(7), MinusFace overcomes the drawback and ex-

hibits strong protection to recovery, outperforming SOTAs.

Quantitative comparison. In Fig. 6(c), we quantify the

quality of recovered images by their structural similarity
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Figure 7. Left: Sample channels from r and the attacker’s at-

tempted inversions to reproduce r′, together with their recovery.

(a) r is not designed as privacy-preserving, hence can be recov-

ered. (b-c) However, the attacker cannot obtain r or its correct

inversion r′, making recovery infeasible. Right: (d) Training re-

covery model on fixed θ does not pose an effective threat, as it fails

entirely for θ′ ̸= θ, where θ has a random space of 192!.

(SSIM) and peak signal-to-noise ratio (PSNR) compared to

the ground truth. Results are averaged on 10K IJB-C im-

ages. MinusFace exhibits the lowest SSIM and PSNR, in-

dicating the best protection.

4.5. Protection against dedicated attacks

We further investigate two attacks dedicated to MinusFace’s

design that attempt to invert r or bypass Xp’s randomness.

Inverting r. It is crucial to note that the high-dimensional

residue r is not designed to be protective (although it

produces a protective Xp) and can be easily recovered

(Fig. 7(a)). Our design is safe as r is never shared. Yet,

an attacker may attempt to further invert r from Xp and

carry out recovery therefrom. However, we demonstrate

that inverting r is infeasible. First, the attacker cannot in-

vert an r′ = r by re-encoding it as r′ = e(Xp), even if

it knows the specific θ (we omit θ for simplicity). Note

that although Eq. (3) assures d(e(X)) = X , its opposite

e(d(x)) = x is not guaranteed to hold. In Fig. 7(b), re-

encoding Xp produces inconsistent and uninformative r′,

further demolishing the attack. The attacker also cannot

train a recovery model from Xp to r as it is essentially

as difficult as training the previously discussed f−1. Fig-

ure 7(c) demonstrates the unsuccessful r′ and its recovery.

Bypassing randomness. The attacker is capable of gener-

ating Xp under a specific shuffle seed θ. It hence can train

f−1 on Xp from the same θ, to bypass the randomness of

representations. In Fig. 7(d), such trained f−1 produces

slightly better recovery on Xp under the same θ, but fails

entirely for any θ′ ̸= θ. As θ has a total random space of

192!, this attack does not impose any effective threat.

4.6. Ablation study

Recognition accuracy of r and R′. Recall r and R′ repre-

sent the high-dimensional residue and its spatial decoding,

respectively. We train FR models on them and show their

Method CFP-FP AgeDB CPLFW

ArcFace 98.30 97.88 92.77

r 98.27 97.82 92.73

R′ 53.85 54.71 51.20

Xp (default) 96.92 97.57 91.90

Table 2. Accuracy of models trained alternatively on r and R′.

Method ours [56] [24] [35] [36] [57]

Storage ↓ 1 ×36 ×63 ×54 ×9 ×5.3

Table 3. Comparison of storage and transmission cost. ×n indi-

cates an n-time larger protective representation than MinusFace.

recognition accuracy. We expect the model trained on r

(i.e., f ) to achieve high accuracy, as it indicates a lossless

feature subtraction, favorable for MinusFace’s overall util-

ity. We also expect R′’s model to experience a significant

accuracy downgrade (close to a random guess of 50%), as

R′ should be fully removed of features. Results in Tab. 2

meet our expectations. We yield further ablation studies to

the supplementary material, due to the limit of space.

4.7. Efficiency and compatibility

A practical PPFR framework is expected to have low infer-

ence latency and be efficient for storage and transmission.

MinusFace is an ideal fit for these goals.

Latency. Testing on a personal laptop, MinusFace costs

an average of 69 ms to turn an image into protective Xp,

an order of magnitude smaller than typical communication

time. It does not increase time costs for the service provider.

Storage and transmission. Many prior arts [24, 35, 36,

56, 57] produce Xp as high-dimensional feature channels

(e.g., DCTDP generates an (189, H,W ) Xp), resulting in

additional storage and transmission costs. In contrast, Mi-

nusFace produces spatial images. As shown in Tab. 3, Mi-

nusFace’s Xp requires far less size compared to SOTAs.

Compatibility. MinusFace is also compatible with different

SOTA FR backbones and training objectives, as it neither

modifies nor requires any specific design of FR architecture.

5. Conclusion

This paper investigates the privacy protection of face im-

ages. We present a new methodology, feature subtraction,

to generate privacy-preserving face representations by cap-

turing the residue between an original face and its regen-

eration. We further ensure the recognizability and privacy

of residue via high-dimensional mapping and random chan-

nel shuffling, respectively. Our findings are concretized into

a novel PPFR method, MinusFace. Extensive experiments

demonstrate that it achieves satisfactory recognition accu-

racy and enhanced privacy protection.
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