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Figure 1. Left: Illustration of our frequency-aware BFR scheme. Restoration is performed in the frequency domain instead of the pixel
domain. Right: Comparisons with state-of-the-art face restoration methods on degraded images. Previous methods struggle to restore
facial details or the original identity while our WaveFace achieves a good balance of realness and fidelity with fewer artifacts.

Abstract

Although diffusion models are rising as a powerful so-
lution for blind face restoration, they are criticized for two
problems: 1) slow training and inference speed, and 2) fail-
ure in preserving identity and recovering fine-grained fa-
cial details. In this work, we propose WaveFace to solve the
problems in the frequency domain, where low- and high-
frequency components decomposed by wavelet transforma-
tion are considered individually to maximize authenticity as
well as efficiency. The diffusion model is applied to recover
the low-frequency component only, which presents general
information of the original image but 1/16 in size. To pre-
serve the original identity, the generation is conditioned on
the low-frequency component of low-quality images at each
denoising step. Meanwhile, high-frequency components at
multiple decomposition levels are handled by a unified net-
work, which recovers complex facial details in a single
step. Evaluations on four benchmark datasets show that: 1)
WaveFace outperforms state-of-the-art methods in authen-

ticity, especially in terms of identity preservation, and 2)
authentic images are restored with the efficiency 10× faster
than existing diffusion model-based BFR methods.

1. Introduction

Blind face restoration (BFR) aims to recover high-quality
(HQ) facial images from various degradations, including
down-sampling, blurriness, noise, and compression arti-
fact [1, 26, 35]. BFR is challenging since the types of
degradation are generally unknown in real-world scenarios.
Improvements in the restoration quality over the past few
years mainly benefit from the usage of multiple facial pri-
ors. Geometric priors, including facial landmarks [3] and
parsing maps [2, 24], are employed to provide explicit fa-
cial structure information. Reference priors, such as HQ
images/features [8, 29, 38], are used as guidance during fa-
cial restoration. Generative priors are generally obtained
by pre-trained generation models such as StyleGAN [13],

* Corresponding author

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6583



which facilitate the recovery of realistic textures [2, 27, 32].
Inspired by the superior generative ability of diffusion mod-
els (DMs) [10, 25], how to unleash its potential in authentic
face restoration has gained much attention.

Despite plausible restoration results being achieved,
existing DMs based methods [30, 34] generally suffer
from two problems: 1) DMs are trained on large im-
ages (512×512), which requires massive computational re-
sources for both training and inference, as thousands of iter-
ations are required to obtain adequate outputs. DifFace [34],
for example, takes about 25 seconds to sample an image
from noise. 2) Low-quality (LQ) images are firstly dif-
fused to an intermediate step and then denoised by an un-
conditional diffusion model to obtain HQ counterparts [34].
However, as shown in Fig. 1, such an unconditional genera-
tion will lead to great uncertainty in restored images, which
means the original identity and facial details such as wrin-
kles cannot be well preserved.

To solve the above problems, we transfer the BFR task
from the pixel domain to the frequency domain via Dis-
crete Wavelet Transform (DWT). As shown in Fig. 1, an
image can be decomposed and reconstructed by its four
quarter-sized sub-bands: low- and high-frequency com-
ponents without sacrificing information. Low-frequency
sub-band mainly contains general information such as face
structure while high-frequency ones contain rich facial de-
tails. By exponentially shrinking the size of input images,
restoration within the frequency domain not only speeds up
both training and inference but also maintains the authentic-
ity of restoration. In the paper, we devise an efficient BFR
method WaveFace that restores authentic HQ images by re-
covering its frequency components.

WaveFace consists of a Low-frequency Conditional De-
noising (LCD) module and a High-Frequency Recovery
(HFR) module. A diffusion model is used in LCD to re-
store the low-frequency sub-band of HQ images whose
size is only 1/16 of the original image. In addition to
smaller inputs, LCD leverages LQ counterparts as a condi-
tion throughout the generation to preserve the original iden-
tity. Meanwhile, HFR recovers high-frequency sub-bands
decomposed at multiple DWT levels simultaneously within
one step. With the frequency components restored by two
modules, authentic images can be reconstructed via discrete
inverse wavelet transform (IWT) within 1 ms. The contri-
butions can be summarized as follows:

• We propose an efficient blind face restoration approach,
WaveFace, that restores authentic images by recovering
their frequency components individually.

• A conditional diffusion model is adopted to restore the
low-frequency component, which is 1/16 the size of the
original image.

• A one-pass network is used to recover high-frequency
sub-bands decomposed at multiple DWT levels simul-

taneously.
• Comprehensive experiments demonstrate the superior-

ity of methods in both efficiency and authenticity.

2. Related Work
2.1. Diffusion models

Diffusion Models (DMs) are emerging generative models
that corrupt the data with the successive addition of Gaus-
sian noise during the diffusion process and then learn to re-
cover the data during denoising. State-of-the-art DMs [10]
have revealed the potential in CV tasks, such as image de-
blurring [4, 15] and image super-resolution [22, 23].
Accelerating DMs. Despite being powerful in generation,
DDPM [10] has the downside of low inference speed, which
requires thousands of steps for sampling. To accelerate in-
ference, DDIM [19] adopts a non-Markovian diffusion pro-
cess that allows step skipping during sampling.
Conditional DMs. Unconditional DM-based generation
leads to great uncertainty in outputs, which means they gen-
erally fail to preserve the original identity and fine-grained
facial details. Therefore, conditions are injected by cross-
attention layer [22], adaptive normalization layer [21], or
concatenation operation [23] to control the characteristic of
the synthesized images.

2.2. Blind face restoration

Facial priors exploited in blind face restoration (BFR) can
be categorized into three types: geometric priors, reference
priors, and generative priors.
Geometric priors based methods leverage knowledge from
facial landmark [3, 6], facial parsing maps [2, 24, 37], and
facial component heatmaps [33]. However, they tend to
show inferior performance since degraded images fail to
provide accurate and adequate structural information.
Reference priors based methods either leverage a high-
quality (HQ) reference image sharing the same identity
as the degraded one [17] or a pre-constructed dictionary
storing HQ facial features [8, 29, 38]. Firstly, a vector-
quantized (VQ) codebook is pre-trained on HQ faces via
VQ-GAN [7] to provide rich facial details. Features of de-
graded inputs are then fused with the prior either at im-
age [29] or latent [8, 38] level for the generation of HQ
counterparts. However, reference prior is restricted by the
size of the codebook, which limits the diversity and richness
of generated images.
Generative priors encapsulated in pretrained face mod-
els [13, 14] are also leveraged to restore faithful faces [2, 27,
32]. PSFRGAN [2] modulates features at different scales
progressively with facial parsing maps to achieve semantic-
aware style transformation. GFP-GAN [27] and GPEN [32]
adopt the pre-trained StyleGAN as a decoder and achieve
a good balance between visual quality and fidelity of re-
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stored images. Recently, diffusion models [10, 25] have
shown the powerful generative ability in restoring HQ con-
tent from noisy images. Inspired by the ability, DifFace [34]
firstly maps low-quality (LQ) inputs into an intermediate
step of the denoising process, from which its HQ counter-
part is recursively sampled. DR2 [30] employs the diffu-
sion model to remove degradations, followed by a super-
resolution model to obtain HQ counterparts.

Nevertheless, previous DM-based BFR methods are per-
formed in the pixel domain, where large inputs require mas-
sive computational resources for both training and infer-
ence. Besides, they both apply the unconditional scheme
that leads to significant uncertainty in restored results.

3. Preliminary
Discrete Wavelet Transformation (DWT). DWT decom-
poses an image into low-frequency and high-frequency sub-
bands. The low-frequency component presents general in-
formation while high-frequency ones express facial details
in the vertical, horizontal, and diagonal directions. In the
paper, we use Haar wavelet for DWT, which is widely used
in real-world applications due to simplicity [20].

Given an image x ∈ RH×W×3, its low-frequency sub-
band x1

ll ∈ RH/2×W/2×3 and high-frequency sub-bands
x1
lh,x

1
hl, and x1

hh ∈ RH/2×W/2×3 can be decomposed by:

x1
ll,x

1
lh,x

1
hl,x

1
hh = DWT (x), (1)

where DWT (·) refers to the DWT operation. Despite that
the input size is decreased by a factor of four (H/2×W/2)
after a single DWT decomposition, DWT can be performed
on the low-frequency component to further reduce the com-
putational cost and expedite the inference:

xJ+1
ll ,xJ+1

lh ,xJ+1
hl ,xJ+1

hh = DWT (xJ
ll), (2)

where J is level of DWT decomposition and
xJ+1
ll ,xJ+1

lh ,xJ+1
hl ,xJ+1

hh ∈ RH/2(J+1)×W/2(J+1)×3.
Reversibly, given the frequency sub-bands, an image can be
reconstructed via discrete inverse wavelet transform (IWT):

x = IWT (x1
ll,x

1
lh,x

1
hl,x

1
hh). (3)

Diffusion Models. Training of diffusion models (DMs)
consists of a diffusion process and a denoising process. Dif-
fusion process transforms an image from the real data dis-
tribution y0 ∼ q(y0) into a pure Gaussian noise yT by suc-
cessively applying the following Markov diffusion kernel:

q(yt|yt−1) = N (yt;
√
1− βtyt−1, βtI), (4)

where {βt}Tt=1 is a pre-defined or learned noise variance
schedule. The marginal distribution at arbitrary timestep t
can be denoted as:

q(yt|y0) = N (yt;
√
αty0, (1− αt)I), (5)

where αt =
∏t

s=1(1 − βs). Given yt, the denoising pro-
cess aims to recover y0 by recursively learning the tran-
sition from yt−1 to yt, which is defined as the following
Gaussian distribution:

pθ(yt−1|yt) = N (yt−1;µθ(yt, t),Σθ(yt, t)) , (6)

where parameters θ are optimized by a denoising network
ϵθ that predicts µθ(yt, t) and Σθ(yt, t).

4. Methodology
In the paper, WaveFace is proposed to handle blind face
restoration (BFR) in the frequency domain. The framework
is depicted in Fig. 2. First, degraded images are mapped
to the frequency domain via Discrete Wavelet Transforma-
tion (DWT) (Sec. 3). The proposed Low-frequency Con-
ditional Denoising (LCD) module (Sec. 4.1) and High-
Frequency Recovery (HFR) module (Sec. 4.2) are adopted
on the low- and high-frequency components respectively to
remove degradations and restore facial details. Recovered
frequency components are used for the image reconstruc-
tion.

4.1. Low-frequency Conditional Denoising

As shown in Fig. 1, the low-frequency component is similar
to the down-sampled version of the original image, which
largely determines the restoration quality. Due to its power-
ful generative ability from noisy inputs, a diffusion model
(DM) is adopted in LCD to restore the low-frequency sub-
band of high-quality (HQ) images.
Conditional DM. We denote the low-frequency sub-band
of a pair of LQ and HQ images as (xj

ll0
, yj

ll0
). Since the

low-frequency sub-band only contains a single map after
DWT, the DWT levels j and ll are omitted in this section
for simplicity. According to the diffusion process defined
in Eq. (5), images are successively destroyed by Gaussian
noise as timestep t increases, which means the distribution
q(xT |x0) ≈ q(yT |y0) ≈ N (0, I) after a large timestep T .
Given this assumption, our LCD aims to learn the posterior
distribution p(y0|x0):

p(y0|x0) =

∫
q(yT |x0)

T∏
t=1

pθ(yt−1|yt)dy1:T , (7)

where pθ(yt−1|yt) refers to the unconditional denoising
process defined in Eq. (6). However, the unconditional
scheme fails to preserve the original identity due to the lack
of guidance during generation. To solve the problem, the
low-frequency sub-band of LQ images x0 are injected as
the condition for the denoising process:

pθ(yt−1|yt,x0) = N (yt−1;µθ(yt, t,x0),Σθ(yt, t,x0)) ,
(8)
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Figure 2. Overall framework of WaveFace. It consists of a Low-frequency Conditional Denoising (LCD) module and a High-Frequency
Refinement (HFR) module. LCD (Sec. 4.1) predicts clean samples x0 from noise conditioned on LQ inputs through T steps. Meanwhile,
high-frequency sub-bands are concatenated as HFR (Sec. 4.2) inputs to recover vivid facial details. The predicted frequency components
are projected back to the image via IWT.

where x0 is injected by concatenating with the input yt
along the channel dimension.
Objectives. Following DDPM [10], the denoising network
ϵθ is trained to predict noise vectors with the objective:

LLCD = Ey0,t,ϵt∼N (0,I)

[
||ϵt − ϵθ(yt,x0, t)||2

]
. (9)

During inference, with the learned parameterized Gaussian
transitions pθ(yt−1|yt,x0), the low-frequency sub-band of
HQ images can be recovered from a random Gaussian noise
yT ∼ N (0, I) by recursively applying:

yt−1 =
1

√
αt

(
yt −

βt√
1− ᾱt

ϵθ(yt,x0, t)

)
+ σtz, (10)

where z ∼ N (0, I), αt = 1− βt, and ᾱt =
∏t

i=1 αi.
Trade-off between efficiency and quality. Training a DM
on large inputs (×512 or more) requires massive computa-
tional resources and the evaluation takes thousands of steps
to sample from the noise. Although this problem can be
alleviated by adopting low-frequency sub-bands at higher
DWT levels, multiple times of decomposition will also lead
to information reduction. How to set DWT level wisely is
the key to balance between efficiency and authenticity.

To illustrate how DWT level J affects the authenticity,
we visualize the image reconstructed by the low-frequency
component of HQ images and the corresponding high-
frequency ones of its LQ counterpart at different DWT lev-
els in Fig. 3. Although noisy at the high-frequency part, the
quality of images reconstructed at J ≤ 2 is acceptable, with
key facial features such as wrinkles still preserved. How-
ever, the mosaic effect starts to emerge when J keeps in-
creasing. Ablation studies about the effect of DWT level on

training/inference are shown in Sec. 5.2.1. In the paper, J
is set as 2 empirically.

4.2. High-frequency Recovery

Although the general face information is restored by LCD,
rich facial details are generally embedded in the high-
frequency component, as shown in Fig. 1, which improves
the authenticity of restored images. High-frequency sub-
bands at multiple DWT levels also vary in size, which
means more than one diffusion model is required for the
recovery. To avoid the extravagant computational cost, we
adopt a U-shaped network that can recover high-frequency
sub-bands at multiple DWT levels at the same time and
takes only one step for inference.

Given a LQ and HQ image pair (x,y) and their high-
frequency sub-bands: xj

H = {xj
lh,x

j
hl,x

j
hh} and yj

H =

{yj
lh,y

j
hl,y

j
hh}, where j ∈ {1, 2} refers to DWT level, the

framework our high-frequency recovery (HFR) module is
illustrated in Fig. 4. HFR takes high-frequency sub-bands
of LQ images that are channel-wise concatenated as inputs
and outputs the recovered ones x̂j

H as follows:

F 1
H ,F 2

H = Uϕu(Hϕin(x
1
H),Fϕf

(x2
H)), (11)

x̂j
H = Hϕj

out
(F j

H) + xj
H , j ∈ {1, 2}, (12)

where U(·), H(·), F(·) denotes the U-shaped network, the
convolutional layer, and the fusion module with the param-
eter ϕu, ϕj

in/out, and ϕf , respectively. F 1
H , F 2

H represents
feature maps of the last and penultimate decoding layers of
the U-shaped network. Considering efficiency, the fusion
module only contains two stacked ConvBlocks that apply
3×3 and 1×1 convolutional layers with ReLU in between,
followed by concatenation with the input.
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(a) J = 3 (×64) (b) J = 2 (×128) (c) J = 1 (×256)

Figure 3. Visualization of DWT frequency components and images reconstructed by the low-frequency sub-band of an HQ image and
high-frequency sub-bands of its LQ counterpart. DWT level J and resolution of low- / high-frequency sub-bands (×N ) are reported.
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Figure 4. Illustration of high-frequency recovery (HFR) module.

Objectives. We adopt two loss terms for the training of
HFR: recovery loss Lr and content loss [28] Lc. The recov-
ery loss is applied not only to restore HQ high-frequency
sub-bands yj

H at each level but also to the image yj−1 re-
constructed via inverse wavelet transform (IWT):

Lr =
∑
j

(||x̂j
H − yj

H ||+ α||IWT (yj
ll, x̂

j
H)− yj−1||),

(13)
where IWT (·) denotes IWT operation and α = 1 is the
parameter balancing losses between the frequency domain
and the pixel domain. In addition to minimizing the pixel-
wise distance, the content loss is applied to maximize the
luminance, contrast, and structural similarity of the restored
and original HQ image:

Lc = 1− SSIM(IWT (y2
ll, x̂

2
H , x̂1

H),y). (14)

The overall objective of HFR is LHFR = Lr + λLc, where
the weighting parameter λ is set as 10.

5. Experiments
5.1. Settings and Datasets

Training Dataset. FFHQ [13] is used as the training set,
which contains 70,000 high-quality (HQ) face images. Fol-
lowing BFR benchmark works [8, 29], we resize HQ im-
ages to the resolution of 512 × 512, and then synthesize
low-quality (LQ) counterparts as follows:

x =
{
[(y ⊗ kσ) ↓s + nδ]JPEGq

}
↑s, (15)

where a HQ image y is firstly blurred by a Gaussian ker-
nel kσ , followed by a downsampling of scale s. Afterward,
Gaussian noise nδ and JPEG compression with quality fac-
tor q are applied to the image, which is then upsampled
back to the original size to obtain its LQ counterpart x. The
hyper-parameters σ, s, δ, and q are uniformly sampled from
[0.1, 15], [0.8, 32], [0, 20], and [30, 95] respectively.
Testing Dataset. We evaluate WaveFace on a synthetic
dataset: CelebA-Test and three real-world datasets: LFW-
Test [11], WebPhoto-Test [27], and WIDER-Test [38].
CelebA-Test contains 3000 HQ images from CelebA-
HQ [12], and LQ counterparts are synthesized via Eq. (15)
with the same degradation setting. In terms of three real-
world datasets, LFW-Test contains 1711 mildly degraded
face images in the wild, which comprises the first image
for each person in LFW [11]. WebPhoto-Test includes
407 images crawled from the internet, some of which are
old photos with severe degradation. WIDER-Test consists
of 970 images with severe degradations from the WIDER
dataset [31].
Evaluation Metrics. For evaluation, we adopt two pixel-
wise metrics (PSNR and SSIM), a reference perceptual met-
ric (LPIPS [36]), and a non-reference perceptual metric
(FID [9]). To measure the consistency of identity, the an-
gle between embeddings extracted by ArcFace (“Deg.”) [5]
is used. All metrics are used for the evaluation of synthetic
data while only FID is used for real-world datasets due to
the lack of referential HQ images.
Implementation Details. The DWT decomposition level
is set as 2, which reduces the input size of the diffusion
model from 512×512 to 128×128. We train LCD and HFR
individually with Adam [16] optimizer. LCD is trained for
200K iterations with the learning rate 1e-4 and batch size
32. For HFR, the training takes 70K iterations. The learning
rate gradually decays from 1e-3 to 1e-5 by a factor of 0.1.

5.2. Ablation Studies

5.2.1 Low-frequency Conditional Denoising

DWT Levels. We conduct an experiment to investigate how
the level of wavelet decomposition (DWT) affects the effi-
ciency and authenticity. DWT is applied 0, 1, 2, 3 times on
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Table 1. Comparison between state-of-the-art diffusion model-
based BFR methods and ours at different DWT levels in terms
of efficiency and authenticity. The best and the second best perfor-
mances are highlighted and underlined.

Method Level Resolution #Param. (M) Time (s) PSNR↑ SSIM↑

DifFace [34] - × 512 175.38 25.04 19.06 0.46
DR2 [30] - × 256 93.56 8.76 22.89 0.57

WaveFace

0 × 512 109.06 19.37 26.42 0.65
1 × 256 71.41 8.12 27.08 0.73
2 × 128 25.36 1.97 26.97 0.71
3 × 64 3.9 1.46 24.81 0.46

the training set, where the resolution of the diffusion model
(DM)’s input becomes 512×512, 256×256, 128×128, and
64×64, respectively. The number of parameters and the in-
ference time are used to evaluate the efficiency while PSNR
and SSIM are used to evaluate authenticity. The compari-
son results are reported in Tab. 1. In comparison with the
model trained on original images (×512), our frequency-
aware scheme applies DM on the low-frequency sub-band
only, which avoids some unknown noise on high-frequency
components. Thus, the restoration quality improves after
the wavelet decomposition is applied once. The quality can
be maintained until the DWT level increases to 2, where
the inference process is accelerated by 10×. However, the
performance is significantly harmed when the DWT level
further increases (3 or higher) as too many details in the
low-frequency component have been reduced. DWT level
is set as 2 throughout the experiments to achieve the trade-
off between the efficiency and the quality of restoration.

We also compare the efficiency with two DM-based BFR
methods: DifFace [34] and DR2 [30]. To make a fair
comparison, the inference time refers to the time of the
whole denoising process, which starts from the pure Gaus-
sian noise. The quality of generated images cannot com-
pared with that reported in Tab. 3 as images are gener-
ated with pre-/post-processing and fewer sampling steps in
their methods. As can be seen, our method achieves better
restoration quality at a lower computational cost.
Conditions. To investigate how the condition facilitates the
restoration, we first remove the condition from the input of
our LCD module and train an unconditional diffusion model
for 200K iterations for a fair comparison. The restored face
is denoted by “Uncond.” in Fig. 5. We notice that not only
the identity is not preserved but also the image quality drops
significantly. This could be attributed to the slow conver-
gence of the unconditional training manner [21].

Additionally, we compare with two widely-used con-
ditioning schemes: adaptive group normalization layers
(AdaGN) [21] and cross-attention [22]. We replace the
low-frequency sub-band of LQ images with the correspond-
ing identity embedding extracted by Arcface [5], which are
subsequently injected via AdaGN. Furthermore, a cross-
attention layer is added to condition the denoised image

LQ (23.04dB / 54.96) Uncond. (9.77dB / 85.64) AdaGN (21.55dB / 32.28)

Cross-Att. (25.85dB / 30.31) Concat. (26.97dB / 28.26) HQ (∞/ 0)

Figure 5. Qualitative comparison of different conditioning
schemes on CelebA-Test. We adopt “Concat.” in WaveFace.
PSNR(↑) / Deg.(↓) are reported.

at each step with the LQ low-frequency information. Ex-
perimental details of the two schemes will be discussed in
supplementary materials. The restored images are shown in
Fig. 5 as “AdaGN” and “Cross-Att.”, respectively. Although
the original identity is preserved by the AdaGN scheme, the
background is not well restored. A possible reason is that
the identity-related condition is performed at the latent level
only, which fails to provide pixel-wise constraints. On the
other hand, despite the cross-attention scheme achieves a
comparable restoration result with ours (“Concat.”), the ex-
tra layer requires more computational resources.

Table 2. Ablation studies of the effectiveness of our high-
frequency recovery (HFR) module. xH denotes high-frequency
sub-bands of LQ images and 1, 2 stands for the level of wavelet
decomposition. Best performance is indicated by Red.

PSNR↑ SSIM↑ LPIPS↓ FID↓

LCD + x1
H + x2

H 24.353 0.430 0.537 17.264
LCD + HFR1 + x2

H 26.081 0.609 0.481 14.020
LCD + x1

H + HFR2 24.819 0.460 0.536 15.293
LCD + HFR1 + HFR2 (Ours) 26.967 0.711 0.343 13.062

5.2.2 High-frequency Recovery

To investigate the effectiveness of our High-frequency Re-
covery (HFR) module, we replace the recovered high-
frequency sub-bands at different DWT levels with that of
low-quality (LQ) images for image reconstruction. Quan-
titative comparisons on the restoration quality of different
schemes are reported in Tab. 2. The restoration quality
drops significantly when HFR is removed with a decline
of 2.62 dB in PSNR. Besides, the lack of recovered high-
frequency components at different DWT levels deteriorates
the restoration quality to varying extents. In comparison
with those at level 2 (×128), high-frequency sub-bands at
level 1 (×256) contribute more to the restoration quality.
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Figure 6. Qualitative comparison between images reconstructed
at different DWT levels with and without (w/o) HFR module on
CelebA-Test. x, x̂ and y denotes LQ images, restored images,
and HQ images. xj(j ∈ {1, 2}) denotes frequency components
at j-th DWT level. PSNR(↑) of the restored images are reported.

The exemplar illustrated in Fig. 6 helps to understand in-
tuitively. Before our HFR is applied (Row 2), the restored
image contains cluttered noise and lacks details such as
hairstyle due to messy high-frequency sub-bands of LQ im-
ages. The quality improves when the image is constructed
with the refined high-frequency component (Row 3), which
is less noisy and presents fine-grained details.

5.3. Comparisons with State-of-the-Art Methods

State-of-the-art (SOTA) methods used for comparison in-
clude generative prior based methods (GPEN [32] and GF-
PGAN [27]), reference prior based methods (VQFR [8]
and RestoreFormer [29]) and recent diffusion model-based
methods (DifFace [34] and DR2 [30]). Evaluations are con-
ducted on both synthetic and real-world datasets.
Synthetic dataset. Quantitative comparison on CelebA-
Test [12] are illustrated in Tab. 3. WaveFace achieves the
best scores on reference-based metrics and ranks second on
FID. Apart from the better restoration quality, our method

Table 3. Quantitative comparison on CelebA-Test for blind face
restoration. “Deg.” refers to the angle between identity embed-
dings of restored images and HQ counterparts. The best and the
second best performances are highlighed and underlined.

Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ Deg.↓

Input 23.038 0.389 0.586 67.505 54.958

GPEN [32] 24.319 0.603 0.440 22.251 38.473
GFP-GAN [27] 24.771 0.674 0.361 14.501 36.958

VQFR [8] 23.735 0.614 0.358 14.048 38.684
RestoreFormer [29] 24.191 0.636 0.364 12.000 34.752
CodeFormer [38] 25.071 0.672 0.359 14.385 37.677

DR2 [30] 23.583 0.613 0.402 14.671 51.030
DifFace [34] 24.155 0.667 0.390 13.379 49.958

WaveFace 26.967↑1.90 0.711 0.343 13.062 28.263↑6.49

Table 4. Quantitative comparisons on three real-world datasets (-
Test) in terms of FID. The best and the second best performances
are highlighted and underlined.

Methods LFW WebPhoto WIDER

Input 124.974 170.112 199.961

GPEN [32] 50.792 80.572 46.340
GFP-GAN [27] 49.560 87.584 39.499

VQFR [8] 50.867 75.348 44.107
RestoreFormer [29] 47.750 77.330 49.817
CodeFormer [38] 51.863 83.193 38.784

DR2 [30] 45.298 112.344 45.348
DifFace [34] 45.227 87.811 37.112

WaveFace 43.175 81.525 36.913

faithfully preserves the identity with the minimum angle be-
tween identity embeddings and their HQ counterparts, out-
performing the second-best method by 6.5 degrees.

Additionally, we present the qualitative comparison with
SOTA methods on images with increasing degradations
in Fig. 7. GFPN and GFPGAN generally produce over-
smoothed results. VQFR and RestoreFormer introduce ob-
vious artifacts especially when the inputs are corrupted by
mild or severe degradation. Besides, the above methods fail
to preserve the identity since they are highly dependent on
the StyleGAN prior, where the pre-defined latent space lim-
its the diversity in restored results. Diffusion prior-based
methods (DifFace and DR2) tend to generate faithful im-
ages with minor artifacts. However, due to the lack of
condition during generation, both methods still suffer from
the failure in identity preservation. On the contrary, our
method, with the help of diffusion prior as well as the in-
jected condition, is capable of generating high-quality fa-
cial images with fewer artifacts and, meanwhile, is faithful
to the original identity.
Real-world datasets. We compare with SOTA methods
on three real-world datasets in terms of FID score, which
measures the KL divergence between the distribution of re-
stored images and that of HQ images in FFHQ [13]. To
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LQ GPEN [32] GFPGAN [27] VQFR[8] RestoreFormer [29] DifFace [34] DR2 [30] Ours HQ
Figure 7. Qualitative comparison with state-of-the-art BFR methods on CelebA-Test. Our method achieves a better restoration quality
with the original identity and facial details well preserved. (Zoom in for best view).

LQ GPEN [32] GFPGAN [27] VQFR[8] RestoreFormer [29] SwinIR [18] DifFace [34] DR2 [30] Ours

Figure 8. Qualitative comparison with state-of-the-art BFR methods on real-world datasets, including LFW-Test (first row), WebPhoto-
Test (second row), and WIDER-Test (third row). (Zoom in for best view).

reduce the large gap between the synthetic degradations
and real-world ones, following previous diffusion prior-
based methods [18, 34], a pre-denoising network [18] is
applied before our method to handle the unknown degra-
dations. Quantitative results with SOTA methods are re-
ported in Tab. 4. WaveFace outperforms state-of-the-art
(SOTA) methods on LFW-Test [11] and WIDER-Test [38]
and beats previous diffusion model based BFR methods on
WebPhoto-Test [27]. As mentioned in DifFace [34], the
FID score may not be the most suitable evaluation metric
for WebPhoto-Test, as a total of 407 images is significantly
distant from representing the data distribution.

Three typical examples are shown in Fig. 8 with the in-
creasing degradation level. It is observed that previous BFR
methods tend to generate either hazy or unnatural faces.
Some methods even fail to generate adequate restored re-
sults when handling severe degradations (Row 3). In con-

trast, our approach provides much more natural and realistic
results with rich details such as wrinkles.

6. Conclusion
We propose WaveFace to solve the task in the frequency do-
main to achieve the trade-off between efficiency and authen-
ticity. Efficiency is achieved by applying a diffusion model
only on the low-frequency sub-band whose size is 1/16 of
the original image. Meanwhile, high-frequency compo-
nents decomposed at multiple DWT levels are recovered si-
multaneously by a one-forward framework, which ensures
the preservation of facial details.
Limitations. There is a considerable gap between real-
world degradations and the simulated ones (Eq. (15)), lead-
ing to inferior results in some cases. Our future work will
focus on how to simulate degradations that fit real-world
scenarios.
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