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Abstract

We propose a novel approach to video anomaly detec-
tion: we treat feature vectors extracted from videos as re-
alizations of a random variable with a fixed distribution
and model this distribution with a neural network. This lets
us estimate the likelihood of test videos and detect video
anomalies by thresholding the likelihood estimates. We
train our video anomaly detector using a modification of de-
noising score matching, a method that injects training data
with noise to facilitate modeling its distribution. To elim-
inate hyperparameter selection, we model the distribution
of noisy video features across a range of noise levels and
introduce a regularizer that tends to align the models for
different levels of noise. At test time, we combine anomaly
indications at multiple noise scales with a Gaussian mix-
ture model. Running our video anomaly detector induces
minimal delays as inference requires merely extracting the
features and forward-propagating them through a shallow
neural network and a Gaussian mixture model. Our ex-
periments on five popular video anomaly detection bench-
marks demonstrate state-of-the-art performance, both in the
object-centric and in the frame-centric setup.

1. Introduction

The goal of video anomaly detection (VAD) is to detect
events that deviate from normal patterns in videos. VAD has
numerous potential applications in healthcare, safety, and
traffic monitoring. It can be used to detect events like hu-
man falling down, workplace, or traffic accidents, and holds
the promise of dramatically reducing the time needed to re-
spond to emergencies that can result from them. The main
challenge of anomaly detection stems from the fact that, un-
like classes of actions in video action recognition, anoma-
lies do not form a coherent group of patterns and typically
cannot be anticipated in advance. In consequence, in many
applications anomalous training data is not available, ne-
cessitating the so-called one-class classification approach,

in which the system is trained exclusively on normal data.
Traditional approaches to one-class video anomaly de-

tection rely on training a deep network in auxiliary self-
supervised tasks, like auto-encoding the frame sequence [9–
12, 15, 29], predicting future frames [22, 28], inpaint-
ing spatio-temporal volumes [9], and solving jigsaw puz-
zles [2, 39]. The underlying assumption is that given a
video sufficiently different from those of the training set,
i.e. one containing an anomaly, the network should fail to
complete the self-supervised task. However, the connection
between data normality or abnormality and the performance
of the network remains unclear. Deep networks can gener-
alize beyond their training set, and there is no guarantee that
anomalies make them fail to complete their task.

Our motivation is to lay more solid foundations for video
anomaly detection. To that end, we treat feature vectors
extracted from videos as realizations of a random variable
with a fixed distribution, and seek to approximate its proba-
bility density function with a neural network. Such approx-
imation would enable a principled and intuitive approach to
detecting anomalies: since anomalous data is characterized
by a low likelihood under the statistical model of normal
data, it could be detected by thresholding the approximate
density function.

Training a neural network to directly approximate p(x),
the probability density function of the training data is very
challenging. However, Vincent [38] showed that inject-
ing the data with zero-centered, iid Gaussian noise makes
it easier to model the distribution of the noisy data q(x̃).
For sufficiently low levels of noise, q preserves the shape
of p, which makes it a suitable basis for our anomaly in-
dicator. Vincent’s contribution consisted in proposing de-
noising score matching, a method to train a neural network
to approximate −∇x̃ log q(x̃), the negative log-gradient of
the density function of noisy data, which became a core al-
gorithm of a recent class of generative models [35]. We
modify this method to train a neural anomaly indicator that
approximates, up to a constant, the log-density, − log q(x̃),
well suited to indicating anomalies thanks to its one-to-one
relation to q(x̃). Our approach is illustrated in Figure 1.
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Figure 1. MULDE approximates the negative log-density of noisy, normal video features at multiple levels of noise σ with a neural network
f(·, σ). The log-likelihoods estimated at multiple noise levels are combined into a single anomaly score with a Gaussian mixture model
(GMM). MULDE can be trained to detect video anomalies in an object-centric or frame-centric manner. In the object-centric approach, an
object detector (OD) is used to detect objects which are then fed to the feature extractor (FE). In the frame-centric approach, the feature
extractor is applied to short sequences of entire frames.

In its basic form, introduced above, our method requires
choosing the standard deviation σ of the noise injected into
the data, also called the noise scale. This choice represents a
compromise between making q closer to p for small values
of σ and extending the support of q to cover more possible
anomalies at larger noise levels. To avoid this unwelcome
compromise, we do not settle on a single σ, but approximate
the log-density for a range of noise scales σ ∈ {σ1, . . . σL}
with a neural network f(·, σ), and introduce a regulariza-
tion term that tends to align the approximations at differ-
ent scales. At test time, we compute anomaly indicators
for a range of noise scales and combine them into a sin-
gle anomaly score with a Gaussian mixture model, fitted to
normal data. Our experiments show that MULDE, the reg-
ularized MUltiscale Log-DEnsity approximation, is a very
effective video anomaly detector.

To summarize, the main contribution of this paper is a
novel approach to detecting anomalies from video features
with a neural approximation of their log-density function.
In technical terms, we propose a modification of multiscale
denoising score matching for training anomaly indicators
and a new method to regularize this training. Our anomaly
detector is simple, mathematically sound, and fast at test
time, as inference requires merely extracting the features
and forward-propagating them through a neural network
and a Gaussian mixture model. Moreover, it is agnostic
of the feature vector it consumes on input. Our experi-
ments on the Ped2 [26], Avenue [24], ShanghaiTech [25],
UCFCrime [36], and UBnormal [1] data sets demonstrate

state-of-the-art performance in anomaly detection both in
the object-centric setup, where features are extracted from
bounding boxes of detected objects, and in the frame-centric
setup, with features computed for entire frames.

2. Related Work
VAD was studied in multiple settings: as a one-class clas-
sification problem, where no anomalous data is available
for training [3–5, 7, 8, 12, 13, 24, 25, 28, 29, 32, 40, 42–
45], as an unsupervised learning task, where anomalies are
present in the training set, but it is not known which train-
ing videos contain them [45], and as a supervised, or weakly
supervised problem, where training labels indicate anoma-
lous video frames, or videos containing anomalies, respec-
tively [1, 36, 45]. We address the first of these settings – we
assume the training set is limited to normal videos.

Existing VAD methods can be categorized as frame-
centric when they operate on features computed from entire
frames or their sequences [1, 36, 40, 42, 45], and object-
centric, if they estimate the abnormality of each bounding
box in every frame [2, 8–10, 15, 32, 39], typically using a
pre-trained feature extractor. The frame-centric design is
more suited for global events, like fires, or smoke, while the
object-centric one is oriented at anomalies associated with
people or objects, like human falls, or vehicle accidents. In
Sec. 4, we show that our method can establish state-of-the-
art performance with features of either type.

The predominant approach to VAD is to train a deep net-
work to auto-encode normal videos and use the reconstruc-
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tion error as anomaly indicator [3, 7, 12, 25, 28, 29, 43, 44].
The idea of using the error of a model pre-trained on normal
data to detect anomalies was extended from auto-encoding
to multiple other tasks, including predicting future frames,
or the optical flow [7, 21, 22, 28, 44], inpainting spatio-
temporal volumes [9], and solving jigsaw puzzles [2, 39].
This overarching approach is predicated on the assumption
that the error is higher for anomalous frames than for nor-
mal frames. However, there is no certainty that this assump-
tion holds: it is not well understood under what conditions
a neural network fails to perform its task and there is no
guarantee that all anomalies make it fail. By contrast, no
heuristic assumptions underlie the functioning of MULDE.

The idea of detecting video anomalies by modeling the
distribution of normal video features recurs in the litera-
ture, but, to date, effective modeling techniques remain elu-
sive. Some methods, like Gaussian mixture models [32],
one-class Support Vector Machines [4, 5, 24], or multilin-
ear classifiers [40], may lack the expressive power needed
to reflect the complex and high-dimensional distribution of
video features. Adversarially trained models [10, 20] offer
high expressive power, but cannot guarantee to fully cap-
ture the distribution, because parts of the feature space may
remain unexplored by the generator-discriminator pair dur-
ing training. Diffusion models capture data distribution, but
their use in VAD consists in generating samples of normal
frames [42], or human poses [8], and comparing observed
frames or poses to generated ones. This requires multiple
diffusion steps and reduces the anomaly measure to a dis-
tance between the observation and the sample. Normalizing
flows, recently used for detecting anomalies in human pose
features [13], are free from these drawbacks as they explic-
itly approximate the likelihood of the training data. How-
ever, their performance decreases in the presence of com-
plex correlations between features [18]. In contrast to these
methods, MULDE combines all key ingredients of a VAD
approach: high expressive power, the capacity to fully cap-
ture the distribution, and to accommodate arbitrary features.

The log-density approximation f , employed by MULDE
to model the distribution of normal data, is often called
the energy, in reference to the energy-based models [19],
which represent probability distributions in the Boltzmann
form q(x) = 1

Z e−f(x), but restrict the model to the energy
function f , since computing the normalization constant Z
is typically infeasible. MULDE can therefore be seen as an
energy-based model. For training f , MULDE relies on a
modification of denoising score matching [38], a method to
train a neural network to approximate the energy gradient.
Score matching models the distribution of the training data
injected with iid Gaussian noise, and Song and Ermon [35]
extended it to multiple noise levels. Mahmood et al. [27]
used the norm of this multi-level energy gradient approx-
imation to detect anomalies in images. However, the gra-
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Figure 2. The log-density function is well suited for indicating
anomalies, but its gradient is not. (Left:) A sample from a mixture
of 4 Gaussians. (Right:) Learned negative log-density approxi-
mation (left column) and the norm of its gradient (right column).
The negative log-density is a good anomaly indicator, taking low
values for normal data and higher values for anomalous data. By
contrast, the log-gradient norm is low not only at the modes of the
distribution, but also at its minima between the modes, making it
impossible to distinguish some anomalies from normal data.

dient indicates all stationary points of the log-density func-
tion, which may appear both at the modes of the distribu-
tion, where normal data is concentrated, and in low-density
regions, where anomalous data may reside. As shown in
Fig. 2, some minima and maxima of the distribution re-
main indistinguishable even across a range of noise scales.
By contrast, MULDE approximates the log-density func-
tion which, unlike its gradient, is a good anomaly indicator.

3. Method
We perform anomaly detection in the space of semantic fea-
tures extracted from videos. This lets us focus on detecting
semantic anomalies, for example, unusual actions involving
objects observed also under normal conditions, as opposed
to anomalies in the space of raw input, like frame sequences
that do not resemble real videos. We delegate feature ex-
traction to off-the-shelf models and focus on the effective
detection of anomalous events that they encode.

Motivation Intuitively, anomalous video features should
not be observed under ‘normal’ conditions. More formally,
an anomalous feature is characterized by a small likelihood
under the assumed statistical model of anomaly-free video
features. This suggests an approach to detecting anoma-
lies by approximating the probability density function p and
simply declaring test features with sufficiently low proba-
bility anomalous. We adopt this approach and model the
probability density with a neural network.

Overview In practice, it is difficult to train a neural net-
work to directly approximate the probability density of its
training data p. However, injecting the data with noise
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makes this approximation feasible, as we will explain be-
low. The distribution of the noisy data takes the form

q(x̃) =

∫
ρ(x̃|x)p(x)dx, (1)

where ρ(x̃|x) denotes the conditional distribution of a noisy
sample x̃ given a noise-free sample x, which we take to be
an iid Gaussian centered at x. The main idea behind our
anomaly detector is that q preserves the shape of p but, in
contrast to it, yields itself to a neural approximation. Specif-
ically, we approximate, up to a constant, the negative log-
density function − log q(x̃), which is an excellent anomaly
indicator due to its bijective relation to q(x̃). Low values of
− log q(x̃) correspond to high probability density and are
characteristic of normal data. Its high values indicate areas
of low probability density where anomalous data may re-
side. Fig. 2 illustrates this on a synthetic example. The tech-
nique we use to approximate the log-density with a neural
network is a modification of score matching [38], a method
to approximate the log-density gradient.

We introduce score matching in Sec. 3.1 and our train-
ing method in Sec. 3.2. In Sec. 3.3 and 3.4, we extend this
method to approximating the negative log-density at differ-
ent scales of injected noise, and introduce a regularization
term intended to facilitate combining the multi-scale ap-
proximations. We discuss the choice of video features in
Sec. 3.5. A diagram of our approach is presented in Fig. 1.

3.1. Background: Denoising score matching

Vincent [38] proposed a method to train a neural network s,
parameterized with a vector θ, to approximate the gradient
of the negative log-density function of data perturbed with
iid Gaussian noise, in the sense of solving

min
θ

Ex̃∼q(x̃) ∥sθ(x̃) +∇x̃ log q(x̃)∥22 . (2)

This gradient approximation forms the foundation of a fam-
ily of generative models [35] which initialize a sample with
noise and use the log-gradient approximation to drive the
sample close to the mode of the distribution. We will show
that it also enables effective detection of video anomalies.

Directly evaluating the objective (2) is impossible be-
cause q(x̃) is not known analytically, but Vincent [38]
showed that it is equivalent, up to a constant, to

min
θ

E x∼p(x)
x̃∼N (x̃|x,σI)

∥∥∥∥sθ(x̃)− x̃− x

σ2

∥∥∥∥2
2

, (3)

which can be evaluated effectively. This gives rise to a
stochastic algorithm for training s that iterates: composing a
batch of noise-free training data x, perturbing it with Gaus-
sian noise to obtain a batch of noisy data x̃, and making a
gradient step on the expectation in Eq. (3), evaluated for the
batch. Since this resembles training s to predict the noise
injected to x, it is often called denoising score matching.

3.2. Anomaly detection by denoising score matching

We modify the denoising score matching formulation to
train a neural network fθ, where θ denotes the vector of pa-
rameters, to approximate − log q(x̃), as opposed to its gra-
dient. To that end, we change the objective (3), to train the
gradient of f , instead of the network itself, which yields

min
θ

E x∼p(x)
x̃∼N (x̃|x,σI)

∥∥∥∥∇x̃fθ (x̃)−
x̃− x

σ2

∥∥∥∥2
2

. (4)

This makes ∇x̃fθ (x̃) approximate −∇x̃ log q(x̃) and,
by the fundamental theorem of calculus, aligns f with
− log q(x̃) up to a constant. Here, f : Rd → R is a map-
ping from the space of video features to scalar log-density
values, and ∇x̃fθ : Rd → Rd, like s in the standard score
matching formulation (3), maps d-dimensional video fea-
tures to d-dimensional vectors of log-density gradients.

Notably, our formulation has an advantage over the stan-
dard denoising score matching even when the goal is to ap-
proximate the gradient of the log-density, as opposed to the
log-density itself. By the Stokes’ theorem, gradients form
conservative – that is, curl-free – vector fields. Directly ap-
proximating the log-density gradient with a neural network,
as done by the standard approach, may result in a vector
field that is not conservative, in other words, does not rep-
resent a gradient of any function. By contrast, the gradient
of a neural network trained using our formulation is guar-
anteed to form a conservative vector field. On the down-
side, training fθ with our loss requires the network to be
twice differentiable, which precludes the use of ReLU, sev-
eral other nonlinearities, and max pooling.

3.3. Distribution modeling across noise scales

We recall that training with our loss (4) makes fθ approx-
imate the negative log-density of the distribution of noisy
data q(x̃), connected to the distribution of noise-free data
p(x) through the noise distribution ρ(x̃|x). ρ is an iid Gaus-
sian centered at x and with a standard deviation σ. The
choice of σ, called the noise scale, represents a compro-
mise between making q closer to p at small noise scales
and extending its support to cover more anomalies for larger
noise levels. In theory, the optimal noise scale could be se-
lected by cross-validation on a combination of normal and
anomalous data, but in practice, anomalous validation data
is rarely available. Therefore, instead of settling for a single
noise scale, we approximate the log-density for a range of
noise scales and combine the estimates at different scales by
modeling their joint distribution with a Gaussian mixture.

To implement the multiscale log-density approximation,
we take inspiration from Song and Ermon [35], who ex-
tended the original score matching formulation, presented
in Eq. (3), to multiple noise scales, and apply a similar
extension to our objective (4). Instead of approximating
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− log q(x̃) for a fixed σ, we approximate a family of func-
tions − log qσ(x̃), parameterized by σ, with a neural net-
work fθ, conditioned on σ. We found it beneficial to put
more emphasis on smaller values of σ when training fθ.
Thus, we sample σ from the log-uniform distribution on the
interval [σlow, σhigh] and minimize

min
θ

E x∼p(x)
x̃∼N (x̃|x,σI)

σ∼LU(σlow,σhigh)

λ(σ)

∥∥∥∥∇x̃fθ (x̃, σ)−
x̃− x

σ2

∥∥∥∥2
2

, (5)

where λ(σ) is a factor that balances the influence of the loss
terms at different noise levels. We set λ(σ) = σ2.

Once the network is trained, we fit a Gaussian mix-
ture model to multi-scale log-density approximation vectors
[fθ(x, σi)]i=1...L for an evenly spaced sequence of noise
levels {σi}Li=1, where σ1 = σlow and σL = σhigh. At test
time, our neural network takes a vector of video features
and produces a multi-scale vector of log-density approxi-
mations, which is then input to the Gaussian mixture model
yielding the final anomaly score.

3.4. Multiscale training regularization

The limitation of our method is that fθ(·, σ) can be trained
to approximate − log qσ(x̃) only up to a constant. That is,
fθ(x̃, σ) effectively approximates − log qσ(x̃)+Cσ , where
Cσ is a constant that we do not know. In our formula-
tion, there is no guarantee that this constant does not change
across the range of σ. Since the variation of Cσ may make it
more difficult to aggregate the estimates at different scales,
we discourage it by using a regularization term fθ(x, σ)

2,
that penalizes the log-densities of noise-free examples. Our
full training objective thus becomes

min
θ

E x∼p(x)
x̃∼N (x̃|x,σI)

σ∼LU(σlow,σhigh)

[
λ(σ)

∥∥∥∥∇x̃fθ (x̃, σ)−
x̃− x

σ2

∥∥∥∥2
2

+ βfθ(x, σ)
2
]
, (6)

where β is a hyperparameter of our method. Minimizing (6)
no longer makes ∇xfθ an unbiased estimate of the log-
gradient of the distribution, but as shown in our ablation
studies, it improves our results in video anomaly detection.
Algorithm 1 summarizes training the log-density approxi-
mation fθ. The Gaussian mixture model is fitted with the
standard expectation-maximization algorithm.

3.5. Selection of video features

Feature selection is closely tied to the type of target anoma-
lies. For example, human pose features are well suited for
detecting falls, and optical-flow-based ones help detect ob-
jects moving with unusual speeds or in unusual directions.
MULDE is feature agnostic and in Sec. 4 we demonstrate

Algorithm 1 Training MULDE’s anomaly indicator. The terms
and steps that differ from the standard multi-scale denoising score
matching [35] are highlighted.

Require:
fθ neural log-density model, parameterized by θ
T training set of normal video features
σlow and σhigh, limits of the noise scale range
β regularization strength

1: θ ← random initialization
2: while not converged do
3: X ← sample a batch from T
4: for x ∈ X do ▷ for each batch element
5: σ ← sample log-uniform(σlow, σhigh)
6: x̃← sampleN (x, σI)
7: Compute fθ (x̃, σ) by forward-propagation
8: Compute fθ (x, σ) by forward-propagation

9: Compute∇x̃fθ (x̃, σ) by backpropagation

10: L(x)← σ2
∥∥∇x̃fθ (x̃, σ)− x̃−x

σ2

∥∥2

2
+ βfθ (x, σ)

2

11: end for
12: L ← 1

|X|
∑

x∈X L(x) ▷ aggregate loss over batch
13: Compute∇θL by backpropagation
14: Update θ using∇θL with Adam
15: end while

its application with pose, velocity, and deep features, ex-
tracted from bounding boxes of object proposals, and ones
extracted from entire frames and their sequences. As re-
ported in Sec. 4, feature extraction dominates the running
time of our method, which enables selecting the feature ex-
tractor to match the desired frame rate.

4. Experimental Evaluation

Data sets We evaluated MULDE on five VAD bench-
marks, containing videos captured with static cameras:
• Ped2 [26] includes 16 training and 12 test videos of a

campus scene. The training videos show pedestrians and
the test videos contain anomalies, like cyclists, skate-
boarders, and cars in pedestrian areas.

• Avenue [24] consists of 16 training and 21 test videos of
a walkway. Anomalies include people running, throwing
objects, and walking in the wrong direction.

• ShanghaiTech [25] comprises 330 training and 107 test
videos of 13 pedestrian traffic scenes differing by the
camera viewpoint and lighting conditions. Anomalous
events include robbery, jumping, fighting, and cycling.

• UBnormal [1] is composed of 543 synthetic videos of 29
virtual scenes. It contains human-related anomalies, like
fighting, running, and jumping, but it also includes car
accidents and environmental anomalies, like fog.

• UCFCrime [36] contains 1900 real-world surveillance
videos, totaling 128 hours, and including 13 anomaly
types, like fighting, robbery, road accidents, and burglary.
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All our experiments were run in the ‘one-class classifica-
tion’ setting, that is, we used no anomalous videos for train-
ing. In the experiments on UBnormal and UCFCrime,
which contain anomalous training videos, we discarded
these videos and restricted training to normal data.

Performance metrics We followed the standard practice
and gauged performance on a frame-by-frame basis. For the
object-centric approaches, which yield an anomaly score for
each object detected in every frame, we took the highest,
i.e. most anomalous, score in a frame for the evaluation.
We used the area under the receiver operating characteristic
curve (AUC-ROC) as the main performance metric.

Two methods to aggregate the AUC-ROC over multiple
videos can be found in the literature: the micro and the
macro score [1, 2, 10, 32, 33]. For the macro score, the
AUC-ROC is computed separately for each video and then
averaged across all videos in the test set. The micro score
computes the AUC-ROC jointly for all frames of all test
videos. In abstract terms, the macro score reflects perfor-
mance attained by adjusting the detection threshold for each
video independently, and the micro score is more conserva-
tive and applies the same threshold to all test videos. Since
we address a VAD use case without an adaptive threshold,
we rely on the micro score in our evaluation, but report the
results in terms of both metrics. In the supplementary ma-
terial, we additionally report the tracking- and region-based
metrics by Ramachandra and Jones [31].

Baselines We compared MULDE to the best-performing
VAD algorithms, including ones based on the reconstruc-
tion error [9, 15, 44], auxiliary tasks [1, 2, 9, 23, 33,
39, 42], adversarial training [1, 7, 10, 45], normalizing
flows [13], and one-class classification with a multilinear
classifier [40]. We reproduced the performance metrics of
these methods as reported in the original papers. We present
an even broader comparison, including less recent work, in
the supplementary material.

Two baselines are related to our method more closely
than the others. The AccI-VAD [32] approximates the prob-
ability density function of normal video features with a
Gaussian mixture model, while we perform this approxima-
tion with a neural network. MSMA [27] uses the norm of
the log-density gradient as an anomaly indicator, while our
anomaly indicator is based on the log-density itself. Since
MSMA was developed for image anomaly detection, we re-
implemented it to work with video features.

Implementation details In our experiments, our density
model fθ parametrized by θ has two hidden layers with
4096 units followed by GELU nonlinearities. The final
layer has an output dimension of one without any nonlin-
earity. It is trained using the Adam update rule [17], with

Method Ped2 Avenue ShanghaiTech

Micro Macro Micro Macro Micro Macro

CAE-SVM [15] 94.3 97.8 87.4 90.4 78.7 84.9
VEC [44] 97.3 - 90.2 - 74.8 -
SSMTL [9] 97.5 99.8 91.5 91.9 82.4 89.3
HF2 [23] 99.3 - 91.1 93.5 76.2 -
BA-AED [10] 98.7 99.7 92.3 90.4 82.7 89.3
[10]+SSPCAB [33] - - 92.9 91.9 83.6 89.5
Jigsaw-Puzzle [39] 99.0 99.9 92.2 93.0 84.3 89.8
[9]+UbNormal [1] - - 93.0 93.2 83.7 90.5
AccI-VAD [32] 99.1 99.9 93.3 96.2 85.9 89.6
SSMTL++ [2] - - 93.7 92.5 83.8 90.5
MSMA* [27] 99.5 99.9 90.2 92.5 84.1 90.2
STG-NF [13] - - - - 85.9 -
MULDEβ=0 (ours) 99.7 99.9 93.1 96.1 86.4 91.0
MULDE (ours) 99.7 99.9 94.3 96.1 86.7 91.5

Table 1. Object-centric results. Frame-level AUC-ROC (%) com-
parison (best marked bold, second best underlined). *imple-
mented by us.

exponential decay rates β1 = 0.5 and β2 = 0.9, and a batch
size of 2048. We use the learning rates of 5e-4 and 1e-4 in
the object- and frame-centric experiments, respectively.

Both during training and at test time, we standardize the
video features component-wise using the statistics of the
training set. During training, we sample the noise scale used
for each batch element from the log-uniform distribution on
the interval [σlow, σhigh] = [1e-3, 1.0]. For evaluation, we
use L = 16 evenly spaced noise levels between [σlow, σhigh].

Video feature extraction MULDE is agnostic of the fea-
tures used to represent the video content. In our experi-
ments, we reused off-the-shelf video feature extractors.

In the object-centric experiments, we used the feature ex-
traction pipeline proposed by Reiss and Hoshen [32]. It de-
tects objects in each video frame and extracts deep and ve-
locity features for each detected object. Additionally, pose
features are extracted for each detected person. The pose
vector contains coordinates of 17 keypoints and is obtained
with AlphaPose [6]. CLIP image encoder [30] is used to ex-
tract deep features, which take the form of 512-dimensional
vectors. The velocity features are produced by FlowNet
2.0 [14] and binned into histograms of oriented flows.

In the frame-centric experiments, we extracted fea-
tures using Hiera-L [34], a masked autoencoder pre-trained
on images and fine-tuned on Kinetics400 [16], a large-
scale video action recognition data set. Hiera-L takes se-
quences of 16 frames as input and produces feature 1152-
dimensional feature vectors.

Performance in object-centric VAD We present the re-
sults in object-centric VAD in Table 1. MULDE outper-
forms all the baselines in terms of the more conservative
micro score. Interestingly, AccI-VAD which, like MULDE,
relies on modeling the probability density of normal data,
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Method ShanghaiTech UCF-Crime UBnormal

Micro Macro Micro Macro Micro Macro

CT-D2GAN [7] 77.7 - - - - -
CAC [41] 79.3 - - - - -
Scene-Aware [37] 74.7 - 72.7 - - -
GODS [40] - - 70.5 - - -
GCL [45] - - 74.2 - - -
UBnormal [1] - - - - 68.5 80.3
FPDM [42] 78.6 - 74.7 - 62.7 -
AccI-VADGMM* [32] 76.2 82.9 60.3 84.5 66.8 83.2
AccI-VADkNN* [32] 71.9 83.1 53.0 82.7 65.2 82.5
MSMA* [27] 76.7 84.2 64.5 83.4 70.3 85.1
MULDEβ=0(ours) 78.4 86.0 75.9 84.8 71.3 86.0
MULDE(ours) 81.3 85.9 78.5 84.9 72.8 85.5

Table 2. Frame-centric results. Frame-level AUC-ROC (%) com-
parison (best marked bold, second best underlined). *imple-
mented by us.

ranks third on all three data sets. The high accuracy of
both methods speaks in favor of the density modeling ap-
proach, while the edge MULDE holds over AccI-VAD at-
tests to the superiority of MULDE’s neural density model
over the combination of Gaussian mixture models and the
k-th nearest neighbor technique employed by AccI-VAD.
MSMA, which uses an approximation of the log-density
gradient as anomaly indicator, is outperformed by our log-
density-based method by a fair margin.

Performance in frame-centric VAD As can be seen in
Table 2, in frame-centric VAD, MULDE outperforms other
methods on all three data sets. Notably, on the UCFCrime
data set, by far the largest publicly available VAD bench-
mark, we advance the state of the art in terms of the micro
score by 3.8 percent points. We improve the state of the art
by more than 2pp on ShanghaiTech and UBnormal.

Moreover, while recent object-centric methods domi-
nate frame-centric methods on data sets enabling both types
of evaluation, MULDE narrows this performance gap, at-
taining the micro score of 81.3% in frame-centric VAD
on ShanghaiTech and 86.7% in object-centric VAD on
the same data set. On UBnormal, our frame-centric ap-
proach even outperforms the object-centric state-of-the-art
method [13] by 1.1 percent points of the micro score.

Ablation studies To validate the design of MULDE, we
run ablation studies and evaluated the contribution to perfor-
mance from our regularization term, the Gaussian mixture
model, and the architecture of our anomaly indicator.

As shown in Table 3, regularization improves the results
of frame-centric VAD in terms of the micro score, although
different values of the regularization factor β are optimal
for different data sets. We take β = 0.1 as a compromise
among performance on the three data sets. A qualitative ex-
ample of anomaly detection by MULDE with and without

β
ShanghaiTech UCF-Crime UBnormal

Micro Macro Micro Macro Micro Macro

0.0 78.4 86.0 75.9 84.8 71.3 86.0
0.01 80.7 84.9 76.6 84.9 72.9 85.2
0.1 81.3 85.9 78.5 84.9 72.8 85.5
1.0 81.4 84.5 77.2 85.5 72.5 84.7

Table 3. Frame-centric performance of MULDE trained with dif-
ferent values of the regularization parameter β. Frame-level AUC-
ROC (%) comparison (best marked bold, second best underlined).
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Figure 3. Anomaly detection with MULDE in a test video of the
ShanghaiTech data set (video 13 in scene 4). Pedestrians walking
in frames 30 and 300 represent normal behavior. A person jumping
across the scene is annotated as anomalous. The anomaly indica-
tion produced by MULDE is aligned with the ground truth (GT) at
its beginning but terminates earlier than the GT annotation. How-
ever, careful examination of the video reveals that normal behav-
ior (walking, cyan bounding box in the top row) is re-instantiated
before the end of the annotation, as indicated by MULDE. A reg-
ularized model produces a stronger anomaly indication (plotted in
blue) than one without regularization (green plot).

regularization, shown in Fig. 3, demonstrates that a regular-
ized model produces stronger anomaly indications.

As explained in Section 3.3, MULDE combines anomaly
indications computed for a range of noise scales with a
Gaussian mixture model fitted to normal data. This lets us
avoid the need to select the noise scale to be used at test
time. Fig. 4 demonstrates the impact of the mixture model
on performance. It shows the micro score attained by our
anomaly indicator fθ(·, σ) at individual noise scales, with-
out the mixture model. The best performance is attained
for intermediate levels of noise, which suggests a tradeoff
between representing the noise-free distribution more faith-
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Figure 4. Performance of MULDE in frame-centric VAD on the
ShanghaiTech data set without the Gaussian mixture model, with
our anomaly indicator computed at individual noise scales (blue
plot), and with the mixture model with 1, 3, and 5 components.

Units 1 Layer 2 Layers 3 Layers 4 Layers

Micro Macro Micro Macro Micro Macro Micro Macro

1024 77.3 84.2 79.9 85.4 81.2 85.8 79.9 84.2
2048 77.6 84.6 80.4 84.6 79.2 83.5 79.4 84.0
4096 78.4 84.6 81.3 85.9 79.5 84.4 80.0 84.2
8192 79.2 84.3 79.4 84.8 80.4 84.4 79.3 84.7

Table 4. Performance of MULDE with architectural variations in
frame-centric VAD on ShanghaiTech. Units indicate the num-
ber of neurons within a hidden layer. Columns correspond to the
number of hidden layers. Frame-level AUC-ROC (%) comparison
(best marked bold, second best underlined).

fully at lower noise scales and better covering the space
away from training examples at higher noise scales. Per-
formance attained with the mixture model slightly exceeds
the one attained with the optimal noise scale, validating the
GMM as a method to avoid tuning the noise level.

To find the optimal architecture of our anomaly indicator
fθ, we performed an ablation study over the number of hid-
den layers and the number of neurons in each hidden layer.
The results, presented in Table 4, suggest the optimal depth
of two hidden layers and the width of 4096 neurons, which
we used in our experiments.

Running time Once a feature has been extracted from
the video, MULDE requires only a forward-pass through
the shallow network fθ and an evaluation of a Gaussian
mixture model. This represents a very small computa-
tional overhead over feature extraction. In the frame-centric
approach with 512-dimensional feature vectors, MULDE
takes less than one millisecond to process a single feature.
For comparison, the Hiera-L feature extractor [34], used in
the frame-centric experiments, requires 130 milliseconds to
compute one feature vector from a sequence of 16 frames.
MULDE’s running time is therefore dominated by the time
needed for feature extraction, which means that the feature
extractor can be selected to match the target framerate on a
given architecture. For example, in our setup, extracting a
single feature with the smaller Hiera-base model takes 33
milliseconds, which enables video anomaly detection at 25
FPS, even on our PC with an NVIDIA RTX 2080Ti GPU.

5. Discussion

Limitations Our method has two main limitations. First,
our video anomaly detector requires features of anomalous
and normal videos to be distinguishable. Intuitively, this
condition should be satisfied when the video feature extrac-
tor is selected adequately, but there is no theoretical guar-
antee that this is indeed the case. Second, even though our
method eliminates the need to select the noise scale used for
training, the range of employed noise scales should be suf-
ficiently large to cover anomalies that would be seen at test
time. Currently, there is no automatic way to select the up-
per limit of the noise range. We circumvent this limitation
by standardizing the features component-wise and using a
fixed, wide range of noise scales.

Future work We plan to extend this work by exploring
architectures of the video anomaly indicator. In particular,
reformulating the anomaly indicator in terms of the recon-
struction error [9–12, 15, 29] represents a distinct opportu-
nity to integrate previous methods into our approach.

Our method uses Gaussian noise during training, but
other forms of noise may represent anomalies more effec-
tively. For example, emulating random motion patterns
in the video might be useful for detecting objects moving
along unusual trajectories or with abnormal velocities.

Finally, we plan to extend MULDE from the one-class-
classification scenario to the (weakly-) supervised one.

Conclusion We presented a novel approach to video
anomaly detection by modeling the distribution of non-
anomalous video features with a neural network. Our
method is fast and attains state-of-the-art performance, both
in the frame-centric and object-centric VAD. Most impor-
tantly, it is firmly grounded in statistical modeling. We de-
fined abnormality in terms of the probability density under
the distribution of normal data and designed MULDE to ap-
proximate the log-density function. This lets us discuss our
method in statistical terms. For example, when our anomaly
indicator fails to classify a video as anomalous, we know
that its log-density approximation is not good enough. We
can then plan actions to rectify this, for example, by chang-
ing the neural network architecture, acquiring more training
data, or modifying the range of noise. By contrast, it might
not be obvious what actions should be taken when previous
methods fail, for example, by showing a small reconstruc-
tion error for an anomalous item.
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