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Abstract

Knowledge distillation is an effective method for train-
ing small and efficient deep learning models. However, the
efficacy of a single method can degenerate when transfer-
ring to other tasks, modalities, or even other architectures.
To address this limitation, we propose a novel constrained
feature distillation method. This method is derived from a
small set of core principles, which results in two emerging
components: an orthogonal projection and a task-specific
normalisation. Equipped with both of these components,
our transformer models can outperform all previous meth-
ods on ImageNet and reach up to a 4.4% relative improve-
ment over the previous state-of-the-art methods. To further
demonstrate the generality of our method, we apply it to
object detection and image generation, whereby we obtain
consistent and substantial performance improvements over
state-of-the-art. Code and models are publicly available1.

1. Introduction

Deep learning has achieved remarkable success across a
wide variety of tasks in computer vision [38], audio [58],
and language [17] domains. However, its adoption is of-
ten coupled with increasing computational costs which has
limited its application on resource constrained devices such
as mobile phones. Fortunately, there have been many tech-
niques proposed to train fast and efficient networks, such
as weight pruning [24, 39, 41], quantisation [6, 88], and
knowledge distillation [9, 34, 47, 69].

Knowledge distillation (KD) in particular has shown
great success [4, 20, 45, 50, 69]. Its main idea is to utilise
the pre-trained knowledge of a much larger (teacher) model
to supervise the training of a much smaller (student) model.
Traditional KD [3, 34] methods have focused on image clas-
sification by using the softmax predictions of the teacher as
ground-truth labels for the student. However, doing so has
made them limited and only applicable to specific modali-
ties, or tasks. Although feature distillation [8, 69] can re-
lax this constraint on the downstream task or modality, its

1https://github.com/roymiles/vkd
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Figure 1. Comparison to both DeiT and DeiT⚗ [71] on ImageNet-
1K, where DeiT⚗ is a distilled DeiT model using a distillation
token. Our proposed distillation method achieves significant im-
provements over DeiT-Ti, while effectively bridging the gap be-
tween the teacher and student performance for DeiT-S.

adoption can incur significant computational costs due to
the construction of expensive relational objects [49, 50, 53]
and memory banks [69]. Most feature distillation pipelines
can be described as using some projection [64], align-
ment [12], or fusion module [9]. These components, though
widely used, tend to rely on heuristic design choices. Such
heuristic-driven approaches often fall short in delivering
new insights into the underlying mechanics of distillation
and struggle to adapt to diverse tasks without the introduc-
tion of several auxiliary losses. [9, 16, 44, 85]. Furthermore,
these additional losses introduce additional hyperparame-
ters which will require tuning for specific tasks or settings.

In this work, we propose a novel projection layer that is
derived from a principal concept. Our approach focuses on
one key idea: Preserving the intra-batch feature similarity.
We highlight that if the similarity between features is pre-
served, then the projection layer will not change or alter the
underlying student representation. This constraint is impor-
tant since it will maximise the amount of knowledge being
distilled to the student backbone. For example, if the projec-
tor is too expressive it may shortcut the distillation objective
by learning some complex non-linear mapping between the
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two spaces. This result would significantly diminish the ef-
ficacy of distillation and is especially detrimental since the
projector is thrown away after training.

By enforcing the preservation of the feature similarity,
we derive a reparameterisation of the projection layer itself
using the set of orthogonal matrices. We propose to effi-
ciently implement this reparameterisation by projecting the
weights onto SO(n) and then truncating the excess rows.
In doing so, we enforce the property of row-wise orthog-
onality, while avoiding the need to compute any expensive
matrix inversions or factorisations. We show that this con-
straint not only improves the student performance but also
improves the training convergence and the efficacy of dis-
tilling inductive biases.

Finally, a common component in the application of
knowledge distillation for generative tasks is the use of ad-
ditional auxiliary losses. These losses can encourage the
generation of diverse features, which will subsequently lead
to the generation of more diverse images. However, these
auxiliary losses often conflict with the distillation objec-
tive and will subsequently degrade the student performance.
To address this limitation, we propose a unified framework
for incorporating these auxiliary objectives into the distil-
lation loss itself using a task-specific normalisation step.
Thus, we show that simply whitening the teacher features
can implicitly encourage feature diversity, while removing
the need for fine-tuning the hyperparameters of many addi-
tional losses. We further demonstrate the importance of this
whitening step for data-limited image generation, whereby
we achieve a consistent and substantial performance im-
provements over state-of-the-art. In summary, our contri-
butions are outlined as follows:
• We propose a novel orthogonal projection layer to max-

imise the knowledge being distilled through to the student
backbone.

• We complement our projection with a task-wise normal-
isation that enables knowledge distillation in generative
tasks.

• We apply our method to a wide range of tasks and modal-
ities, improving over the state-of-the-art by up to 4.4% on
ImageNet-1K (see Fig. 1).

2. Related work
Knowledge Distillation utilises the knowledge of a pre-
trained model as supervision for a much smaller model,
which can then enable the application and deployment
within resource constrained environments. The field can
be broadly divided into two main areas: logits distilla-
tion [3, 14, 34, 37, 52] and feature distillation [9, 31, 49, 64,
69, 79, 80]. Logit distillation focuses on classification based
tasks and introduces an additional objective to minimise the
distance between the student and teacher predictions. This
was originally proposed using the KL divergence [34], how-

ever it has since been extended using spherical normalisa-
tion [23], label decoupling [86], and probability reweight-
ing [52]. In our work, we focus on feature distillation due to
its generality to other tasks [9, 50] and modalities [65, 81].
Unfortunately, there is no underlying metric for the interme-
diate representation spaces, which has led to many heuristi-
cally derived solutions. For example, the hand-crafted FSP
matrices were proposed [83] to capture the relation between
features before and after a set of residual layers. Simi-
larly, many other works have proposed to transfer knowl-
edge using the construction of various Gram [28, 43, 74]
or correlation-based matrices [40, 49, 57]. The activation
boundaries have also been shown to be an effective super-
visory signal for distillation [32], along with the gradients
to capture the loss landscape [68, 89]. Another line of work
can be loosely grouped together by their inspirations from
the self-supervision [69, 77] or information theory litera-
ture [49, 50]. In contrast to these methods, we take a step
back from the conventional curation of hand-crafted rela-
tional objects or objectives. We instead derive and demon-
strate that an orthogonal projection is much more effective
and can be used in conjunction with just a simple L2 loss.

Self-supervised learning describes the family of pretext
tasks used to learn good representations of data in the ab-
sence of any ground truth labels. This is an important
topic with the overwhelming abundance of unlabelled data
available and the increasing costs for human annotations.
Self-supervised learning shares some significant similari-
ties with the knowledge distillation literature. For example,
contrastive learning [10, 29, 35] has already inspired many
distillation methods [8, 69, 78] and asymmetric architec-
tures [11, 21, 22, 62] are often described as a form of self-
distillation [2]. However, the most salient overlap with our
work instead lies with the use of a predictor. The predictor is
a learnable model that maps from the online network to the
momentum network. Its usage is very similar to what is de-
scribed as a projector [13] in the knowledge distillation lit-
erature. DirectPred [70] explored the training dynamics of
this predictor, which allowed the derivation of a closed form
solution for its weights. This work was later simplified by
either removing the expensive eigen-decomposition [76] or
using fast matrix iterations [63]. In contrast to these works,
we explore the role of the projector for knowledge distilla-
tion. By building upon a simple set of principles for KD,
we are able to derive a cheap reparameterisation of the pro-
jector weights that can maximise the knowledge transfer.

Layer reparameterisation has been widely adopted as a
technique for constraining weights to introduce favourable
properties. For instance, unitary matrices have been shown
to address the gradient issues in RNNs [1], positive defi-
nite matrices enhance the robustness of batch normalization
layers [5], and orthogonal matrices offer spectral regulariza-
tion for improved generalization [1, 30]. More recent works
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Figure 2. Illustration of our proposed feature distillation using an orthonormal projection and task-specific feature normalisation. The
orthonormal projection (a) maximises the knowledge being distilled to the student backbone, while the task-specific normalisation (b) can
introduce domain-specific priors to improve model performance. denotes trainable weights, while denotes weights which are frozen.

have shown that low-rank matrices are effective in reducing
the cost of fine-tuning large language models [36], while or-
thogonal matrices enable the cheap controllable fine-tuning
of text-image diffusion models [59]. In our work we take
these ideas into the context of knowledge distillation with
an orthogonal projection. We show that this orthogonal
constraint improves both the efficacy of distillation and im-
proves the overall model convergence.

3. Orthogonal Projections
Despite the generality of feature distillation, its use is often
coupled with many design decisions and heuristics. These
decisions arise from the construction of multiple losses be-
tween intermediate feature maps which incur significant
and unnecessary training overheads. To address these con-
straints, we adopt a simple feature distillation pipeline (see
Fig. 2) using only the features directly before the classifier,
or in the case of generative tasks, the latent representation.

In section 3.1 we motivate the necessary conditions to
maximise the efficacy of distillation through the projection.
This leads to a reparameterisation of the projection as an
orthogonal matrix, which is then efficiently implemented
in section 3.2. In section 3.3 we provide some interest-
ing additional insights into the properties of these orthog-
onal projections, while in section 3.4 we extend our distilla-
tion pipeline to improve the performance on both generative
and discriminative tasks by using an additional task-specific
normalisation step.

3.1. Why use orthogonal projections?

Our main objective is to mitigate the possibility of the pro-
jection layer learning any new representation of the data
that is not shared by the feature extractor. This is impor-
tant because the projection layer is thrown away after train-
ing and we want to match the feature extractor with the

teacher, rather than solely matching the projected features.
To achieve this, we propose to preserve the structural infor-
mation through the projection. We describe this structural
information using a kernel matrix K ∈ Rb×b, where b is the
batch-size. This kernel matrix captures the pairwise simi-
larity between all features within a batch:

Kij = k(Zs
i ,Z

s
j) = ⟨Zs

i ,Z
s
j⟩H , (1)

where H is some Hilbert space implicitly defined by the
positive-definite real-valued kernel k and Zs ∈ Rb×ds are
the student features of dimension ds. We aim to preserve
K under the application of a linear transformation of its
arguments. This is equivalent to preserving the structural
information of the features. We can express many practi-
cal kernels, such as the radial basis function kernel or the
polynomial kernel, using a Taylor series expansion [15]:

k(Zs
i ,Z

s
j) =

∞∑
n=0

an ⟨Zs
i ,Z

s
j⟩n , (2)

where an are the coefficients. This expression shows that
we simply need a transformation P that preserves inner
products. Using the canonical inner product in Rds , we de-
rive this constraint on P as follows:

Zs
i (Z

s
j)

T = Zs
iP(Zs

jP)T (3)

= Zs
iPPT (Zs

j)
T , (4)

which holds if PT = P−1 . This constraint conveniently
defines the special orthogonal group SO(ds) with ds = dt.
This group parameterises the set of all rotations in Rds , thus
very naturally and intuitively preserves the idea of structural
information. However, in the general case where ds ̸= dt,
our projection matrix P is no longer square. This means
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that there exists no canonical inverse for our derived con-
straint to hold. Choosing the right-inverse defines the set
of matrices with orthonormal rows, whereas choosing the
left-inverse defines the set of matrices with orthonormal
columns. Motivated by the need for an efficient reparame-
terisation, we focus our attention on the right-inverse, which
defines the set of matrices with orthonormal rows, its trans-
pose of which is conveniently represented as a Stiefel ma-
trix manifold [18], denoted Vdt

(Rds). To simplify further
notation, we omit this distinction between the two.

Since the Stiefel manifold is smooth, it facilitates the use
of standard gradient descent techniques using reparameter-
isations2. In the next section we provide an efficient imple-
mentation of this reparameterisation.

3.2. Orthogonal reparameterisation

There are a few convenient ways to ensure orthogonality of
the projection matrix P. One of these ways is to use a Cay-
ley transformation [25] that constructs an orthogonal matrix
P from a skew-symmetric matrix: P = (I−W)(I+W)−1

where W = −WT . Unfortunately, this closed-form pa-
rameterisation, despite its simplicity, requires the expensive
computation of a large matrix inverse. Using a QR decom-
position can also be considered, but will require the use of
expensive iterative algorithms, such as the Gram Schmidt
process. Since an orthogonal reparameterisations map is
needed for each iteration during training, it is critical for
its evaluation to be computationally cheap. To address this
computational constraint we propose an efficient algorithm
that avoids the need for any expensive matrix inversions or
factorisations. We propose to instead perform a cheap pa-
rameterisation map onto SO(dt) using the matrix exponen-
tial exp(A), which can be efficiently implemented using the
padé approximation. Knowing that W is skew-symmetric,
we show that exp(W) is an orthogonal matrix using a
few properties of the exponential: exp(W) · exp(W)T =
exp(W +WT ) = exp(−WT +WT ) = exp(0) = I. We
then project back to Vdt(Rds) by dropping the last dt − ds
rows. These two sequential steps are given more compactly
as follows::

ϕ : W
exp(W)−−−−−→ A ∈ SO(dt)

A:ds−−−→ P ∈ Vdt
(Rds), (5)

where the subscript notation follows from the slicing con-
vention in Pytorch [56] and Numpy [27]. This detour only
requires the computation of one exponential, which can be
cheaply evaluated using the Padé approximation [33]. We
show an illustration of this re-parameterisation in Fig. 2a
with the map ϕ described in equation 5.

2Reparameterisations can be seen as surjective functions that map from
Euclidean space back onto the manifold.

(a) original (b) orthogonal (c) linear

Figure 3. t-SNE visualisation [75] of features undergoing either
a linear or orthogonal transformation. The orthogonal transforma-
tion preserves all of the structural feature information, whereas the
linear projection can distort a lot of structure, which can diminish
the efficacy of distillation.

3.3. Orthogonal projections minimise redundancy

The orthogonal transformations ensure that the projected
features ZsP will not only be a linear combination of the
original features, but also be a transformation that preserves
the notion of distance between features. This result can be
explained more concretely by observing that the singular
values of P are all 1. Geometrically, this means that the
projection is not squashing or distorting along any of the di-
mensions, which would bias the loss toward reconstructing
the teachers features using only a subset of features. We
illustrate this phenomenon in Fig. 3 where we find that
even a simple linear projection distorts the features mak-
ing them overlap with each other. This is caused because it
attempts to align the space with the teacher. This level of
distortion can degrade the linear separability of the features
for the classifier, which impacts the model performance. In
contrast, the orthogonal projection preserves the underlying
feature manifold.

3.4. Introducing domain-specific priors

For many tasks it is important to invoke domain spe-
cific priors or auxiliary losses to improve model perfor-
mance [16, 44]. Unfortunately, many of these auxiliary
losses conflict with the distillation objective and hinder its
efficacy. Instead, we propose a general framework for nor-
malisation that naturally and implicitly incorporates these
priors into the distillation objective itself. We show that
standardisation is very effective for discriminative tasks by
improving the model convergence. This convergence prop-
erty can be attributed to the improved robustness of the dis-
tillation loss to random input perturbations. Similarly, we
also show that whitening is a critical step for generative
tasks by providing an implicit and soft encouragement of
diverse features, which has been proven effective for gener-
ating diverse images [19]. Whitening can be much more ef-
fective and significantly cheaper than introducing additional
auxiliary losses, which has been previously proposed in the
literature [16]. We now provide a more detailed illustration
of these ideas.
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Figure 4. Visualisation of the VkD-Ti Ldistill loss landscape with
perturbations of the input image across two random dimensions.
Normalisation significantly reduces the sensitivity of the loss to
random perturbations, which leads to improved robustness and
convergence for training.

Standardisation improves model convergence. In our
application of knowledge distillation to discriminative
tasks, we observe that a straightforward normalisation of
the teacher’s representation yields a notable improvement in
the robustness of the distillation loss to spurious deforma-
tions of the input image (see Fig. 4). These spurious defor-
mations arise from the increasingly expressive families of
data augmentation strategies being commonly employed for
knowledge distillation [71]. We find that minimizing this
loss variance can significantly improve the overall model
convergence and performance.

Whitening improves feature diversity. By whitening the
teacher features, we derive a lower bound that resembles a
feature diversity loss [16]. We start with an L2 loss between
ZsP ∈ Rb×d and Zt ∈ Rb×d. Since P is an orthogonal
projection that preserves inner products (see section 3.1),
we omit its usage to simplify analysis:

Ldistill =
∥∥Zs − Zt

∥∥2

=
∑
i ̸=j

∥∥Zs
:,j − Zt

:,i − Zt
:,j + Zt

:,i

∥∥2

=
∑
i ̸=j

∥∥Zs
:,j − Zt

:,i

∥∥2
+

∥∥Zt
:,j + Zt

:,i

∥∥2
(6)

− 2 ⟨Zs
:,j − Zt

:,i,Z
t
:,j + Zt

:,i⟩

Since Zt is whitened such that (Zt)T (Zt) = I, i.e., perfect
decorrelation of features, we can significantly simplify the
expression above:

Ldistill =
∑
i ̸=j

∥∥Zs
:,j − Zt

:,i

∥∥2
+ 2− 2 ⟨Zs

:,j − Zt
:,i,Z

t
:,j + Zt

:,i⟩

≥
∑
i ̸=j

∥∥Zs
:,j − Zt

:,i

∥∥2
+ 2− 2

∥∥Zs
:,j − Zt

:,i

∥∥2 ∥∥Zt
:,j + Zt

:,i

∥∥2

= const − λ
∑
i ̸=j

C2
j,i , where Ci,j =

∥∥Zs
:,j − Zt

:,i

∥∥ (7)

where const and λ ≥ 3 are both constants that do not
depend on the model parameters. Here C is the euclidean

cross-correlation matrix that captures the distance between
all the pairs of student and teacher features. This deriva-
tion simply shows that minimising an L2 loss subject to
an explicit whitening constraint on the teacher features pro-
vides a cross-feature objective. This cross-feature objective
maximises the off-diagonal entries in the cross-correlation
matrix, thus encouraging all the features to be decorrelated
with respect to the teacher. We describe this process of en-
couraging decorrelation of features as increasing the feature
diversity. We validate this connection of whitening with fea-
ture diversity in section 4.3, where we employ knowledge
distillation in the context of data-efficient image generation.

4. Experiments

In this section, we evaluate the generality of our simple
knowledge distillation pipeline across three distinct vision
tasks: Image classification, object detection, and image
generation. In each of these tasks, we consider the harder
distillation settings, such as distilling cross-architecture, or
in the data-efficient regimes. Throughout we use VkD to
denote our KD method using an orthogonal projection, i.e.,
a matrix projection from the Stiefel manifold Vk(Rd).

Network acc@1 Teacher #params

RegNetY-160 [60] CVPR20 82.6 none 84M
CaiT-S24 [72] ICCV21 83.4 none 47M
DeiT3-B [73] ECCV22 83.8 none 87M

DeiT-Ti [71] ICML21 72.2 none 5M
CivT-Ti [61] CVPR22 74.9 regnety-600m + rednet-26 6M
MaskedKD [66] arXiv23 75.4 cait-s24 6M
Manifold [26] NeurIPS22 76.5 cait-s24 6M
DeiT-Ti⚗ [71] ICML21 74.5 regnety-160 6M

↰

1000 epochs 76.6 regnety-160 6M
DearKD [12] CVPR22 74.8 regnety-160 6M

↰

1000 epochs 77.0 regnety-160 6M
USKD [82] ICCV23 75.0 regnety-160 6M
SRD [48] AAAI24 77.2 regnety-160 6M
VkD-Ti 78.3 regnety-160 6M

DeiT-S [71] ICML21 79.8 none 22M
CivT-S [61] CVPR22 82.0 regnety-4gf + rednet-50 22M
MaskedKD [66] arXiv23 81.4 deit3-b 22M
DeiT-S⚗ [71] ICML21 81.2 regnety-160 22M

↰

1000 epochs 82.6 regnety-160 22M
DearKD [12] CVPR22 81.5 regnety-160 22M

↰

1000 epochs 82.8 regnety-160 22M
USKD [82] ICCV23 80.8 regnety-160 22M
SRD [48] AAAI24 82.1 regnety-160 22M
VkD-S 82.3 regnety-160 22M

Table 1. Data-efficient training of transformers using knowledge
distillation on the ImageNet-1K dataset. Unless specified, each
model is only trained for 300 epochs.

Implementation details. We train all models in Py-
torch [55] using 2 NVIDIA V100 GPUs. For the Ima-
geNet experiments, we follow DeiT [71] using the same
training schedule and optimization parameters. We also
adopt Mixup [84] augmentation, but replace rand-augment
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Method Backbone Epochs AP AP50 AP75 APS APM APL Param. FPS

Swin-nano 50 40.4 59.6 43.3 23.2 42.5 55.8 16M 20.0 (45.8)↰

w/ VkD 50 43.0 62.3 46.2 24.8 45.3 60.1
Swin-tiny 50 44.8 64.5 48.7 25.9 47.6 62.1 38M 17.2 (26.5)↰

w/ VkD 50 46.9 66.6 50.9 27.8 49.8 64.6
Swin-small 50 47.5 67.7 51.4 29.2 50.7 64.8 61M 12.1 (16.5)

ViDT

↰

w/ VkD 50 48.5 68.4 52.4 30.8 52.2 66.0

Table 2. Comparison with other detectors on COCO2017 val set. FPS is measured with batch size 1 of 800 × 1333 resolution on a single
Tesla V100 GPU, where the value inside the parentheses is measured with batch size 4 of the same resolution to maximize GPU utilisation.
All of the student models are distilled from a pre-trained ViDT-base.

Student ViDT (Swin-nano) ViDT (Swin-tiny)

Teacher
ViDT

(small)
ViDT
(base)

ViDT
(small)

ViDT
(base)

No Distillation [67] ICLR22 40.4 44.8
Token Matching [67] ICLR22 41.5 41.9 45.8 46.5
VkD 42.2 43.0 45.9 46.9

Table 3. Comparison of ViDT on COCO2017 val set. We report
AP for the student models distilled from different teacher models.

with random gray scaling, gaussian blurring, and solariza-
tion. We use AdamW [46] optimizer with learning rate set
to 0.001 and weight decay to 0.05. For the object detec-
tion experiments, we follow the same training methodol-
ogy as ViDT [67] except that we replace the original token
matching loss with our VkD. Finally, for the image gener-
ation task, we use the same training methodology as KD-
DLGAN [16] except that we remove the auxiliary diversity
losses and instead replace it with either teacher standardisa-
tion or whitening. We also remove any distillation from the
text encoders, thus further reducing the cost of our method
in comparison.

4.1. Data efficient training of transformers

We experiment with vision transformers, due to their proven
success across a variety of fields. However, despite this suc-
cess, they demand excessive training data and long training
schedules. This limitation has motivated the use of knowl-
edge distillation for improving the data efficiency of trans-
former models [71]. We compare our method with sev-
eral others using the common knowledge distillation set-
ting proposed alongside DeiT [71] that uses a CNN teacher
pre-trained on ImageNet-21K. We train each student model
for 300 epochs on ImageNet-1K for the image classifica-
tion task. Unlike other methods that propose to leverage the
efficacy of distilling through distillation tokens alone, we
propose to distill directly through to the patch tokens. We
present the results in Tab. 1 where we massively outper-
form the previous state-of-the-art. In the tiny architecture,
we outperform the baseline by 6.1 percentage points (pp),
and the previous best method that uses the same teacher, the
USKD by 3.3pp, or a relative improvement of 4.4%. Inter-
estingly, we perform better than DearKD trained for 1000
epochs by 1.3pp, showing that for distillation, it is not nec-

essary to train that long. We reach similar results in the
small architecture too, where we outperform all the other
methods that use similar training resources, and reach com-
petitive results with the methods that use more than 3 times
as long training time. In fact, unlike other methods, our
approach bridges the gap between the teacher model that
reaches 82.6% accuracy without needing to introduce any
excessively long training schedules.

4.2. Object detection

We consider the object detection task using the common
MS-COCO benchmark [42]. We use the ViDT transformer
architecture [67] due to its task performance and its effi-
ciency on consumer hardware. We present the results in
Tab. 2, and observe a significant and consistent improve-
ment across a wide range of different ViDT variants. We
improve using Swin-nano backbone by 2.6pp, in Swin-tiny
backbone by 2.1pp and in Swin-small backbone by 1pp.
Furthermore, we also compare against an alternative dis-
tillation method, described as token matching [67]. We
present these results in Tab. 3. Our method outperforms to-
ken matching by up to 1.1pp, reaching the best results when
we use a larger teacher, demonstrating that our method is
not limited in the cases of larger capacity gaps.

4.3. Data limited image generation

To demonstrate the generality of our feature distillation
framework, we consider an image generation task and com-
pare to the recent KD-DLGAN [16]. KD-DLGAN pro-
poses to use both the text and feature embeddings for the
feature guidance followed by an additional diversity loss.
Using our novel framework, we show that neither of these
explicit additional losses is necessary. Instead, we use a
simple whitening of features to encourage the generation of
diverse images. We show these results in Tab. 4. A no-
ticeable observation in these results is that whitening can
obtain the most significant improvements in the more ex-
treme data-limited regimes. For example, when training
on 10% data with CIFAR-100, whitening the teacher fea-
tures can improve the FID by up to 9.09. This result high-
lights that feature diversity is much more critical when there
is insufficient training data. To show that our method is
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CIFAR-10 CIFAR-100Method 10% Data 20% Data 100% Data 10% Data 20% Data 100% Data

DA + KD (CLIP) 22.03± 0.07 13.70± 0.08 8.70± 0.02 33.93± 0.09 21.76± 0.06 11.74± 0.02
DA (Baseline) 23.34± 0.09 14.53± 0.10 8.75± 0.03 35.39± 0.08 22.55± 0.06 11.99± 0.02
KD-DLGAN 14.20± 0.06 11.01± 0.07 8.42± 0.01 18.03± 0.11 15.60± 0.08 10.28± 0.03
DA + VkD 16.42± 0.07 10.94± 0.07 8.28± 0.01 24.92± 0.15 17.97± 0.17 10.61± 0.08↰

w/ whitening 13.16± 0.06 10.24± 0.06 8.20± 0.03 16.87± 0.09 14.00± 0.07 10.41± 0.01

Table 4. Comparison with the state-of-the-art over CIFAR-10 and CIFAR 100. Competitive performance is achieved using the orthogonal
projection alone, however, introducing a simple whitening step is sufficient in outperforming state-of-the-art by a significant margin. All
the compared methods employ BigGAN as the backbone. FID is averaged over three runs.

CIFAR-10 CIFAR-100Method 10% Data 10% Data

DA (Baseline) [87] NeurIPS20 23.34± 0.09 35.39± 0.08
FitNets [64] ICLR14 22.03± 0.07 33.93± 0.09
Label Distillation [34] arXiv15 20.46± 0.10 34.14± 0.11
PKD [54] ECCV19 21.34± 0.08 32.15± 0.13
SPKD [74] ICCV19 19.11± 0.07 31.97± 0.10
KD-DLGAN [16] CVPR23 14.20± 0.06 18.03± 0.11
VkD 16.47± 0.07 24.92± 0.15↰

w/ whitening 13.16± 0.06 16.87± 0.09

Table 5. Comparison to other knowledge distillation methods for
image generation. Results were originally reported in [16] and
highlight the importance of incorporating domain-specific priors -
in this case, encouraging diverse features.

much more general than other KD methods in the literature,
we also include a comparison for the hardest data-efficient
regime in Tab. 5. The results show a consistent improve-
ment in performance, which highlight the importance of en-
gineering both the projector architecture and the normalisa-
tion scheme, as opposed to focusing on the distance metrics
alone [16, 74].

4.4. Ablation study

We do a series of ablation studies to highlight the impor-
tance of our proposed building blocks. We also provide
qualitative results that provide additional insights into ex-
plaining the efficacy of our distillation framework.

Effectiveness of orthogonal projections. To demon-
strate the effectiveness of constraining the projection
weights to be orthogonal, we consider the use of various
other projection variants. We analyze the use of a projector
ensemble [13], a multi-layer perceptron [51], and a standard
linear layer. We present the results in Fig. 5. We observe
that both the MLP and projector ensembles show improved
performance over a linear layer when under short training
schedules. However, when we extend the training sched-
ule, the linear layer becomes much more effective. This is
a consequence of the expressive projections beginning to
learn new representations that are no longer shared by the
student feature extractor. In contrast, our orthogonal projec-
tion not only improves the final accuracy but also improves
the convergence properties for training, reaching state-of-
the-art results in only ∼ 200 epochs.
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Figure 5. Comparing the performance and convergence of various
projector reparameterisations. Although the MLP layer initially
trains fast, it begins to saturate as it starts to learn a new represen-
tation of the data.

The effect of each block. We now disentangle the con-
tribution of each block of our framework. In table 6 we
report the final accuracy with and without normalisation or
an orthogonal projection. We observe that, in the classifica-
tion task, most of the performance improvement in obtained
by our orthogonal projection. For example, the orthogo-
nal projection alone boosts the performance from 76.3%
to 77.9%. This observation is in contrast to the generative
tasks, whereby we observe a necessity to use normalisation
for strong performance.

Orth. Norm. Acc@1 Acc@5

✗ ✗ 76.3 93.3
✗ ✓ 76.9 93.5
✓ ✗ 77.9 93.9
✓ ✓ 78.3 94.1

Table 6. Highlighting the primary importance of an orthonormal
projection. Image classification on ImageNet-1K using a DeiT-Ti
student and a RegNety-160 teacher.

Whitening for generative tasks. To empirically confirm
the importance of feature whitening for generative tasks,
we perform an evaluation with and with it being used. We
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Input Deit-Ti⚗ VkD-Ti

Figure 6. Evaluating the translational equivariance of attention
maps. We select the best channel for the first translation and ob-
serve its attention maps after translating the input image again.

present the results in Tab. 4 and 5. We observe that not only
is whitening necessary to outperform previous state-of-the-
art image generation, but it also leads to a larger increase
in performance in the data-limited regime. This result high-
lights the more prominent importance of diverse features
when limited training data is available.

Distilling inductive biases. Knowledge distillation has
proven effective for improving the data efficiency in training
transformer models, especially when the teacher is a CNN.
Unfortunately, there has been little qualitative analysis on
explaining why this cross-architecture setting helps. We
now quantify that this result is a consequence of providing a
soft distillation of inductive biases (in this case translational
equivariance). In Fig. 6, we explore the impact of applying
a translation on the attention maps of a given layer. We
observe that any translation of an object is reflected with a
translation of the attention maps. Interestingly, this is unlike
other methods, such as Deit-Ti⚗ , where the attention maps
become messy after the translation of the original image.
This observation suggests that their improvements may in-
stead be attributed to some other factor, such as an implicit
regularisation of the model.

Improved localisation of attention maps. We provide
further insights into our orthogonal feature distillation
method by analyzing the attention maps of various images.
These attention maps show how well the model is attend-
ing to the salient objects in an image [7]. We compare with
various other distillation methods and show the results in
Fig. 7. We observe that the attention maps of our method
are clustered around the boundaries of the objects, unlike
the other two methods where the attention maps are spread
over the entire image. In fact, we observe that our distilled
model can attend much more to the salient object than the
much larger CiT-S model.

Input Deit-Ti⚗ CiT-S VkD-Ti

Figure 7. Qualitative comparison to other transformer distillation
methods. The best channel is selected qualitatively for all exam-
ples shown. VkD-Ti is compared against both the same size Deit-
Ti and a much larger (3.7×) CiT-S. Best viewed in colour.

Architecture agnostic. Our method is agnostic in the
choice of features and can be applied to various classifiers,
object detectors, or generative models. For example, in sec-
tion 4.1, we distill from a CNN to a transformer, in section
4.2, we distill between two transformers, and in section 4.3
we perform distillation in the other direction, from a trans-
former to a CNN.

5. Conclusion

In this work, we present a novel projection layer with a
principled foundation centered on preserving the intra-batch
feature similarity. The core idea of maintaining feature
similarity ensures that the projection layer does not dis-
tort the underlying student representation, thus maximiz-
ing the knowledge transfer to the student backbone. We
show that enforcing this constraint is equivalent to parame-
terising the projection weights to have orthonormal rows or
columns. Our simple drop-in replacement for the projection
layer leads to improved performance across a wide range
of distillation tasks, from image classification to object de-
tection. To further improve the generality of this frame-
work, we show that whitening the teachers’ features is suf-
ficient and more effective in extending to generative tasks
than other methods. We show in the experiments that our
method improves state-of-the-art by up to 4.4% for image
classification and 2.6% for object detection.
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Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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