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Abstract
We develop a theory for the representation of opaque solids
as volumes. Starting from a stochastic representation of
opaque solids as random indicator functions, we prove the
conditions under which such solids can be modeled using ex-
ponential volumetric transport. We also derive expressions
for the volumetric attenuation coefficient as a functional
of the probability distributions of the underlying indicator
functions. We generalize our theory to account for isotropic
and anisotropic scattering at different parts of the solid, and
for representations of opaque solids as stochastic implicit
surfaces. We derive our volumetric representation from first
principles, which ensures that it satisfies physical constraints
such as reciprocity and reversibility. We use our theory to
explain, compare, and correct previous volumetric represen-
tations, as well as propose meaningful extensions that lead
to improved performance in 3D reconstruction tasks.

1. Introduction
Volumetric representations have a long history in applied
physics [38] and computer graphics [44], where they en-
able efficient light transport simulation in translucent ob-
jects (e.g., tissue, clouds, materials such as wax and soap)
and participating media (e.g., smoke, fog, murky water).
Since the introduction of NeRF by Mildenhall et al. [36],
there has been a proliferation of neural rendering tech-
niques [5, 17, 45, 50, 61, 63, 66, 68] that use volumetric
representations for scenes much unlike the above examples,
comprising opaque objects (rather than translucent ones) in
free space (rather than volumetric media). The tremendous
success of volumetric representations for scenes without sub-
surface or volumetric scattering motivates questions such
as: Why can we use volumetric light transport to simulate
scenes with only light-surface interactions? What is the
mathematical underpinning for modeling an opaque object
as a volume? What are the properties of such a volume?

Our goal is to answer these questions. We start from first
principles, revisiting the derivation of volumetric represen-
tations for translucent objects and participating media. As
recent work in computer graphics highlights [9, 15, 26], volu-
metric representations are a formalism for querying stochas-
tic geometry [12, 48]: From this lens, volumetric quantities
such as transmittance and free-flight distribution are the an-

swers to queries such as “are two points mutually visible” (a
visibility query) and “what is the distance to first intersec-
tion along a ray” (a ray-casting query), when the geometry
occluding visibility and terminating rays is stochastic.

Volumetric representations for translucent and participat-
ing media are stochastic abstractions of their microscopic
structure: Such media comprise numerous microscopic par-
ticles that reflect and occlude light rays. Modeling explicit
microparticle configurations, and rendering light transport
through them, is prohibitively expensive. As a compromise
for efficiency, volumetric representations allow to simulate
light transport in such media on average [6]. These repre-
sentations replace explicit with statistical descriptions of
microparticle configurations (e.g., average particle location,
size, shape, and orientation), analogously to statistical BRDF
models for surface microgeometry [13, 14, 24, 46, 60]. Com-
puter graphics has developed volumetric representations for
microparticle media that account for details such as vary-
ing particle size and material [16, 32], shape and orienta-
tion [23, 25], and placement correlations [9, 15, 26].

We develop (Section 3) analogous volumetric representa-
tions for scenes comprising opaque macroscopic 3D objects,
or opaque solids, using stochastic geometry theory. We
prove (Section 3.1) formal conditions for exponential volu-
metric representations to apply to stochastic opaque solids;
and functional relationships between volumetric parameters
(i.e., attenuation coefficient) and stochastic geometry models.
We adapt (Section 3.2) anisotropic volumetric representa-
tions of microparticle geometry to opaque solids, to account
for effects such as directionally-dependent foreshortening
near surfaces, and directionally-independent attenuation far
from them. We extend (Section 3.3) our volumetric repre-
sentations to utilize geometry models common in current
practice (e.g., implicit surfaces). Our theory delivers volu-
metric representations equipped with properties necessary
for physical plausibility (e.g., reciprocity and reversibility).

Our work is not the first to derive volumetric representa-
tions for opaque solids [45, 52, 63, 66]. Previous derivations
generally consider how to transform a deterministic geome-
try representation (e.g., signed distance function) into a volu-
metric one that behaves approximately like the deterministic
geometry. Despite its empirical success, this methodological
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approach remains heuristic and requires arbitrary choices
(e.g., deciding what properties of deterministic geometry to
preserve in the volumetric representation). By contrast, our
derivation is rigorous, starting from only the axioms of volu-
metric transport, and helps place this prior work on a solid
mathematical footing: We show (Section 4) that our the-
ory explains previous volumetric representations as special
cases of ours, corresponding to different stochastic modeling
choices for the underlying opaque geometry. Our theory
additionally highlights and addresses critical defects of pre-
vious volumetric representations (e.g., lack of reciprocity
and reversibility), and generalizes them in principled ways.

Our volumetric representation can be readily incorporated
within existing volumetric neural rendering pipelines [37, 54,
63, 67]. We show experimentally (Section 5) that replacing
previous volumetric representations [63, 66] with ours leads
to significantly better (qualitatively and quantitatively) 3D
reconstructions on common datasets. We provide interactive
visualizations, open-source code, and a supplement with all
appendices on the project website.1

2. Volumetric light transport background
We begin with background on volumetric light transport
(also known as radiative transfer). We follow Bitterli et al. [9]
for our review, and refer to Preisendorfer [48, Chapter XV]
and Chiu et al. [12] for a more comprehensive discussion.
Setup. Volumetric light transport models scenes with
stochastic geometry (Figure 1). Classically in computer
graphics, these are scenes comprising numerous microscopic
particles [39] (e.g., translucent materials); whereas in neural
rendering, they are scenes comprising macroscopic opaque
objects. We term the two settings stochastic microparticle
geometry and stochastic solid geometry, respectively.

In both settings, volumetric light transport algorithms
simulate expected radiometric measurements over all realiza-
tions of the stochastic geometry [6]. They leverage the fact
that deterministic light transport algorithms (e.g., path trac-
ing) interact with scene geometry only through two geomet-
ric queries: Q1. visibility queries to compute the visibility
V(x,y) ∈ {0, 1} between points x,y ∈ R3; Q2. ray-cast-
ing queries to compute the free-flight distance t∗x,ω ∈ [0,∞)
a ray with origin x ∈ R3 and direction ω ∈ S2 travels un-
til it first intersects the scene. Thus, we can translate light
transport algorithms from the deterministic to the volumetric
setting by stochasticizing these geometric queries [9].

To facilitate discussion of these stochastic queries, we in-
troduce some notation. We denote by rx,ω(t) ≡ x+t ·ω the
point on a ray with origin x ∈ R3 and direction ω ∈ S2 after
travel distance t ∈ [0,∞); and by Vx,ω(t) ≡ V(x, rx,ω(t))
the visibility along the ray. Then, the free-flight distance
becomes t∗x,ω ≡ max{t ∈ [0,∞) : Vx,ω(t) = 1}, and we
denote by r∗x,ω ≡ rx,ω

(
t∗x,ω

)
the first intersection point.

1https://imaging.cs.cmu.edu/volumetric_opaque_solids
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Figure 1. Volumetric representations replace deterministic (left)
with stochastic (right) ray casting: rather than find the first intersec-
tion with deterministic geometry, they use the free-flight distribu-
tion along a ray to represent the probability of first intersection with
stochastic geometry. Classical volumetric representations describe
stochastic microparticle geometry (top). We derive volumetric rep-
resentations for stochastic solid geometry (bottom).

Definition 1. In a scene with stochastic geometry O, the
transmittance along a ray rx,ω(t) is the probability of visibil-
ity from the ray origin x—equivalently, the tail distribution
of the free-flight distance t∗x,ω:

Tx,ω(t) ≡ PrO{Vx,ω(t) = 1} = PrO
{
t∗x,ω ≥ t

}
. (1)

The free-flight distribution along a ray is the probability
density function of the free-flight distance t∗x,ω:

pffx,ω(t) ≡ − dTx,ω

dt
(t). (2)

The attenuation coefficient at point x and direction ω is the
probability density of zero free-flight distance (equivalently,
probability density of ray termination through x along ω):

σ(x,ω) ≡ pffx,ω(0). (3)

We postpone definitions of stochastic geometry O till Sec-
tion 3. The transmittance inherits the following properties
from visibility: 1. it is reciprocal, Tx,ω(t) = Ty,−ω(t)
if y ≡ rx,ω(t); 2. it is monotonically non-increasing,
Tx,ω(t) ≤ Tx,ω(s) if t < s; 3. it satisfies Tx,ω(0) = 1.
The transmittance and free-flight distribution generalize the
visibility (Q1) and ray-casting (Q2) queries, respectively:
for deterministic geometry, Equation (1) reduces to the de-
terministic visibility, and Equation (2) reduces to the Dirac
delta distribution δ

(
t− t∗x,ω

)
centered at the deterministic

free-flight distance. The attenuation coefficient will become
important when we discuss exponential transport below.

We can use these definitions to generalize deterministic
light transport algorithms, which recursively use the equa-
tion for the conservation of radiance along a ray, Li(x,ω) =
Lo

(
r∗x,ω,−ω

)
, to volumetric light transport algorithms,
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Figure 2. Overview of our theory, presented in Theorem 4, Definition 5, and Proposition 7.

which recursively use the expectation of this equation:

EO[Li(x,ω)] = EO
[
Lo

(
r∗x,ω,−ω

)]
(4)

=

∫ ∞

0

geometry

pffx,ω(t) ·

global illumination

EO[Lo(rx,ω(t),−ω) | t] dt. (5)

If we drop the distinction between expected and actual ra-
diances, Equation (5) is the volume rendering equation that
neural volume rendering techniques use [36]. Such tech-
niques typically separately model the geometry and global
illumination terms, the latter as either volumetric emission
[36] or in-scattered radiance [58]. We focus on the geometry
term, but discuss in Appendix B implications for the global
illumination term from geometry modeling choices.
Exponential transport. Most commonly in computer vision
and graphics, the free-flight distance is an exponential ran-
dom variable, an assumption we call exponential transport.
Then, Equations (1)–(3) and transmittance reciprocity imply:

Tx,ω(t) = exp

(
−
∫ t

0

σ(rx,ω(s),ω) ds

)
, (6)

pffx,ω(t) = σ(rx,ω(t),ω) Tx,ω(t), (7)

σ(x,ω) = σ(x,−ω). (8)

Thus, the attenuation coefficient becomes the rate parameter
of the free-flight distance. Given known coefficient values,
there exist efficient and accurate numerical approximations
for the free-flight distribution and transmittance [18, 27, 43].

Exponential transport has been extensively studied for
stochastic microparticle geometry [38]: It is equivalent to
the Poisson Boolean model of stochastic geometry, where
microparticle locations are independent [9, 15, 26] and dis-
tributed as a spatial Poisson process [12, 31]. This model
allows expressing the attenuation coefficient analytically as
a function of the probability distributions for the particle
location, size, material, shape, and orientation [16, 23, 25].
The recent success of exponential transport in neural render-
ing [36, 45, 63, 66] motivates our study in Section 3, where
we derive, for the first time, exponential transport models
for stochastic solid geometry. Notably, Vicini et al. [59]
suggest using non-exponential transport for stochastic solid
geometry, a suggestion we briefly discuss in Section 6.
Isotropic and anisotropic transport. In isotropic trans-
port, the attenuation coefficient is independent of direc-

tion, σ(x,ω) = σ(x); and conversely for anisotropic trans-
port [25]. In stochastic microparticle geometry, isotropic
transport models microparticles as rotationally-symmetric
scatterers (spheres). We explain isotropic versus anisotropic
transport for stochastic solid geometry in Section 3.2.

3. Stochastic opaque solids
We develop our exponential transport theory for stochastic
solid geometry in three parts: 1. In Section 3.1, we introduce
a stochastic model for solid geometry, prove conditions for
exponential transport, and derive expressions for the atten-
uation coefficient. 2. In Section 3.2, we generalize these
expressions to model variable anisotropic behavior. 3. In
Section 3.3, we adapt our expressions to implicit-surface
geometry representations. Figure 2 summarizes our theory,
and the project website includes a video explanation.
3.1. Conditions for exponential transport
To formalize our exponential transport model for stochastic
opaque solid geometry, we first define an opaque solid.2

Definition 2. We define an indicator function I : R3 →
{0, 1} as a binary scalar field, and associate with it a solid
O ≡

{
x ∈ R3 : I(x) = 1

}
. The solid O is opaque if and

only if, for every point x ∈ O and direction ω ∈ S2, the
visibility satisfies Vx,ω(t) = δ(t).

The definition of opacity implies that no ray of light can
reach points inside the solid O. Therefore, our volumetric
light transport formulation will exclude refractive surfaces.
We can now use Definition 2 to also define a stochastic solid.

Definition 3. When the indicator function I(x) is a random
scalar field, we call the associated solid O a stochastic solid,
for which we define the occupancy o : R3 → [0, 1] and
vacancy v : R3 → [0, 1] as the scalar fields:

o(x) ≡ Pr{I(x) = 1}, (9)
v(x) ≡ Pr{I(x) = 0} = 1− o(x). (10)

With this definition, we can interpret probabilities in-
volving O in Equations (1)–(3) as probabilities over all
realizations of the random indicator function I. We will
consider the restriction of the indicator function, occupancy,
and vacancy on a ray with origin x ∈ R3 and direction
ω ∈ S2: Ix,ω(t) ≡ I(rx,ω(t)), and analogously for ox,ω(t)
and vx,ω(t). We can now state our main technical result.

2We borrow the term solid from Koenderink [29].
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Theorem 4: Exponential transport in opaque solids

We assume a random indicator function I and associated
stochastic opaque solid O. Then, for any ray with origin
x ∈ R3 and direction ω ∈ S2, the free-flight distribution
pffx,ω is exponential if and only if the restriction of the
indicator function on this ray, Ix,ω, is a continuous-time
discrete-space Markov process; that is, it satisfies:

Pr{Ix,ω(t) | Ix,ω(tn), tn < t, n = 1, . . . , N}
= Pr{Ix,ω(t) | Ix,ω(max ntn)}. (11)

Additionally, the process Ix,ω is reversible and the corre-
sponding transmittance Tx,ω is reciprocal if and only if
the attenuation coefficient σ equals:

σδ(x,ω) ≡ |ω · ∇ log(v(x))|= |ω · ∇ v(x)|
v(x)

. (12)

We explain the notation σδ in Section 3.2. Expressions
for transmittance and free-flight distribution follow from
Equations (6)–(7), and the attenuation coefficient satisfies
Equation (8), as required for reciprocity. We discuss re-
versibility and prove Theorem 4 in Appendix F.1.

3.2. Anisotropy
Returning to Equation (12), we can rewrite it as the product:

σδ(x,ω) =

≡ σ∥(x)

∥∇ v(x)∥
v(x)

·

≡ σ⊥
δ (x,ω)

|ω · n(x)| , (13)

where n(x) ≡ ∇ v(x)/∥∇ v(x)∥ is the unit normal of the level
set of v passing through x. We compare Equation (13) to the
attenuation coefficient expressions for anisotropic stochastic
microparticle geometry by Jakob et al. [25, Equation (11)]
and Heitz et al. [23, Equation (2)]. As in those works, we
can decompose the attenuation coefficient as the product of
an isotropic density σ∥(x) and an anisotropic projected area
σ⊥
δ (x,ω).3 Intuitively: 1. The density σ∥(x) increases as

vacancy v(x) decreases; thus the ray termination probabil-
ity through x increases the more likely x is to be occupied.
2. The projected area σ⊥

δ (x) models foreshortening as a
ray of direction ω encounters a surface patch of normal
n(x); at grazing angles (|ω · n(x)| = 0) the patch is in-
visible, whereas at normal incidence (|ω · n(x)| = 1) it
is maximally visible, corresponding to zero and maximal,
respectively, ray termination probability.

This anisotropic behavior mimics deterministic surfaces,
and thus is suitable for points x likely to lie on the surface of
a stochastic opaque solid (i.e., v(x) ≈ 1/2). However, points
x that are likely inside the solid (i.e., v(x) ≈ 0, respectively)

3The projected area and density should include multiplicative factors
Av(x) and 1/Av(x), respectively, where Av(x) ≡ ∥∇ v(x)∥ dxdy dz
is the differential area of the tangent plane of the level set of v at x. These
factors cancel out in Equation (13), so we omit them to simplify notation,
at the cost of our expressions appearing to have incorrect units.

should behave isotropically: rays passing through them at
different directions should terminate with the same prob-
ability. To model these different behaviors, inspired from
microflake models for microparticle geometry [23, 25], we
generalize our definitions of σ⊥

δ and σδ .4

Definition 5: Attenuation coefficient for opaque solids

We associate with each point x ∈ R3 a distribution of nor-
mals Dx : S2 → R≥0 that satisfies

∫
S2 Dx(m) dm = 1.

Then, we define at x the projected area for any direction
ω ∈ S2 as the expected foreshortening:

σ⊥
D(x,ω) ≡

∫
S2

|ω ·m|Dx(m) dm , (14)

the density as

σ∥(x) ≡ ∥∇ v(x)∥
v(x)

, (15)

and the generalized attenuation coefficient as the product:

σ(x,ω) ≡ σ∥(x) · σ⊥
D(x,ω) . (16)

For Dx,δ(m) ≡ δ(m− n(x)), the projected area re-
duces to |ω ·m|, explaining the notation σδ, σ

⊥
δ in Equa-

tions (12)–(13). By contrast, for the uniform distribu-
tion Dx,unif(m) ≡ 1/4π, the projected area becomes
σ⊥
unif(x,ω) ≡ 1/2; then both the projected area and attenua-

tion coefficient are isotropic. Definition 5 allows behaviors
between these two extremes, e.g., by using a linear mix-
ture distribution of normals Dx,mix(m) ≡ α(x)Dx,δ(m)+
(1− α(x))Dx,unif(m) and corresponding projected area:

σ⊥
mix(x,ω) ≡ α(x)σ⊥

δ (x,ω) + (1− α(x))σ⊥
unif(x,ω)

= α(x)|ω · n(x)|+ 1− α(x)

2
. (17)

The anisotropy parameter α(x) ∈ [0, 1] continuously in-
terpolates between fully anisotropic (α(x) = 1) and fully
isotropic (α(x) = 0) projected area. Making this parameter
spatially varying allows adapting the anisotropy behavior at
different parts of an opaque solid, e.g., more anisotropic near
its boundary, more isotropic in its interior (Figure 3). We
discuss additional choices for the distribution of normals D
and associated projected area σ⊥

D in Appendices B and E.
3.3. Stochastic implicit surfaces
Definitions 2 and 3 define a (stochastic) solid through the
binary indicator function, because the indicator (respectively
vacancy) function at a point x is the minimal information
we need to determine visibility (respectively transmittance)
for a ray that passes through x. However, it is common
practice to define a solid through a non-binary scalar field,
which provides richer information about the solid and its
surface [47]. We explore this case next.

4We follow Jakob et al. [25] and use normalized distributions of normals.
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Figure 3. The attenuation coefficient optimized for the BEAR scene
in BlendedMVS behaves as anticipated by our theory: isotropically
in the object interior, and anisotropically near its surface.

Definition 6. We define an implicit function G : R3 → R as
a real scalar field, and associate with it an indicator function
I(x) ≡ 1{G(x)≤0} and corresponding solid O. If G is also
a random field, then we define the pointwise cumulative
distribution function cdfG(x), probability density function
pdfG(x), and mean implicit function f(x) as, respectively:

cdfG(x)(q) ≡ Pr{G(x) ≤ q}, q ∈ R, (18)

pdfG(x)(q) ≡
d cdfG(x)(q)

dq
, q ∈ R, (19)

f(x) ≡ E[G(x)] =

∫ +∞

−∞
q · pdfG(x)(q) dq. (20)

From Definition 6, the stochastic solid O is an excursion
set of the random field G [3, Chapter 1], with its surface
at the zero-level set of G, its interior where G < 0, and its
exterior elsewhere. Such excursion sets have been exten-
sively studied in applied mathematics, especially when G
is a Gaussian process, i.e., its (joint) distribution at one or
more points is Gaussian [3, Appendix]. Sellán and Jacobson
[52, 53] recently proposed using excursion sets of Gaussian
processes as a point-based stochastic implicit surface repre-
sentation (Appendix A). Extending our theory to excursion
sets of various stochastic implicit functions G will allow us
to provide stochastic geometry interpretations for previous
volumetric representations for opaque solids [63, 66].

To this end, we specialize to stochastic implicit functions
with a symmetry property: At each x, G(x) equals, up to
a spatially varying shift f(x) and spatially constant scale
s > 0, a zero-mean, unit-variance, and symmetric random
variable—that is, with a PDF ψ : R → R≥0 and CDF
Ψ : R → [0, 1] that satisfy, for all q ∈ R [11],

ψ(q) = ψ(−q) and Ψ(q) = 1−Ψ(−q). (21)

Such a CDF Ψ is a sigmoid function [19, 22] whose exact
shape depends on the probability distribution. Common
symmetric distributions include the Gaussian, logistic, and
Laplace (in their zero-mean, unit-variance versions), giving
rise to the error, logistic, and Laplace (respectively) sigmoid
functions. The symmetry property implies for G:

pdfG(x)(q) = ψ(s(q − f(x))), (22)

cdfG(x)(q) = Ψ(s(q − f(x))). (23)

We prove in Appendix F.2 the following proposition.

Proposition 7: Stochastic implicit geometry

We assume a stochastic implicit function G(x) satisfying
Equations (22)–(23). Then, the occupancy and vacancy
for the associated stochastic solid O equal:

o(x) = Pr{G(x) ≤ 0} = Ψ(−s f(x)), (24)
v(x) = Pr{G(x) > 0} = Ψ(s f(x)). (25)

If the stochastic solid O also satisfies the conditions of
Theorem 4, then the attenuation coefficient equals:

σ(x,ω) =

≡ σ∥(x)

sψ(s f(x))∥∇ f(x)∥
Ψ(s f(x))

· σ⊥
D(x,ω) , (26)

with σ⊥
D as in Equation (14).

Proposition 7 completes our volumetric representation,
which we summarize in Figure 2. Notably, the modeling
choice to use an implicit function impacts the density σ∥

(through the vacancy v), but not the projected area σ⊥
D. To

help intuition, we discuss the behavior of different quantities.
Vacancy. The vacancy v (Equation (25)) is a sigmoidal
transform of the expected value f of the stochastic implicit
function G (Equation (20)). This agrees with intuition: a
large positive value of f(x) (i.e., high probability that x
is outside the solid) results in v(x) ≈ 1; a large negative
value of f(x) (i.e., high probability that x is inside the solid)
results in v(x) ≈ 0; and f(x) = 0 (i.e., equal probability
that x is inside or outside the solid) results in v(x) = 1/2.
Attenuation coefficient and free-flight distribution. The
behaviors of the attenuation coefficient σ (Equation (26))
and free-flight distribution pff (Equation (7)) are easier to
understand if we consider points on a ray along which the
mean implicit f monotonically decreases with a constant
gradient. Then, the attenuation coefficient monotonically
increases along the ray (i.e., as we move from points likely
in the exterior to points likely in the interior of the solid).
The free-flight distribution is maximal where along the ray
f(x) = 0 (i.e., at the point equally likely to be inside or out-
side the solid), and decreases as the magnitude of f increases
(i.e., at points highly likely to be inside or outside the solid).
Scale and uncertainty. The scale s controls the width of
the sigmoid Ψ, and thus how fast the vacancy v transitions
from 0 to 1 as the mean implicit function f increases—the
larger s is, the narrower Ψ becomes, and the faster v changes.
We can interpret this behavior by noticing that, from Equa-
tions (22)–(23), s is the inverse of the pointwise standard
deviation of G. As s increases, the standard deviation de-
creases, and thus: 1. the pointwise PDF pdfG becomes more
concentrated around its mean f (i.e., the stochastic implicit
function G becomes more certain); 2. the vacancy v and oc-
cupancy o become closer to the binary functions 1{f>0} and
1{f≤0} (i.e., the random indicator function I becomes more
certain). 3. the free-flight distribution pff becomes closer to
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Table 1. Classification of previous and new volumetric representa-
tions for opaque solids using our theory (Figure 2).

method implicit function
distribution Ψ

distribution
of normals D

VolSDF Laplace uniform
NeuS logistic delta (with ReLU)
NeuS with
cosine annealing

logistic
mixture (with ReLU,
constant anisotropy)

ours Gaussian
mixture (with
x-varying anisotropy)

a Dirac delta function centered at the zero-level set of f (i.e.,
free-flight distances become more certain).

4. Relationship to prior work
Our theory provides a volumetric representation for opaque
solids that permits various probabilistic modeling choices,
e.g., selecting a distribution of normals (Equation (14)) and
an implicit function distribution (Equation (26)). We use our
theory to explain and compare volumetric representations in
prior work as versions of our representation corresponding
to specific choices for these distributions (Table 1), albeit
with critical caveats that our theory addresses.

NeuS. Most closely related to our work is the NeuS volumet-
ric representation by Wang et al. [63, Equation (10)]. Using
our notation, their extinction coefficient equals:

σNeuS(x,ω) ≡

sψlogistic(s f(x))∥∇ f(x)∥
Ψlogistic(s f(x))

· ReLU(−ω · n(x)) , (27)

where: 1. ψlogistic and Ψlogistic are the PDF and CDF, respec-
tively, for the zero-mean, unit-variance logistic distribution;
and 2. the mean implicit function f is parameterized as a neu-
ral field that, during training, is also regularized to approxi-
mate a signed distance function (i.e., satisfy ∥∇ f(x)∥ ≈ 1).
Comparing Equation (27) with our Equations (13) and (26),
we see that the NeuS model is close to our model with Dirac
delta distribution of normals Dx,δ, specialized to specific
choices for the pointwise distribution ψ and mean implicit
function f , with an important difference: it replaces the
Dirac delta projected area σ⊥

δ (x,ω) ≡ |ω · n(x)| with the
anisotropic term ReLU(−ω · n(x)) ≡ max(0,−ω · n(x)),
effectively clipping σNeuS to zero when a ray is traveling
outwards (towards larger vacancy or mean implicit values).
Unfortunately, this choice has the consequence that the atten-
uation coefficient σNeuS violates the reciprocity requirement
of Equation (8), resulting in a physically implausible volu-
metric representation. We visualize this issue in Figure 4. As
we discuss in Section 5, violation of reciprocity additionally
negatively impacts 3D reconstruction quality.

Lastly, we prove in Appendix F.3 that using the logistic
distribution for G(x) simplifies Equation (26):
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Figure 4. When optimizing for the CLOCK scene in BlendedMVS
using NeuS, the ReLU term leads to attenuation coefficient (top)
and transmittance (bottom) values that violate reciprocity. By
contrast, using our representation leads to reciprocal results.

σlogistic(x,ω) =

sΨlogistic(−s f(x))∥∇ f(x)∥ · σ⊥
D(x,ω) , (28)

and analogously for σNeuS(x,ω) in Equation (27). We use
this observation as we discuss VolSDF next.
VolSDF. Another closely related model is the VolSDF model
by Yariv et al. [66, Equations (2)–(3)]. Using our notation:

σVolSDF(x,ω) ≡ sΨLaplace(−s f(x))∥∇ f(x)∥ , (29)

where ΨLaplace is the CDF for the zero-mean, unit-variance
Laplace distribution; and the mean implicit function f(x) is
parameterized as in NeuS. Comparing to Equation (28), we
make two observations about the VolSDF model: 1. It uses
the uniform distribution of normals Dx,unif and isotropic
(constant) projected area σ⊥

unif , thus the attenuation coeffi-
cient becomes isotropic. 2. It uses a density σ∥ equal to that
in Equation (28) after replacing the logistic with the Laplace
CDF. However, this replacement is not equivalent to mod-
eling G(x) as a Laplace random variable. This is because
the simplified expression of Equation (28) is correct for only
the logistic distribution, whereas the Laplace distribution
requires the full expression of Equation (26). Consequently,
the VolSDF model uses an incorrect density term.
Cosine annealing. The official NeuS implementation [62,
models/renderer.py#L232-L235] uses cosine an-
nealing—transitioning from isotropy to anisotropy as opti-
mization progresses—to improve convergence. This means
replacing the anisotropic term in Equation (27) with:

α · ReLU(−ω · n(x)) + 1− α

2
, (30)

and changing the global anisotropy parameter α from 0
towards 1 using a predetermined annealing schedule. Com-
paring to Equation (17), our theory explains this heuristic
as using a mixture distribution of normals, with the caveat
that NeuS also replaces σ⊥

δ with the reciprocity-violating
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Table 2. Chamfer distance statistics on the DTU and NeRF Realistic
Synthetic datasets. We provide the full tables in Appendix E.

DTU VolSDF NeuS ours

mean 1.84 2.17 1.57
median 1.74 1.99 1.56

NeRF RS VolSDF NeuS ours

mean 0.252 0.201 0.113
median 0.100 0.085 0.057

Table 3. We use chamfer distance statistics on the DTU dataset for
an ablation study. We provide the full tables in Appendix E.

Ψ model logistic Laplace Gaussian

mean 1.98 1.96 1.78
median 1.86 1.92 1.74

D model delta
(ReLU)

delta mixture
(const.)

mixture
(var.)

mean 2.17 1.98 1.97 1.75
median 1.99 1.86 1.85 1.59

ReLU term, as we noted earlier. Additionally, NeuS uses a
spatially constant anisotropy parameter α that cannot capture
the qualitatively different foreshortening behavior of surface
versus interior and exterior points (Section 5).
Scale optimization and adaptive shells. NeuS and VolSDF
optimize the scale s, which typically increases as optimiza-
tion progresses. Our theory explains this behavior as decreas-
ing uncertainty of the stochastic geometry and convergence
towards deterministic geometry (binary vacancy).

The adaptive shells representation by Wang et al. [64]
modifies the NeuS representation to use a spatially varying
scale s(x). Our theory explains this choice as spatially
varying pointwise standard deviation, and thus uncertainty,
for the stochastic implicit function G(x). In Appendix F.2
we explain how to modify the density σ∥ in Equation (26) to
account for spatially varying scale s(x).
Other approaches. In the appendix we discuss other ap-
proaches for modeling stochastic solid geometry, such as
occupancy networks [35, 40] and discretization approaches
[8, 45, 55] in Appendix C, as well as stochastic implicit
surfaces using point clouds [52] in Appendix A.
5. Experimental evaluation
Our theory provides a framework for systematically correct-
ing volumetric representations for opaque solids in prior
work (using reciprocal projected area and correct density),
and designing new representations (using different distribu-
tions for the implicit function and normals). These changes
are straightforward to implement within existing neural ren-
dering pipelines. We do so within a simplified version of
NeuS [63] and perform extensive experiments on multi-view
3D reconstruction tasks. The goal of these experiments is
not state-of-the-art performance, but an exploration of the

mean impl. vacancy density anisotropy

0 1low high

3D shape

0 1low high
Figure 5. Visualization of shape and key quantities of our volumet-
ric representation learned for scenes in the BlendedMVS dataset.

design space and an evaluation of volumetric representations
within an equal framework. Our results show that, despite
their simple nature, the changes our theory suggests greatly
improve performance, qualitatively and quantitatively. Over-
all, our experiments demonstrate the utility of a rigorous
theory of volumetric representations for opaque solids.

In this section, we summarize our experiments and find-
ings. We discuss implementation details and list complete
numerical results in Appendix E. Lastly, we provide interac-
tive visualizations and code on the project website.
Comparison to prior work. We evaluate our best perform-
ing volumetric representation against those of NeuS [63] and
VolSDF [66]. Table 1 summarizes the three representations.
We use three datasets for evaluation: DTU [2], BlendedMVS
[65], and NeRF realistic synthetic (NeRF RS) [36].

Table 2 and Figure 6 show quantitative and qualitative
results. We observe the following: 1. Our representation
performs the best across all datasets, both quantitatively and
qualitatively. Qualitatively, the improvements are more pro-
nounced in BlendedMVS and NeRF RS—whose scenes have
more complex geometry, materials, and background—than
in DTU—whose simpler scenes are reconstructed well by
all representations. 2. Our representation learns meaningful
scalar fields (Figure 5) for the mean implicit function f , va-
cancy v, density σ∥, and anisotropy α. The mean implicit
function and vacancy lend themselves to downstream sur-
face processing tasks (e.g., mesh extraction [33]). 3. The
use of a spatially varying anisotropy α allows our repre-
sentation to model the qualitatively different behaviors of
points x on the surface (α(x) ≈ 1, i.e., strongly anisotropic)
versus in the interior (α(x) ≈ 0, i.e., isotropic). By con-
trast, VolSDF and NeuS require all points x—surface or
interior—to have either isotropic (α(x) := 0) or perfectly
anisotropic (α(x) := 1), respectively, behavior.
Design and ablation. We use the DTU dataset to evaluate
design choices for the implicit function distribution Ψ and
distribution of normals D in Equations (14) and (26), respec-
tively. This evaluation also serves as an ablation study for
our best performing representation in Table 1. Table 3 shows
the results. We observe the following: 1. For Ψ, using the
Gaussian distribution (i.e., a Gaussian process [52]) outper-
forms using the Laplace (as in VolSDF) or logistic (as in
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Figure 6. Qualitative comparisons on the BlendedMVS (left) and NeRF Realistic Synthetic (right) datasets. The dashed circles indicate areas
of interest. We provide interactive visualizations of results on the complete datasets on the project website.

NeuS) distributions. 2. For D, using the spatially varying
mixture distribution (Equation (17), to adapt to surface ver-
sus interior points) outperforms using the spatially constant
mixture distribution (as in cosine annealing) or the delta dis-
tribution. 3. When using the delta distribution, including a
reciprocity-violating ReLU term (Equation (27), as in NeuS)
underperforms not doing so. This result highlights that en-
forcing reciprocity not only ensures physical plausibility, but
also improves reconstruction performance.
6. Conclusion
We have taken first steps towards formalizing volumetric
representations for opaque solids, using stochastic geometry
theory. Our results should be of theoretical and practical in-
terest: On the theory side, they help explain why volumetric
neural rendering can reconstruct solid geometry, and justify
previous volumetric representations for it. On the practice
side, they provide a toolbox for the design of physically-
plausible volumetric representations that greatly improve
performance. We hope that our results will motivate further
research along both theory and practice thrusts.

For the theory thrust, our theory is far from a complete
formalism of volumetric representations for solid geometry.
We highlight three important shortcomings that deserve fur-
ther investigation. First, revisiting Equation (5), we focused
on the geometry of opaque solids, but neglected their global
illumination effects. In Appendix B, we briefly examine
how geometry and global illumination must be coupled to

ensure reciprocity. However, this topic requires further in-
vestigation. Second, we excluded (semi-)transparent solids,
where interior points may be visible to each other (violat-
ing Definition 2). Developing volumetric representations for
such solids will allow modeling complex reflective-refractive
appearance. Third, we focused on exponential transport be-
cause it has served as a convenient approximation for most
prior work. However, both empirical evidence [59] and
stochastic geometry theory suggest that exponentiality may
not be a suitable assumption for opaque solids. Indeed, the
excursion sets of Gaussian processes typically have free-
flight distributions (also known as the first-passage times
of the Gaussian processes) that are non-exponential [1]. As
Sellán and Jacobson [53, Section 5.1] point out, characteriz-
ing these distributions requires reasoning about the spatial
covariance structure of the Gaussian process [3, Appendix].

For the practice thrust, we have done only limited evalu-
ation of how different volumetric representations interplay
with different algorithms for free-flight estimation and sam-
pling (Appendix D). The theoretical investigation and empir-
ical evaluation of such algorithms will be critical for optimiz-
ing volumetric neural rendering pipelines for solid geometry.
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