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Figure 1. EventEgo3D is the first approach for real-time 3D human pose estimation from egocentric event streams: (a) A photograph of
our new head-mounted device (HDM) with a custom-designed egocentric fisheye event camera (top) and visualisations of our synthetically
rendered dataset and a real dataset recorded with the HDM (bottom); (b) Real-time demo achieving the pose update rate of 140Hz; (c)
Visualisation of real event streams (top) and the corresponding 3D human poses from a third person perspective estimated by our approach.

Abstract

Monocular egocentric 3D human motion capture is
a challenging and actively researched problem. Exist-
ing methods use synchronously operating visual sensors
(e.g. RGB cameras) and often fail under low lighting and
fast motions, which can be restricting in many applications
involving head-mounted devices. In response to the exist-
ing limitations, this paper 1) introduces a new problem,
i.e. 3D human motion capture from an egocentric monoc-
ular event camera with a fisheye lens, and 2) proposes
the first approach to it called EventEgo3D (EE3D). Event
streams have high temporal resolution and provide reliable
cues for 3D human motion capture under high-speed hu-
man motions and rapidly changing illumination. The pro-
posed EE3D framework is specifically tailored for learn-
ing with event streams in the LNES representation, enabling
high 3D reconstruction accuracy. We also design a proto-
type of a mobile head-mounted device with an event cam-
era and record a real dataset with event observations and

the ground-truth 3D human poses (in addition to the syn-
thetic dataset). Our EE3D demonstrates robustness and su-
perior 3D accuracy compared to existing solutions across
various challenging experiments while supporting real-time
3D pose update rates of 140Hz.1

1. Introduction

Head-mounted devices (HMD) have a high potential to be-
come the next mobile and pervasive computing platform in
human society that could enable many applications in edu-
cation, driving or personal assistance systems, gaming, and
many others. HMDs enable increased flexibility and allow
users to move freely and explore the environments they live
and work in. Consequently, egocentric 3D human pose es-
timation became an active research field during the last few
years, with several works focusing on recovering 3D human
poses from down-facing fisheye RGB cameras installed on
an HMD [1, 14, 15, 25, 31–34, 37, 43].

1https://4dqv.mpi-inf.mpg.de/EventEgo3D/
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Existing ego-centric setups have been predominantly
demonstrated in the literature with monocular RGB cam-
eras with a fisheye lens. While these experimental pro-
totypes showed high 3D human pose estimation accuracy
under certain assumptions, monocular RGB cameras on
HMDs have multiple fundamental disadvantages: They are
prone to over- or under-exposure and motion blur in the
presence of high-speed human motions; consume compa-
rably much power for a mobile device; moreover, they
record the image frames synchronously and require con-
stantly high data processing throughput. Hence, our work
is motivated by the observation that multiple disadvantages
of RGB-based HMDs can be alleviated with a different type
of visual sensor, i.e. event cameras. Event cameras record
streams of events, i.e. asynchronous per-pixel brightness
changes at high (µs) temporal resolution. They also support
an increased dynamic range and consume less power (on the
order of tens of mW ) than average RGB cameras (consum-
ing Watts) [6]. Also, no events are triggered if there are no
changes in the scene (apart from noisy signals).

Note that existing RGB-based (especially learning-
based) techniques cannot be re-purposed for event streams
in a straightforward way; new, dedicated approaches are re-
quired to unveil all the advantages of event cameras. We are
thus inspired by the recent progress in event-based 3D re-
construction in different scenarios [8, 27, 36, 44]. However,
an egocentric HMD setup utilising an event camera with a
fisheye lens has not been previously addressed in the liter-
ature. This configuration introduces additional challenges,
including the need for lightweight design to accommodate
high-speed human motions (real-time processing) and the
significant amount of background events generated by the
moving event camera.

This paper addresses the challenges associated with the
design of such an HMD with a monocular egocentric event
camera with a fisheye lens; see Fig. 1 for an overview. We
introduce a prototypical design of a compact HMD that can
be worn by a human and used under fast motions, with
the processing happening on a laptop carried in a backpack
(Fig. 1-(a) on top). We then propose a lightweight neural
network architecture operating on a suitable event stream
representation (LNES [27]) for real-time performance. Our
method, EventEgo3D or EE3D for short, encodes the in-
coming events in the compact representation and decodes
2D heatmaps of the observed human joint locations. After-
wards, the lifting block regresses the 3D human poses. We
also propose a residual event propagation module specif-
ically designed for the egocentric monocular setting that
highlights the wearer’s human amongst the background
events and provides reliable predictions even in the lack of
events due to the absence of human motion.

Due to the lack of event datasets in the egocentric set-
ting, we build a large-scale synthetic dataset for training

our approach. Moreover, we record a real dataset with 3D
ground-truth human poses and 2D event stream observa-
tions with our real HMD (Fig. 1-(a)). The proposed real-
world dataset allows for fine-tuning methods trained on the
synthetic dataset and boosting the accuracy of the egocen-
tric event-based pose estimation in real-world scenarios.

In summary, this paper defines a new problem, i.e. 3D
human pose estimation from a monocular egocentric event
camera, and makes the following technical contributions:
• EE3D, the first end-to-end trainable neural approach

for 3D human motion capture from an egocentric event
camera with a fisheye lens installed on a mobile head-
mounted device;

• Lightweight Residual Event Propagation Module and
Egocentric Pose Module tailored for real-time 3D human
motion capture (pose update rate of 140Hz) from egocen-
tric event streams with high 3D reconstruction accuracy.

• The design of a compact head-mounted device with an
egocentric event camera along with real and synthetic
datasets for neural network training and evaluation.
Our experiments demonstrate higher 3D reconstruction

accuracy of EE3D in challenging scenarios with high-speed
human motions from egocentric monocular event streams
compared to existing (closely related) methods. The signif-
icance of each proposed module is evaluated and confirmed
in an ablative study.

2. Related Work
We next review related methods for egocentric 3D human
pose estimation and event-based 3D reconstruction.

2.1. Egocentric 3D Human Pose Estimation

3D human pose estimation from egocentric monocular or
stereo RGB views has been actively studied during the last
decade. While the earliest approaches were optimisation-
based [25], the field promptly adopted neural architectures
following the state of the art in human pose estimation.
Thus, follow-up methods used a two-stream CNN archi-
tecture [37] and auto-encoders for monocular [30, 31] and
stereo inputs [1, 43]. Another work focused on the au-
tomatic calibration of fisheye cameras widely used in the
egocentric setting [42]. Recent papers leverage human
motion priors and temporal constraints for predictions in
the global coordinate frame [32]; reinforcement learning
for improved physical plausibility of the estimated mo-
tions [17, 39]; semi-supervised GAN-based human pose en-
hancement with external views [33] and depth estimation
[34]; and scene-conditioned denoising diffusion probabilis-
tic models [41]. Khirodkar et al. [10] address a slightly dif-
ferent setting and use a multi-stream transformer to capture
multiple humans in front-facing egocentric views.

All these works demonstrated promising results and
pushed the field forward. They, however, were designed
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for synchronously operating RGB cameras and, hence—as
every RGB-based method—suffer from inherent limitations
of these sensors (detailed in Sec. 1). Thus, only a few of
them support real-time framerates [30, 37]. Moreover, it is
unreasonable to expect that RGB-based approaches can be
easily adapted for event streams. In contrast, we propose an
approach that (for the first time) accounts for the new data
type in the context of egocentric 3D vision (events) and es-
timates 3D human poses at high 3D pose update rates.

Last but not least, none of the existing datasets for the
training and evaluation of egocentric 3D human pose es-
timation techniques and related problems [10, 20, 25, 30,
32, 34, 37, 40] provide event streams or frames at framer-
ate sufficient to generate events with event steam simula-
tors [23]. To evaluate and train our EE3D approach, we
synthesise and record the necessary datasets (i.e. synthetic,
real and background augmentation) required to investigate
event-based 3D human pose estimation on HMDs.

2.2. Event-based Methods for 3D Reconstruction

Substantial discrepancy between RGB frames and asyn-
chronous events has recently led to the emergence of ded-
icated event-based or hybrid 3D techniques for humans
[4, 36, 44], hands [27, 38] and general objects [19, 28, 35].

Nehvi et al. [19] track non-rigid 3D objects (polygo-
nal meshes or parametric 3D models) with a differentiable
event stream simulator. Rudnev et al. [27] synthesise a
dataset with human hands to train a neural 3D hand pose
tracker with a Kalman filter. They introduce a lightweight
LNES representation of events for learning as an improve-
ment upon event frames. Next, Xue et al. [38] optimise
the parameters of a 3D hand model by associating events
with mesh faces using the expectation-maximisation frame-
work assuming that events are predominantly triggered by
hand contours. Some works [36, 44] use RGB frames along
with the event streams, and some represent events as spatial-
temporal points in space and encode them either as point
clouds [4, 18]. Consequently, most of these approaches are
slow (due to different reasons such as iterative optimisa-
tion or computationally expensive operations on 3D point
clouds), with the notable exception of EventHands [27]
achieving up to 1kHz hand pose update rates.

We use LNES [27] as it is independent of the input event
count, facilitates real-time inference and can be efficiently
processed with neural components (e.g. CNN layers). In
contrast to all approaches discussed above, our method is
specifically designed for the egocentric setting and achieves
the highest accuracy level among all compared methods.
This is achieved by incorporating a novel residual mecha-
nism that propagates events (event history) from the previ-
ous frame to the current one, prioritizing events triggered
around the human. This is also helpful when only a few
events are triggered due to the lack of motion.

3. The EgoEvents3D Approach

Our EE3D approach estimates 3D poses from an egocentric
monocular event camera with a fisheye lens. We first ex-
plain the event camera model in Sec. 3.1 and then describe
the proposed framework in Sec. 3.2.

3.1. Event Camera Preliminaries

Event cameras obey the pinhole camera model and cap-
ture event streams, i.e., a 1D temporal sequence that con-
tains discrete packets of asynchronous events that indicate
the brightness change of each pixel of the sensor. In our
case, we use a fisheye lens and the Scaramuzza projec-
tion model [29] for it, introducing a wider field of view
required for our HMD. An event is a tuple of the form
ei = (xi, yi, ti, pi) with the i-th index representing the
event fired at pixel location (xi, yi) with its correspond-
ing timestamp ti and a polarity pi ∈ {−1, 1}. The times-
tamps ti of modern event cameras have µs temporal resolu-
tion. The event is generated when the change in logarithmic
brightness L at the pixel location (xi, yi) exceeds a prede-
fined threshold C, i.e. |L(xi, yi, ti)−L(xi, yi, ti−tp)| ≥ C,
where tp represents the previous triggering time at the same
pixel location. p = −1 indicated that the brightness has
decreased by C; otherwise, it has increased if p = 1.

Modern neural 3D computer vision architectures [8, 12,
27] require event streams to be converted to a regular rep-
resentation, usually 2D or 3D. To this end, we adopt the
locally normalised event surfaces (LNES) [27] that aggre-
gate the event tuples into a compact 2D representation as
a function of time windows. A time window of size T
is constructed by collecting all events between the first
event e0 (relative to the given time window) and ek, where
tk − t0 ≤ T . The events from the time window are stored
in the 2D LNES frame L ∈ RH×W×2. The LNES frame is
updated by L(xi, yi, pi) =

ti−t0
T , with i ∈ {1, . . . , k}, and

where each event triggered at pixel location (x, y) updates
the corresponding pixel location of the LNES frame.

3.2. Architecture of EgoEvents3D

Our approach takes N consecutive LNES frames
B = {L1, . . . ,LN}, Lq∈R192×256×2 as input and re-
gresses the 3D human body poses per each LNES denoted
by O = {Ĵ1, . . . , ĴN}, Ĵq∈R16×3; q ∈ {1, . . . , N}. Ĵq

include the joints of the head, neck, shoulders, elbows,
wrists, hips, knees, ankles, and feet.

The proposed framework includes two modules; see
Fig. 2. First, the Egocentric Pose Module (EPM) estimates
the 3D coordinates of human body joints. Subsequently, the
Residual Event Propagation Module (REPM) propagates
events from the previous to the current LNES frame. The
REPM module allows the framework 1) to focus more on
the events triggered around the human (than those of the
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Figure 2. Overview of our EventEgo3D approach. The HMD captures an egocentric event stream converted to a series of 2D LNES
frames [27], from which our neural architecture regresses the 3D poses of the HMD user. The residual event propagation module (REPM)
emphasises events triggered around the human by considering the temporal context of observations (realised with a frame buffer with event
decay based on event confidence). REPM, hence, helps the encoder-decoder (from LNES to heatmaps) and the heatmap lifting module to
estimate accurate 3D human poses. The method is supervised with ground-truth segmentations, heatmaps and 3D human poses.

background) and 2) to retain the 3D human pose when only
a few events are generated due to the absence of motions.

3.2.1 Egocentric Pose Module (EPM)

We regress 3D joints from the input Lq in two steps: 1) 2D
joint heatmap estimation and 2) the heatmap-to-3D lifting.
2D joint heatmap estimation. To estimate the 2D joint
heatmaps, we develop a U-Net-based architecture [26].
Here, we utilize the Blaze blocks [2] as layers of the en-
coder and decoder to achieve real-time performance. The
encoder consists of six layers, and the decoder, which is the
heatmap decoder, comprises four layers. Please see our sup-
plementary material for more details. We use Lq to estimate
2D heatmaps of 16 body joints Ĥq ∈ R48×64×16. The final
estimated heatmaps are derived by averaging the intermedi-
ate heatmaps. The network at this stage is supervised us-
ing the mean square error (MSE) between the ground-truth
heatmaps and the predicted ones:

  \label {eq:losshms} \mathcal {L}_{\text {H}} = \frac {1}{M_J}\sum _{b=1}^{M_J} \lVert \mathbf {\hat H}_{q,b} - \mathbf {H}_{q,b} \rVert ^2, 







  (1)

where Ĥq,b and Hq,b are the predicted and ground-truth
heatmaps of the b-th joint; MJ is the number of body joints.
Heatmap-to-3D Lifting Module. Following previous
works [22, 30], the Heatmap-to-3D (HM-to-3D) Lifting
module takes the estimated heatmaps as input and outputs
the 3D joints Ĵq ∈ R16×3. The HM-to-3D is a six-layer

network containing convolutional blocks and two dense
blocks. The HM-to-3D lifting module is supervised using
MSE between the ground-truth device-centric joint coordi-
nates and the predicted ones at the frame index q:

  \label {eq:lossj3d} \mathcal {L}_{\text {joints}} = \frac {1}{M_J}\sum _{r=1}^{M_J} \lVert \mathbf {\hat J}_{q,r} - \mathbf {J}_{q,r} \rVert ^2, 







   (2)

where MJ is the number of body joints, and Ĵr and Jr are
the predicted and ground-truth r-th joints, respectively.

3.2.2 Residual Event Propagation Module (REPM)

In contrast to stationary camera setups, egocentric cameras
mounted on HMDs undergo significant movements. In the
case of our mobile device, motion results in a comparably
high number of events generated by the background. Hence,
our approach has to be robust to the background events: We
introduce the Residual Event Propagation Module (REPM)
that allows the network to focus on the events generated
by the subject wearing the HMD as well as rely on the in-
formation from previous frames when few events are ob-
served, i.e., when the movement of the human body is small.
REPM comprises the segmentation decoder, the confidence
decoder, and the frame buffer B. The segmentation decoder
first estimates the human body mask. Then, the confidence
decoder produces feature maps that act on the human body
mask to produce confidence maps that indicate regions of
the egocentric view to place more importance on. Lastly,
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Figure 3. The frame buffer holds previous input frame L̂q−1 (a)
and previous confident map Cq−1 (b). The L̂q−1 is weighted with
Cq−1 and added to the current LNES frame Lq (c) to produce
L̂q (d). We can observe that the events generated by the human
are highlighted more compared to the background events thereby
prioritising events generated by the human.

the Frame Buffer B stores the past input frame and its corre-
sponding confidence map, providing weighting to important
regions of the current frame (see the top part of Fig. 2).
Segmentation Decoder. The segmentation decoder esti-
mates the human body mask Ŝq ∈ R48×64×1 of the HMD
user in the egocentric LNES views. The architectures of
this module and the heatmap decoder are the same except
for the final layer that outputs human body masks.

We use the feature maps from multiple levels of the en-
coder as the input to the segmentation decoder. The seg-
mentation decoder is supervised by cross-entropy loss:

  \label {eq:loss_seg} \mathcal {L}_{\text {seg}} = - \mathbf {S}_q \log (\mathbf {\hat S}_q) + (1 - \mathbf {S}_q)\log (1 - \mathbf {\hat S}_q),          (3)

where Ŝq and Sq are the predicted and ground-truth seg-
mentation masks, respectively.
Confidence Decoder. The confidence decoder is a four
layer convolution network that takes the human body mask
Ŝq as input and produces a feature map SFq ∈ R48×64×1

that, in turn, is used in combination with Ŝq to produce the
confidence map Cq ∈ R48×64×1:

  \label {eq:decay_eqn} \mathbf {C}_q = \operatorname {sigmoid} (\mathbf {\hat S}_q \odot \mathbf {S_F}_q)      (4)

where “sigmoid(·)” is a sigmoid operation and “⊙” is an
element-wise multiplication.
Frame Buffer. The frame buffer B stores the confi-
dence map Cq−1 ∈ R48×64×1 and input frame L̂q−1 ∈
R192×256×2 of the previous LNES frame. Note that we ini-
tialize the frame buffer with zeros at the first frame. To

Figure 4. Sample from EE3D-S with synthetic RGB image (left),
generated event stream (middle), and human body mask (right).

Figure 5. Sample from EE3D-R with motion tracking setup (left)
used for obtaining the ground truth 3D poses, event stream (mid-
dle), and human body mask (right).

compute the current input frame L̂q , we retrieve Cq−1 and
L̂q−1 using the following expression:

  \label {eq:ed_output} \mathbf {\hat {L}}_{q} = \mathbf {\hat {L}}_{q-1} \odot \mathbf {C}_{q-1} \oplus \mathbf {L}_q       (5)

where Lq denotes the LNES frame at the current time, “⊙”
represents an element-wise multiplication, and “⊕” repre-
sents an element-wise addition. We normalize the values
of L̂q to the range of [−1, 1]. Note, Cq−1 is resized to
192 × 256 before applying Eqn. (5). See Fig. 3 for an ex-
emplary visualization of the components used in Eqn. (5).

3.2.3 Loss Terms and Supervision

Our method is supervised by the heatmap loss LH, the seg-
mentation loss Lseg and the joint loss Ljoints.

Overall, our total loss functions are as follows:

  \mathcal {L} = \lambda _{\text {joints}} \mathcal {L}_{\text {joints}} + \lambda _{\text {H}} \mathcal {L}_{\text {H}} + \lambda _{\text {seg}} \mathcal {L}_{\text {seg}},       (6)

where we set the weight of each loss as λjoints=0.01,
λH=10, λseg=1.

4. Our Egocentric Setup and Datasets
We develop a portable head-mounted device (HMD)
(Fig. 1-(a)) and capture a real dataset with it.

4.1. Head Mounted Device

Our HMD is a prototypical device consisting of a bicycle
helmet with a DVXplorer Mini [5] event camera attached
to the helmet 3.5cm away from the user’s head; the strap
allows a firm attachment on the head. We use a fisheye lens
Lensagon BF10M14522S118C [13] with a field of view of
190◦. The total weight of the device is ≈0.42kg. The de-
vice is used with a laptop in a backpack for external power
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supply and real-time on-device computing. The compact
design and the flexibility of our HMD allow users to freely
move their heads and perform rapid human motions.

4.2. EE3D Datasets

We propose two datasets for method training and evalua-
tion: 1) EE3D-S, the large-scale synthetic dataset (used for
pre-training), and 2) EE3D-R, a real-world dataset capture
with our HMD; see Figs. 4 and 5. Both datasets provide
event data, human body masks, and ground-truth 3D poses.

4.2.1 EE3D-S (Synthetic)

EE3D-S is generated in two steps. We use the synthetic
egocentric renderings from Xu et al. [37] with SMPL [16]-
based virtual humans wearing the virtual copy of our HDM
and performing a wide range of motion sequences. We
render the egocentric views at 480 fps and feed them into
VID2E [7], generating the event streams for each sequence.
Here, the SMPL [16] body parameters are linearly inter-
polated to render views at the desired framerate. We simu-
late different illuminations by incorporating four point-light
sources positioned within a 5-meter radius of the HMD,
whose position and light intensity randomly change for each
sequence. In total, we generate 946 motion sequences with
6.21 · 106 3D human poses.

4.2.2 EE3D-R (Real)

EE3D-R requires three steps. We ask twelve subjects—
persons with different body shapes and skin tones—to wear
our HMD and perform different motions (e.g. fast) in a
multi-view studio with 29 RGB cameras recording at 50 fps.
We capture twelve sequences per subject with the follow-
ing motions: walking, crouching, pushups, boxing, kicking,
dancing, interaction with the environment, crawling, sports
and jumping. We track the 6DoF HMD poses and the hu-
man poses in the global reference frame using a multi-view
motion capture system [3]; see Fig. 5.

Next, we pose the SMPL meshes using the tracked
space skeletons and obtain the human body masks by re-
projection the former to the ego-centric views. Finally, we
obtain the tracked 3D human poses in the local coordinate
system of the HMD. In total, we obtain 4.64 · 105 poses
spanning around 155 minutes.
HDM Calibration. To transform the tracked 3D human
poses into the world coordinate frame, we need to estimate
the 6DoF pose of HMD in it. We use a common image-
based calibration policy as follows. To obtain the checker-
board images for the hand-eye calibration procedure, events
are generated from the checkerboard and subsequently con-
verted to images using E2VID [24]. We generate events uni-
formly across the checkerboard by sliding the checkerboard
diagonally. The final position of the checkerboard after this

sliding motion serves as the required checkerboard position
for hand-eye calibration. The obtained transformation ma-
trix from the hand-eye calibration is used to transform 3D
poses and SMPL body meshes to the local coordinate sys-
tem of the HMD.
Event Augmentation. Motions and data recorded in the
multi-view studio would not allow satisfactory generalisa-
tion to some in-the-wild scenes with different backgrounds.
Hence, we propose an event-wise augmentation technique
for the background events: We capture sequences of both
outdoor and indoor scenes without humans with a handheld
event camera, i.e. ≈20 minutes of data, comprising a total
of 3.28·109 events. Next, these background scene events are
used to augment the EE3D-S and EE3D-R datasets. See our
supplement for details of our event-based augmentation.

5. Experimental Evaluation
This section describes our experimental results includ-
ing numerical comparisons to the most related methods
(Sec. 5.1), an ablation study validating the contributions
of the core method modules (Sec. 5.2) as well as compar-
isons in terms of the runtime and architecture parameters
(Sec. 5.3). Finally, we show a real-time demo (Sec. 5.4).
Implementation Details. We implement our method in Py-
Torch [21] and use Adam optimizer [11] with a batch size of
27. We first train the network on the EE3D-S dataset with
a learning rate of 1e−3 for 8 · 105 iterations and then fine-
tune it on the EE3D-R dataset with a learning rate of 1e−4

for 1.5 · 104 iterations. All modules of our EE3D archi-
tecture are jointly trained. The network is supervised using
the most recent ground-truth pose within the time window
T when constructing the LNES frame, i.e., the ground-truth
pose is aligned with the latest event in the LNES. We set
T = 15ms and N = 20 for our experiments. The perfor-
mance metrics are reported on a Gefore RTX 3090. The
real-time demo is performed on a laptop equipped with a
4GB Quadro T1000 GPU, which is housed in a backpack
as illustrated in Fig. 1-(b).
Evaluation Methodology. We first pre-train EE3D on the
EE3D-S dataset and subsequently fine-tune it on EE3D-R.
The evaluation is conducted on EE3D-R: Eight subjects are
used for pre-training and two subjects each are used for
validation and testing. Since no existing method addresses
3D human pose estimation from egocentric event streams,
we adapt two existing 3D pose estimation methods for our
problem setting:
• Xu et al. [37] and Tome et al. [30] are egocentric RGB-

based methods: We modify their first convolution layer to
accept the LNES representation.

• Rudnev et al. [27], i.e., an event-based method that takes
LNES as input and estimates hand poses: We modify its
output layer to regress 3D human poses.

We follow previous works [1, 37, 43] and report the Mean
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Figure 6. Qualitative results of our method in comparison to Xu
et al. [37] and Rudnev et al. [27]. Note how the previous methods
fail to estimate accurate 3D poses when events generated by the
background become more prevalent than events around the human.
The predictions are in red and the ground truth is in green.

Per Joint Position Error (MPJPE) and MPJPE with Pro-
crustes alignment [9] (PA-MPJPE).

5.1. Comparisons to State of the Art

Table 1 presents quantitative results of our approach and
compared methods [27, 30, 37] adapted for our setting.
EE3D outperforms Xu et al. [37], Rudnev et al. [27] and
Tome et al. [30] by a large margin, e.g., by 6.30%, 19.64%
and 37.98% on MPJPE on average, respectively.

It is worth noting that our method demonstrates a su-
periority over the competing methods especially in com-
plex motions involving interaction with the environment,
crawling, kicking, sports and dancing. These motions often
come with fast-paced and jittery movements of the HMD,
generating substantial background event noise. Notably,
our method excels in handling such challenging scenarios.
Also, we achieve the lowest standard deviation σ of the 3D
errors on average. This result indicates that our method can
estimate consistently accurate 3D poses across various mo-
tion activities. Fig. 6 shows visual outputs from our ap-
proach and compared methods. Notably, the events gener-
ated by the hand exhibit very close proximity to the events
generated by the background. Competing methods can not
handle such situations, predicting the background regions
as the position of the hand. However, our method can ac-
curately estimate 3D poses even in the presence of noisy
background events.

5.2. Ablation Study

We next perform an ablation study to systematically eval-
uate the contributions of the core modules of our method.
We define the baseline method to only contain the EPM.
We next systematically examine the impact of the REPM

Figure 7. Ablation study of REPM on EE3D-R (representative
example). (a) Reference RGB view. (b) Baseline (EPM only).
(c) Baseline with segmentation decoder. (d) Baseline with REPM
without confidence decoder. (e) EE3D (full model). The predic-
tions are in red and the ground truth is in green.

as shown in Table 2. We see the baseline with the addition
of the segmentation decoder improves the performance. We
further notice a performance improvement when we allow
past events to propagate to the current frame by weighting
the events only with the segmentation decoder. Finally, in-
cluding the confidence decoder to weigh the events from
the previous frame, yields the best the best MPJPE and PA-
MPJPE. Fig. 7 shows the the effectiveness of the REPM. We
observe the baseline method’s susceptibility to background
events Fig. 7-(a). Although adding the segmentation de-
coder aids in mitigating this issue, it still struggles to esti-
mate the correct hand position Fig. 7-(b). Residual events
from the previous frame weighted by the human body mask
result in a significant performance improvement Fig. 7-(c).
Finally, our full framework with the confidence decoder
provides the closest possible estimate for the 3D pose in
comparison to the ground truth Fig. 7-(d).

5.3. Runtime and Performance

EventEgo3D supports real-time 3D human pose update
rates of 140Hz. From Table 3, we see that our method
has the lowest number of parameters and the lowest num-
ber of required floating point operations (FLOPs) compared
to competing methods. Rudnev et al. [27] is the fastest ap-
proach and the second-best in terms of 3D accuracy. We
achieve the second-highest number of pose updates per sec-
ond. This result highlights that our approach is well-suitable
for mobile devices: Its memory and computational require-
ments as well as power consumption (due to the event cam-
era) would be the lowest among the tested methods.

Since Rudnev et al. [27] use direct regression of 3D
joints, their method is faster while our method and Xu et
al. [37] use heatmaps as an intermediate representation to
estimate the 3D joints. Xu et al. and Tome et al. are not
designed for event streams and achieve lower 3D accuracy.
Moreover, the operations by Rudnev et al. are well paral-
lelisable, which explains its high pose update rate.
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Method Metric Walk Crouch Pushup Boxing Kick Dance Inter. with env. Crawl Sports Jump Avg. (σ)

Tome et al. [30] MPJPE 140.34 173.93 157.29 177.07 181.12 212.61 169.80 144.80 207.56 165.57 173.01 (23.62)
PA-MPJPE 104.34 119.89 102.39 124.28 121.64 132.86 111.89 88.94 120.15 110.32 113.67 (12.76)

Xu et al. [37] MPJPE 86.09 153.53 199.34 133.15 114.00 104.44 114.52 187.95 128.21 114.10 133.53 (36.42)
PA-MPJPE 59.11 113.31 147.13 102.50 91.75 79.65 85.83 138.12 98.10 89.19 100.47 (26.52)

Rudnev et al. [27] MPJPE 74.82 178.23 105.68 128.93 112.45 98.14 110.05 120.51 110.16 106.19 114.52 (26.54)
PA-MPJPE 56.77 108.34 84.15 100.39 91.84 78.16 74.62 83.47 84.83 86.09 84.87 (14.08)

EventEgo3D (Ours) MPJPE 70.88 163.84 97.88 136.57 103.72 88.87 103.19 109.71 101.02 97.32 107.30 (25.78)
PA-MPJPE 52.11 99.48 75.53 104.66 86.05 71.96 70.85 77.94 77.82 80.17 79.66 (14.83)

Table 1. Numerical comparisons on the EE3D-R dataset (in mm). Our EventEgo3D outperforms existing approaches on most activities by
a substantial margin and achieves 6% improvement over Rudnev et al. [27]. “σ” denotes the standard deviation of MPJPE or PA-MPJPE.

Figure 8. Qualitative results of our method on in-the-wild motion sequences: (a) Holding a laptop, (b) Clapping and (c) Waving. The
spatiotemporal scene context can be observed in the input LNES (events triggered by the laptop movement in (a) or raised hands in (c)).

MPJPE ↓ PA-MPJPE ↓
Baseline (EPM only) 111.01 85.58
Baseline with segmentation decoder 108.85 84.98
Baseline with REPM w/o Confidence decoder 107.58 83.95
EventEgo3D (Ours) 107.30 79.66

Table 2. Ablation study on the EventEgo-R dataset.

Params ↓ FLOPs ↓ Pose Update Rate ↑
Tome et al. [30] 77.01M 11.46G 77.07
Rudnev et al. [27] 11.2M 3.58G 489.56
Xu et al. [37] 82.18M 44.06G 68.65
EventEgo3D (Ours) 1.25M 416.84M 139.88

Table 3. Architecture (number of parameters), performance and
runtime (pose update rate) comparisons for the evaluated methods.

5.4. Real-time Demo

Event cameras provide high temporal event resolution and
can operate under low-lighting conditions due to their ex-
cellent high-dynamic range properties. Our EE3D approach
runs at real-time 3D pose update rates, and we design a real-
time demo setup; see Fig. 1-(b) with a third-person view.
Our portable HMD enables a wide range of movements, and
the on-device computing laptop housed in the backpack al-
lows us to capture in-the-wild sequences.

We showcase two challenging scenarios, i.e., with fast
motions and in a poorly lit environment that would lead
to increased exposure time and motion blur in images cap-
tured by mainstream RGB cameras. Moreover, Fig. 8 il-
lustrates some of the challenging motions performed during

the demo, highlighting that our method accurately estimates
3D poses for each motion. Notably, in Fig. 8-(c), a fast-
paced waving motion is depicted, and our method success-
fully recovers the 3D poses in this dynamic scenario. See
our video with the recordings of the real-time demo.

6. Conclusion

EventEgo3D addresses the new problem, i.e. 3D human
motion capture from egocentric event cameras, and we in-
troduce all the necessary tools required to address funda-
mental challenges in designing the method (HMD, the syn-
thetic and real datasets; and neural architecture with com-
ponents tailored to the problem). EventEgo3D runs at real-
time 3D pose update rates and is experimentally shown
as the most accurate approach among all compared meth-
ods: Noteworthy is that the largest improvements in the
3D reconstruction accuracy are observed under the most
challenging human motions. The EE3D-R dataset used for
fine-tuning our model—initially trained on synthetic data—
helps to bridge the gap between synthetic and real data.

We conclude that the usage of event cameras in the ego-
centric 3D human pose estimation setting is justified and
offers many advantages. Furthermore, we believe egocen-
tric event-based 3D vision in general has a high potential in
related fields that are yet to be explored in follow-up works.
Acknowledgement. This work was supported by the ERC
Consolidator Grant 4DReply (770784). Hiroyasu Akada is
also supported by the Nakajima Foundation.

1193



References
[1] Hiroyasu Akada, Jian Wang, Soshi Shimada, Masaki Taka-

hashi, Christian Theobalt, and Vladislav Golyanik. Un-
realego: A new dataset for robust egocentric 3d human mo-
tion capture. In European Conference on Computer Vision
(ECCV), 2022. 1, 2, 6

[2] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveen-
dran, Tyler Zhu, Fan Zhang, and Matthias Grundmann.
Blazepose: On-device real-time body pose tracking. arXiv
preprint arXiv:2006.10204, 2020. 4

[3] Captury. http://www.thecaptury.com/. 6
[4] Jiaan Chen, Hao Shi, Yaozu Ye, Kailun Yang, Lei Sun,

and Kaiwei Wang. Efficient human pose estimation via 3d
event point cloud. In International Conference on 3D Vision
(3DV), 2022. 3

[5] DVXplorer Mini. https://netsket.kr/img/
custom/board/DVXplorer-Mini.pdf. 5

[6] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al.
Event-based vision: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(1):154–180, 2020. 2

[7] Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrió, and
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