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Abstract

Source-free Domain Adaptation (SFDA) is an emerging
and challenging research area that addresses the problem
of unsupervised domain adaptation (UDA) without source
data. Though numerous successful methods have been pro-
posed for SFDA, a theoretical understanding of why these
methods work well is still absent. In this paper, we shed
light on the theoretical perspective of existing SFDA meth-
ods. Specifically, we find that SFDA loss functions compris-
ing discriminability and diversity losses work in the same
way as the training objective in the theory of self-training
based on the expansion assumption, which shows the ex-
istence of the target error bound. This finding brings two
novel insights that enable us to build an improved SFDA
method comprising 1) Model Training with Auto-Adjusting
Diversity Constraint and 2) Augmentation Training with
Teacher-Student Framework, yielding a better recognition
performance. Extensive experiments on three benchmark
datasets demonstrate the validity of the theoretical analysis
and our method.

1. Introduction

Deep learning has suffered from the domain-shift problem
where models perform well on domains seen in the train-
ing phase but struggle with unseen domains. Unsupervised
domain adaptation (UDA) is a promising solution: it trans-
fers knowledge learned from a labeled source domain to an
unlabeled target domain. UDA methods show their effec-
tiveness on various computer vision tasks such as classifi-
cation [25, 26, 54], object detection [6, 37, 59], segmen-
tation [15, 16, 50], etc.; however, they typically require
both source and target domain data, which limits their ap-
plicability as this requirement poses privacy concerns about
the source data and entails computational inefficiency. Re-
cently, researchers have shifted focus to another direction of
UDA called source-free domain adaptation (SFDA). SFDA
bypasses the above issues by not using raw data from the
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Figure 1. Overview of our work. Unsupervised domain adap-
tation has a theoretical background that has yielded a variety of
methods. By contrast, the theoretical perspectives on source-free
domain adaptation (SFDA) have not been well explored. Our re-
search motivations are (1) to shed light on the theoretical perspec-
tives of existing SFDA methods, and (2) to propose an improved
method based on the theoretical insights.

source data. Instead, SFDA performs the training with a
source-pre-trained model and unlabeled target data. Various
SFDA methods have been proposed, including source esti-
mation [11, 17, 33, 42, 49], pseudo-labeling [19, 34, 51],
clustering [21–23], consistency [5, 52, 53, 57], and even
without source data, they outperform UDA methods.

Despite these promising achievements, a theoretical un-
derstanding of SFDA methods is still lacking. As shown in
Fig. 1, UDA studies rely on the theoretical notion that the
target error can be upper-bounded by the source error and
the discrepancy between the two domains [3, 30, 55, 58],
and develop various approaches such as distribution match-
ing [26, 27, 44], adversarial learning [12, 28, 45, 54], and
pseudo-labeling [20, 25, 60, 61]. By contrast, the theoretical
analyses of SFDA are either absent or not general enough
and cannot form the basis for the development of new meth-
ods. Moreover, the theory of UDA is not directly applicable
to SFDA due inaccessibility of source data.

In this paper, we shed light on the theoretical perspec-
tive of existing SFDA methods through the theory of self-
training based on the expansion assumption [48]. Self-
training is an approach that utilizes the current model pre-
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dictions of the unlabeled data for further training, and the
expansion assumption states that the data distribution has
good continuity within each class. The theory asserts that,
under the expansion assumption, there is an upper bound
on the target error when the model is trained on the objec-
tive with a self-training term encouraging prediction con-
sistency among the augmented unlabeled samples and a
constraint term ensuring prediction diversity. We reveal
an interesting correspondence between this training objec-
tive and the SFDA training loss. Recent studies [9, 53]
have discovered a feature common that most SFDA meth-
ods employ the combination of discriminability and diver-
sity losses: the former improves the model discriminability
to the unlabeled target samples while the latter ensures pre-
dictions for all classes. As illustrated in the middle right of
Fig. 1, we find that the discriminability and diversity losses
perform the same respective roles as the self-training term
and the constraint term of the theory, which provides us the
theoretical understanding of SFDA. In addition, our analy-
sis brings the following new insights: 1) the trade-off be-
tween discriminability and diversity should be adjusted as
training progresses, and 2) the upper bound of the target er-
ror depends on how we design the data augmentation.

Based on the above insights, we propose an improved
SFDA method incorporating 1) Model Training with Auto-
Adjusting Diversity Constraint and 2) Augmentation Train-
ing with Teacher-Student Framework. In the former train-
ing, we update the model on the basis of the discriminabil-
ity and diversity losses while introducing a novel technique
to automatically adjust the trade-off parameter between dis-
criminability and diversity. In the latter training, we intro-
duce a learnable data augmentation and update its parame-
ters by using the predictions of the current model and the
teacher model, yielding a tighter upper bound. Experimen-
tal results with three benchmarks (Office-31 [36], Office-
Home [47], VisDA2017 [32]) show the validity of our the-
oretical analysis and the proposed method.

In summary, our contributions are: i) by using the theory
of self-training based on the expansion assumption [48], we
reveal that a model trained with discriminability and diver-
sity losses will achieve a small target error; ii) we propose
an improved SFDA method incorporating Model Training
with Auto-Adjusting Diversity Constraint and Augmenta-
tion Training with Teacher-Student Framework.

2. Related Works

Unsupervised Domain Adaptation (UDA). On the basis
of the theoretical foundation that the target error is upper
bounded by the source error and the distributional discrep-
ancy between the two domains [2, 3, 30, 55, 58], various
UDA methods have been developed. Distribution matching
approaches [26, 27, 44] directly minimize the measures of
distribution discrepancy (e.g. maximum mean discrepancy

(MMD)). Adversarial learning approaches [12, 28, 45, 54]
reduce the discrepancy by learning domain-invariant repre-
sentations using an additional domain classifier. Pseudo-
labeling approaches [20, 25, 60, 61] not only minimize the
domain discrepancy but also improve the feature discrim-
inability by using the pseudo-labeled target samples.

Although the theory of UDA has yielded various meth-
ods, it is not applicable to SFDA due to the inaccessibility of
the source data. In this study, we instead employed the the-
ory of self-training based on the expansion assumption [48]
as a way to understand SFDA methods.
Source-free Domain Adaptation (SFDA). With reference
to [24], SFDA methods can be roughly categorized into
four approaches. Source-estimation approaches [11, 17, 22,
33, 42, 49] generate pseudo-source data using a pre-trained
model, which transforms the SFDA problem into a con-
ventional UDA problem. Pseudo-labeling approaches [19,
34, 51] assign a class label to each unlabeled target sam-
ple using the current model and use them in a supervised
manner. Based on the cluster assumption [46], clustering
approaches [21–23] encourage minimizing the uncertainty
of the model predictions or performing clustering over the
target features. Inspired by the consistency regularization
of semi-supervised learning [4, 39, 41], consistency ap-
proaches [5, 52, 53, 57] train the model to maximize the
prediction consistency regardless of the perturbations on the
input data or the model parameters.

Despite many successful SFDA methods, most do not
have a theoretical foundation yet, except for the source
estimation approaches that convert SFDA to conventional
UDA. A few studies [57] have theoretically investigated
their methods, but they are not applicable to the others. In
this paper, we introduce the theory of self-training based on
the expansion assumption [48] to give a theoretical perspec-
tive on a wide range of SFDA methods, and we propose an
improved method based on our theoretical analysis.

3. Understanding SFDA from a Theoretical
Perspective

In this section, we define the SFDA problem, and then, see
the common feature of SFDA methods. Finally, we provide
a theoretical analysis of SFDA through [48].

3.1. Problem Definition
The upper right of Fig. 1 illustrates the SFDA problem def-
inition. We are given a model FS : X ! Y trained on
a labeled source domain data DS and an unlabeled target
domain data DT = {x(i)

t }nt
i=1. Generally, the model F

consists of a feature extractor f and a fully-connected layer
based classifier g. The goal is to train the model F to obtain
a target-adapted model F̂ that has low target error without
using source domain data DS nor target labels y(i)t .
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3.2. Common Feature of SFDA Methods
Whilst lacking a precise theoretical background, the fol-
lowing observation [9, 53] provides a key to understanding
SFDA methods: the existing SFDA methods have a com-
mon feature that their training loss functions can be decom-
posed into discriminability and diversity losses wherein the
discriminability loss enhances the model discriminability to
the unlabeled target samples while the diversity loss ensures
the model has predictions for diverse classes.

For example, SHOT-IM [23], a pioneering work on
SFDA, trains the model on the basis of mutual informa-
tion maximization, i.e., a training loss function compris-
ing conditional entropy minimization (discriminability) and
marginal entropy maximization (diversity):

LMIM = H(Y |X)| {z }
discriminability

��div H(Y )| {z }
diversity

. (1)

where �div represents the trade-off parameter of the loss.
Another example is AaD [53], which trains the model

by maximizing the prediction similarities among the local
neighborhoods in the feature space (discriminability) while
minimizing those of the others (diversity) as follows:

LAaD =
1

|B|
X

i2B

⇢
1

|Ci|
X

p̂2Ci

�pi · p̂

| {z }
discriminability

+�div
X

j2B\{i}

pi · pj

| {z }
diversity

�
,

(2)
where B is a mini-batch, pi is the prediction of sample i,
and Ci is a set of the predictions of K-nearest neighbor-
hoods of sample i on the feature space.

This common feature is widely seen in other methods,
such as those using pseudo-labeling or consistency regu-
larization as their own discriminability loss with the above
marginal entropy maximization (diversity) [34, 51, 52], and
those employing contrastive learning, which maximizes the
similarity of positive pairs (discriminability) and minimizes
the similarity of negative pairs (diversity) [5, 19, 57].

Now that we have confirmed the discriminability and di-
versity losses to be the key to the success of SFDA methods,
but why are these losses crucial for the success of SFDA?

3.3. Theoretical Understanding of SFDA
We will answer the above question by introducing the the-
ory of self-training based on the expansion assumption [48].
This theory shows that, under certain assumptions, the
model will have a low target error when it is self-trained
based on prediction consistency while a constraint is im-
posed to ensure prediction diversity.
Notations. We let A denote the family of data augmen-
tation and define an augmented sample set an input x as
B(x) := {x0 | 9A 2 A s.t. kx0 � A(x)k < r}, the neigh-
borhoods of x as N (x) := {x0 | B(x) \ B(x0) 6= ;},

the neighborhoods of the set V as N (V ) := [x2V N (x),
and prediction inconsistency for a C-class prediction model
F : X ! [C] on a distribution P as RB(F ) := EP [1(9x0 2
B(x) s.t. F (x0) 6= F (x))].
Assumptions. Before explaining the main theorem that is
the key to our theoretical analysis, we must make two as-
sumptions: Expansion and Separation1.

Expansion assumes that the data of the same class are
distributed in a continuous region and that any small region
V has a neighborhood region of the same class larger than
V . Concretely, Pi(N (V )) � dPi(V ) for Pi(V )  1/2,
d > 1, where Pi(V ) represents the proportion of subset V
in the total class i data and d represents an expansion factor
that corresponds to the strength of the data augmentation.

Separation assumes that the distribution of different
classes is separated and the predictions of the ground-truth
model F ? will not be altered by the data augmentation, i.e.,
RB(F ?) < µ, where µ represents a negligible value.
Theory for Understanding SFDA. With the above as-
sumptions, [48] derives the following theorem that is key to
understanding why existing SFDA methods perform well.
Theorem 1. Suppose that the above two assumptions hold
for some d, µ such that miny2[C] P ({x : F ?(x) = y}) >

max{2/(d� 1), 2}µ. Then any minimizer F̂ of

min
F

RB(F )
| {z }

self-training = discriminability

subject to

min
y2[C]

EP [1(F (x) = y)] > max

⇢
2

d� 1
, 2

�
RB(F )

| {z }
constraint = diversity

(3)

satisfies

ErrU(F̂ )  max

⇢
d

d� 1
, 2

�
µ, (4)

where ErrU(F̂ ) := min⇡:[C]![C][1(⇡(F (x)) 6= F ?(x))],
and ⇡ represents a permutation.

Theorem 1 shows that a model trained with the objec-
tive function (3) consisting of a self-training term that re-
quires neighborhood predictions to be consistent and a con-
straint term that assigns a certain portion of predictions to
all classes has an upper bound on the target error (4).

What we want to highlight is that the SFDA train-
ing loss with discriminability and diversity loss acts the
same as the objective (3). Specifically, increasing the dis-
criminability leads to a reduction in the prediction inconsis-
tency of the self-training term while the diversity loss func-
tions in the same way as the constraint term that ensures the
minor class predictions. This indicates that we can apply
Theorem 1 to the SFDA training loss, and thus, the SFDA-
trained model also has an upper bound on the target error.

1Formal statements of the assumptions are given in Appendix A.
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Method Acc [%]

i) Source only 72.4
ii) Dis only 93.0
iii) Dis + Div 95.3
iv) Dis + Div w/ Decay 95.7

Table 1. Model accu-
racy w/ and w/o dis-
criminability and diver-
sity losses.

Figure 2. Model accuracy (ErrU(F̂ ))
and the prediction inconsistency of
the ground-truth model (µ) against
strength of augmentation (d).

Preliminary Experiment with Synthetic Data. We ver-
ified this correspondence through an experiment on a two-
dimensional synthetic dataset. We employed a variant of the
inter-twinning moons 2D dataset, where we simulated the
domain shift by rotation. We used the training objective of
SHOT-IM [23] and 2D-Gaussian perturbations as the data
augmentation. In the experiment, we compared the accu-
racy of i) Source only, ii) Discriminability (Dis) only, and
iii) Discriminability and Diversity (Dis + Div). Moreover,
we measured the accuracy of the trained model ErrU(F̂ )
and the prediction inconsistency of the ground-truth model
corresponding to µ versus the strength of the augmentation
corresponding to d. Other details on the experimental set-
tings are described in Appendix B.

The results are summarized in Tab. 1 and Fig. 2. Tab. 1
shows that the accuracy is improved by incorporating the
diversity loss in addition to the discriminability loss, which
establishes the necessity of the diversity loss to function as
the constraint of the objective (3). The prediction accuracy
of the trained model in Fig 1 aligns with the upper bound
(4); namely, as shown in Fig. 2, by keeping the prediction
inconsistency of the ground-truth model µ low and increas-
ing the strength of the data augmentation d, the model can
achieve a low target error.

Theoretical Insights. Besides, Theorem 1 provides two in-
sights for the further improvement of SFDA methods.

First, the weight of the diversity loss �div should be ad-
justed as training progresses, and this can be done by con-
trolling the value of the discriminability loss. The right-
hand side (RHS) of the constraint in the objective (3) in-
cludes RB(F ), which decreases during the training. This
indicates that it is more reasonable to let the constraint de-
cay along with RB(F ), i.e., the discriminability loss. The
results shown in Tab 1 also demonstrate that decaying �div
(Dis + Div w/ Decay) brings a better result. However, most
of the existing SFDA methods fix �div, which would be sub-
optimal. Although AaD [53] exceptionally uses a manually
designed scheduler, tuning it is laborious.

Second, the upper bound of the target error depends on
the parameters d and µ which are relevant to the data aug-
mentation properties. This indicates that how we design the

data augmentation is a critical factor in training models with
better accuracy. However, the prior studies on SFDA [5, 57]
have paid less attention to it and have used pre-defined data
augmentations [7, 8], which may not be optimal for SFDA.

4. Our Method: Improved SFDA based on
Theoretical Insights

Fig. 3 shows the overview of our method, which has three
major components: a prediction model F = g �f , a teacher
model F 0 = g0 � f 0, and a learnable augmentation A. On
the basis of the above insights, we developed an improved
SFDA method comprising 1) Model Training with Auto-
Adjusting Diversity Constraint, and 2) Augmentation Train-
ing with Teacher-Student Framework.

4.1. Model Training with Auto-Adjusting Diversity
Constraint

We update F upon the modified discriminability and diver-
sity losses of AaD [53], coupled with a novel technique to
automatically adjust the trade-off parameter between dis-
criminability and diversity.
Discriminability and Diversity Losses. Considering that
the prediction inconsistency RB(F ) in the self-training term
is originally calculated among data-augmented samples, we
modify the training loss (2) so as to calculate the prediction
dissimilarity among data-augmented samples. The discrim-
inability and diversity losses are formally defined as

Ldis =
1

M |B||Ci|
X

i2B

X

p̂2Ci

MX

m=1

(1� pm
i · p̂), (5)

Ldiv =
1

M |B|
X

i2B

X

j2B\{i}

MX

m=1

pm
i · pj , (6)

where pm
i = F (Am(x(i)

t )), Am is the m-th augmentation
sampled from A, M is the number of augmentations. To
retrieve the K-nearest neighbors Ci efficiently, we build a
memory bank that stores the feature vectors zi = f(x(i)

t )

and predictions pi = F (x(i)
t ) of all target samples in DT .

Auto-Adjusting Diversity Constraint. As shown in
Sec. 3.3, �div should be adjusted as the training progresses.
Specifically, the RHS of the constraint of the objective (3)
involves the prediction inconsistency RB(F ) which will get
smaller as the training progresses. Moreover, the discrim-
inability loss Ldis functions the same way as RB(F ). This
means that we can easily control �div with Ldis. Accord-
ingly, the auto-adjusting �div can be simply expressed as

�div = �max
div Ldis, (7)

where �max
div determines the maximum size of �div. Note that

we apply the stop-gradient operation to �div.
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Figure 3. Overview of our method. In Model Training with Auto-Adjusting Diversity Constraint, we train the model by minimizing
the discriminability loss Ldis and the diversity loss Ldiv while automatically adjusting the trade-off parameter between discriminability
and diversity. In Augmentation Training with Teacher-Student Framework, we train a learnable data augmentation A to generate harder
samples for the current model F while suppressing the prediction inconsistency of the teacher model F 0.

Model Training. The training loss of the model using the
learnable augmentation A is

LF = Ldis + �divLdiv. (8)

However, we find in an early study that the learn-
able data augmentation A (whose details will be de-
scribed in Sec. 4.2) yields some heavy augmentations (e.g.,
rotation, invert, etc.), which may impair the model
training. Inspired by [1], we stabilize the training by in-
corporating a loss L0

F calculated among samples with weak
augmentations (e.g., random clip, random flip).

In summary, the total loss of the model training is

min
F

LTotal
F = �FLF + (1� �F )L0

F . (9)

where �F is a hyper-parameter to control the loss balance.

4.2. Augmentation Training with Teacher-Student
Framework

As discussed in Sec. 3.3, the upper bound of the target error
depends on how the data augmentation is designed. Moti-
vated by [40], we update the learnable data augmentation A
in the teacher-student framework to get a tighter bound.
Learnable Data Augmentation. A consists of L differ-
ent augmentations A(l) (l = 1, 2, · · · , L). A single aug-
mentation consists of N consecutive transformation opera-
tions O(l)

1 , · · · , O(l)
N . Each operation includes affine trans-

formations (e.g. shear x) and color enhancing operations
(e.g. contrast), and it has a magnitude parameter m(l)

n 2
[0, 1] to control the transformation strength and a probabil-
ity parameter p(l)n 2 [0, 1] to control whether to apply the
operation. To facilitate parameter optimization, we utilize
Faster AutoAugment [13] to make these parameters differ-
entiable and updatable by gradient descent.
Augmentation Training. We train A to make the bound
tighter based on the observation that the upper bound of the
target error (4) becomes tighter as 1) the strength of the aug-
mentation d gets larger and 2) the prediction inconsistency

of the ground-truth model µ gets smaller. Since we can-
not actually access the ground-truth model F ?, we use the
teacher-student framework and assign the teacher model to
be a proxy for F ?; 1) we increase d by training A to aug-
ment samples that are harder for the current (student) model
to predict, and 2) we decrease µ by training A to augment
samples that are recognizable to the teacher model.

More specifically, 1) we train A to maximize the predic-
tion entropy of the current model:

LStudent = �
1

|B|
X

i2B

CX

c=1

pi[c] log(1� pi[c]), (10)

where pi[c] = F (A(x(i)
t ))[c] is the prediction probability

of sample i for class c, and A is a augmentation operation
randomly sampled from A. Following [40], we employ a
non-saturating prediction entropy instead of the naive one.

Whereas, 1) we train A to minimize the prediction en-
tropy of the teacher model:

LTeacher = �
1

|B|
X

i2B

CX

c=1

p0i[c] log p
0
i[c], (11)

where p0i[c] = F 0(A(x(i)
t ))[c]. The teacher model is up-

dated using the exponential moving average strategy [41]:

F 0  (1� �)F + �F 0, (12)
where � is a momentum parameter.

The total loss of the augmentation training is

min
A

LA = LStudent + �ALTeacher, (13)

where �A is a coefficient hyper-parameter.
Discussion. Our method is different from the teacher-
student-based SFDA methods [5, 56] in that we use the
teacher-student framework for training data augmentation.
Our approach may appear similar to the prior work [43] but
fundamentally differs in that ours treats the teacher model
as a proxy of the ground truth model based on our theoreti-
cal insights.
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Algorithm 1 Training Procedure of Our Method.
Input: Source-trained model Fs, Target domain data DT

Output: Target-adapted model F̂
1: for e in {1 · · ·E} do
2: for Mini-batch B in DT do . Model Training
3: Calculate loss LTotal

F on B
4: Update F to minimize LTotal

F

5: Update F 0 based on (12)
6: end for
7: if e ⌘ 0 mod ê then
8: for Mini-batch B in DT do . Augmentation Training
9: Calculate loss LA on B

10: Update A to minimize LA
11: end for
12: end if
13: end for

4.3. Training Procedure of Our Method
As shown Algorithm 1, our method alternately performs
model training and data augmentation training. To control
the speed of these pieces of training, we set a parameter ê
that determines the interval of the augmentation training.

5. Experiments
We experimentally compared the performance of our
method and the existing SFDA methods on three benchmark
datasets, and we examined the validity of our theoretical in-
sights through further analyses.

5.1. Setups

Datasets. We used three benchmark datasets: Office-
31 [36] is a small-scale dataset, which consists of 31 cate-
gories and 3 domains (Amazon, Webcam and Dslr). Office-
Home [47] is a moderate-scale dataset, which consists of 65
categories and 4 domains (Art, Clipart, Product and Real
world). VisDA2017 [32] is a large synthetic-to-real adap-
tation benchmark dataset with 12 categories. For Office-31
and Office-Home, we evaluated the accuracy on all source-
target combinations, while we computed the average of per-
class accuracies for VisDA2017.
Network Architectures & Augmentation Implementa-
tions. We use ResNet-50 [14] as the backbone network in
the Office-31 and Office-Home experiments, and ResNet-
101 [14] in VisDA2017. All of the networks are pre-trained
on Imagenet [10]. Following [23], we replaced the out-
put layer of the backbone network with the following net-
works: a fully-connected layer! batch normalization [18]
! fully-connected layer with weight normalization [38].
We implemented the learnable data augmentation A with
a public library of differentiable data augmentation2. We
set L to 25, and N to 2 in all of the experiments.

2https://github.com/moskomule/dda

Table 2. Classification Accuracy (%) on Office-31 (ResNet-
50). The best and second best are highlighted in bold and with
underline.
Method (Source ! Target) A ! D A ! W D ! W W ! D D ! A W ! A Avg.

3C-GAN [22] 92.7 93.7 98.5 99.8 75.3 77.8 89.6
SHOT [23] 94.0 90.1 98.4 99.9 74.7 74.3 88.6
VDM-DA [42] 94.1 93.2 98.0 100.0 75.8 77.1 89.7
A2Net [49] 94.5 94.0 99.2 100.0 76.7 76.1 90.1
NRC [51] 96.0 90.8 99.0 100.0 75.3 75.0 89.4
CPGA [33] 94.4 94.1 98.4 99.8 76.0 76.6 89.9
CoWA-JMDS [21] 94.4 95.2 98.5 99.8 76.2 77.6 90.3
C-SFDA [19] 96.2 93.9 98.8 99.7 77.3 77.9 90.5

AaD [53] 96.4 92.1 99.1 100.0 75.0 76.5 89.9
Improved SFDA 95.3 94.2 98.3 99.9 76.4 77.5 90.3 (+0.4)

Source Training. We use Nesterov SGD with a mini-batch
size of 64 as the optimization algorithm on all three datasets.

For Office-31 and Office-Home, we set the learning rate ⌘
to 1e�2 for the last replaced layers and 1e�3 for the back-
bone layers, momentum to 0.9, and weight decay to 5e�4.
We used a standard cross entropy loss with label smoothing
for training. The label smoothing parameter was set to 0.1.
We trained the model for 50 epochs.

For VisDA2017, we set the initial learning rate ⌘init to
1e�3 for the last replaced layers and 1e�4 for the backbone
layers, momentum to 0.9, and weight decay to 1e�3. The
learning rate ⌘ was scheduled as; ⌘ = ⌘init(1 + 10p)�0.75,
where p was linearly increased from 0.0 to 1.0 throughout
the training. We used the training losses of Office-31 and
Office-Home. We trained the model for 10 epochs.

Target Training. We use the Nesterov SGD for training F
and AdamW [29] for training A with mini-batch size 64.

For Office-31 and Office-Home, we set Nesterov SGD
parameters as follows: the learning rate ⌘ for the second
last layer to 3e�3 and for the backbone layers to 3e�4,
momentum to 0.9, and weight decay to 5e�4. We fixed
the last layer during the training, which yielded better re-
sults. We set the parameters of AdamW to the Pytorch de-
fault values [31] except for the learning rate ⌘aug to 5e�4.
The number of the training epoch E was set to 100, and the
interval ê was set to three. The other parameters were set as
follows; �max

div to 0.4 for Office-31 and 0.75 for Office-Home,
�F to 0.5, �A to 1.0, K to two, M to three, and � to 0.99.
We initialized A with AutoAugment [7] Imagenet Policies.

For VisDA2017, we set the Nesterov SGD parameters as
follows: the initial learning rate ⌘init for the last two layers
to 2.5e�3 and for the backbone layers to 2.5e�4, momen-
tum to 0.9, and weight decay to 1e�4. We set the initial
learning rate of AdamW ⌘aug

init to 2e�3 and the other param-
eters are set as default. ⌘ and ⌘aug are scheduled as in the
source training. The training epoch E was set to 100 and
the interval ê to three. The other parameters were set as fol-
lows; �max

div to 0.08, �F to 0.2, �A to 1.0, K to five, M to
three, and � to 0.99. We randomly initialized A.
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Table 3. Classification Accuracy (%) on Office-Home (ResNet-50). The best and second best are highlighted in bold and with underline.

Method (Source ! Target) Ar!Cl Ar!Pr Ar!Rw Cl!Ar Cl!Pr Cl!Rw Pr!Ar Pr!Cl Pr!Rw Rw!Ar Rw!Cl Rw!Pr Avg.

SHOT [23] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net [49] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
G-SFDA [52] 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC [51] 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
CPGA [33] 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
U-SFAN [35] 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9
CoWA-JMDS [21] 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
DaC [57] 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
C-SFDA [19] 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5

AaD [53] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
Improved SFDA 60.7 78.9 82.0 69.9 79.5 79.7 67.1 58.8 82.3 74.2 61.3 86.4 73.4 (+0.7)

Table 4. Classwise Accuracy (%) on VisDA2017 (ResNet-101). The best and second best are highlighted in bold and with underline.

Method (Synthetic ! Real) plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

3C-GAN [22] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT [23] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
VDM-DA [42] 96.9 89.1 79.1 66.5 95.7 96.8 85.4 83.3 96.0 86.6 89.5 56.3 85.1
A2Net [49] 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA [52] 96.1 83.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC [51] 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
CPGA [33] 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0
U-SFAN [35] - - - - - - - - - - - - 82.7
AdaContrast [5] 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 47.9 86.8
CoWA-JMDS [21] 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
DaC [57] 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
C-SFDA [19] 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8

AaD [53] 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
Improved SFDA 97.5 91.4 87.9 79.4 97.2 97.2 92.2 83.0 96.4 94.2 91.1 53.0 88.4 (+0.4)

Table 5. Analysis of Augmentation Training.
Init. Aug Aug Training Accuracy [%] �AaD

Random 73.1 + 0.4
X 73.3 + 0.6

AutoAugment [7] 73.3 + 0.6
X 73.4 + 0.7

5.2. Main results

We evaluated the performance of our method by taking the
average score of three different runs for all benchmarks.

Result on Office-31. The results are shown in Tab. 2.
Our method improved accuracy by 0.4% on average com-
pared with the baseline AaD [53]. Furthermore, ours
was comparable in accuracy to the second best method,
CoWA-JMDS [21] and only 0.2% off the best method C-
SFDA [19].

Result on Office-Home. The results are shown in Tab. 3.
Ours improved accuracy by 0.7% on average compared with
AaD [53] and was second best. The accuracy difference
from the best method, C-SFDA [19], was merely 0.1%.

Result on VisDA2017. The results are shown in Tab. 4.
Ours improved accuracy by 0.4% compared with AaD [53].
The average of per-class accuracy reached 88.4%, which
was the best among the compared methods.

Table 6. Analysis of Auto-Adjusting Diversity Constraint.
�max

div Accuracy [%]

Fixed Diversity Constraint

0.1 69.3
0.25 72.8
0.5 72.6

0.75 71.1

Auto-Adjusting Diversity Constraint 0.75 73.4

5.3. Analysis

Ablation study. Using Office-Home, we analyzed the ef-
fectiveness of the proposed two components.
Augmentation Training with Teacher-Student Framework
was validated by comparing its performance with that of
a fixed augmentation variant. The results are shown in
Tab. 5. When starting with the randomly initialized data
augmentation, our augmentation training yielded a larger
accuracy gain from the base method (�AaD), 1.5 times
greater than without augmentation training. The accuracy
gain is slightly smaller when the augmentation is initialized
with AutoAugment policies, but ours still yielded better
results. More detailed results are provided in Appendix C.1.
Model Training with Auto-Adjusting Diversity Constraint
was validated by comparing our method with a variant that
uses a fixed �div, i.e., �div = �max

div . Considering that the
optimal �max

div for this “Fixed Diversity Constraint” may
differ from that of our method, we performed experiments
with several values of �max

div . The results are shown in
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Figure 4. Analysis of the coefficient parameter �max
div

Table 7. Analysis of Application to SHOT-IM.
Office-31 Office-Home VisDA2017

SHOT-IM [23] 87.3 70.5 80.4
Improved SFDA 88.6 (+1.3) 71.2 (+0.7) 83.3 (+2.9)

Tab. 6. Our method outperformed all fixed �div variants,
which indicates the validity of our proposed techniques.
We also obtained the same results from the synthetic data
experiment, which is described in Appendix B.2.
Applicability to other SFDA methods. Although we
based on the implementation of our method on AaD, the
theoretical insights and techniques we have made here
should be applicable to many other SFDA methods. To
confirm this, we empirically verified the applicability of
our proposed techniques to another SFDA method, SHOT-
IM [23]. Here, we used the same hyper-parameters as in
Sec. 5.1, except for the following points; we set �max

div to 0.7
and ⌘ to 2e�3 for Office-31 and Office-Home, ⌘init to 1e�3
and �max

div to 0.8 for VisDA2017.
The results are shown in Tab. 7. We can see a steady

improvement in all the benchmarks, which demonstrate the
effectiveness of our techniques for SHOT-IM. Moreover,
since many of the existing SFDA methods are built upon
SHOT-IM, this result implies that our method is valid for a
wider range of SFDA methods.
Hyper-parameter analysis. We conducted experiments
using Office-Home to analyze the effect of the parame-
ter �max

div in Model Training with Auto-Adjusting Diversity
Constraint, and on the parameters ê and �A in Augmenta-
tion Training with Teacher-Student Framework.
Analysis of �max

div (Fig. 4) �max
div controls the strength of the

prediction diversity constraint. We varied �max
div from 0.0

to 2.0 and evaluated the accuarcy. �max
div is optimal at 0.75,

and the accuracy deteriorates if it is larger or smaller than
the optimal value. In particular, the accuracy deteriorates
more sharply when it takes a smaller value than a larger
value. This result is in line with our theoretical analysis.
Specifically, if �max

div is too small, the diversity loss will not
play the role of constraining the objective (3) sufficiently,
and thus we can not obtain the upper bound for the target
error. However, if it is too large, the diversity loss becomes
an excessive constraint, and that reduces the accuracy.
Analysis of ê (Fig. 5). ê controls the frequency of the aug-
mentation training. We analyzed the effect of ê by varying it
from one to six. The optimal value of ê is two or three and

Figure 5. Analysis of the interval parameter ê

Figure 6. Analysis of the coefficient parameter �A

the performance is lower if it is set to a larger or smaller
value than this. Our augmentation training will not demon-
strate its validity unless the current model and the teacher
model are different to some extent. When ê is small, the
teacher and the current model are too close to exhibit the
full potential of the augmentation training, while when ê is
large, the data augmentation is not trained well enough.
Analysis of �A (Fig. 6). �A controls the effect of LStudent
and LTeacher, where LStudent increases d of the bound (4)
by encouraging the augmentation to generate more difficult
samples while LTeacher decreases µ of the bound (4) by en-
couraging the augmentation to keep the semantics of the
data. We analyzed how our method performed while vary-
ing �A from 0.0 to 3.0. The optimal value of �A is 1.0 to
1.5. If the balance is not proper, it will cause a decrease
in d or an increase in µ, resulting in the prediction model
having poor accuracy. The results thus demonstrate that our
method is consistent with our theoretical insights.

6. Conclusion
We shed light on the theoretical perspective of existing
SFDA methods through the theory of self-training based on
the expansion assumption [48]. Our finding that the SFDA
training loss with discriminability and diversity functions
the same way as the training objective of the theory not only
provided a way to understand existing SFDA methods but
also yielded two novel techniques for improving the per-
formance of SFDA methods. The experimental results and
in-depth analysis justified the validity of our theoretical in-
sights and proposed method. We expect that this work will
encourage further development of SFDA research.

On the other hand, since this study aims to understand
existing SFDA methods, we leave one limitation. That is,
we cannot take into account how well the source model
originally performs on the target domain, which is also not
considered in existing SFDA research. One of our future
works is to develop a method that overcomes this weakness
and advances SFDA to be more practical.
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