
Can’t make an Omelette without Breaking some Eggs: Plausible Action
Anticipation using Large Video-Language Models

Himangi Mittal1,2* Nakul Agarwal1 Shao-Yuan Lo1 Kwonjoon Lee1
1Honda Research Institute, USA 2Carnegie Mellon University

hmittal@andrew.cmu.edu {nakul agarwal, shao-yuan lo, kwonjoon lee}@honda-ri.com

Abstract

We introduce PlausiVL, a large video-language model
for anticipating action sequences that are plausible in the
real-world. While significant efforts have been made to-
wards anticipating future actions, prior approaches do
not take into account the aspect of plausibility in an ac-
tion sequence. To address this limitation, we explore the
generative capability of a large video-language model in
our work and further, develop the understanding of plau-
sibility in an action sequence by introducing two objec-
tive functions, a counterfactual-based plausible action se-
quence learning loss and a long-horizon action repetition
loss. We utilize temporal logical constraints as well as
verb-noun action pair logical constraints to create implau-
sible/counterfactual action sequences and use them to train
the model with plausible action sequence learning loss.
This loss helps the model to differentiate between plausi-
ble and not plausible action sequences and also helps the
model to learn implicit temporal cues crucial for the task of
action anticipation. The long-horizon action repetition loss
puts a higher penalty on the actions that are more prone
to repetition over a longer temporal window. With this pe-
nalization, the model is able to generate diverse, plausible
action sequences. We evaluate our approach on two large-
scale datasets, Ego4D and EPIC-Kitchens-100, and show
improvements on the task of action anticipation.

1. Introduction

Having the ability to predict future events is a critical com-
ponent in the decision-making process of an AI agent. For
example, for an autonomous driving car, being able to antic-
ipate the next sequence of actions for cars, pedestrians, and
other agents in the scene can ensure safety of pedestrians as
well as vehicles. To enable this, the model should be able
to reason effectively from the spatial as well as temporal in-
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Figure 1. We present a large video-language model for learning
to anticipate action sequences that are plausible in the real-world.
We show an example of a kitchen-based environment. By using
a large video-language model , we leverage their generative ca-
pabilities to anticipate future actions and further train the model
with two devised objective functions: plausible action sequence
learning loss and long-horizon action repetition loss. Without the
plausible action sequence learning loss, the model has less tempo-
ral understanding and generates a temporally implausible action
sequence of cook omlette ̸→ crack eggs. Similarly, without the
long-horizon action repetition loss, the model generates less di-
verse actions and repeats the same action, whisk eggs → whisk
eggs → whisk eggs. When training the model with the two ob-
jective functions combined, our method is able to generate plausi-
ble action sequences which are temporally accurate, crack eggs →
cook omlette and more diverse with less repetition, whisk eggs →
whisk eggs → cook omlette.

formation of the visual scene. This has led to a growing in-
terest in the task of Action Anticipation. Action anticipation
refers to the predictive task of forecasting future actions or
activities given a sequence of visual data, typically videos.
For example, in a kitchen-based environment, if a human
has performed the following series of actions, open fridge
→ take eggs → close fridge, the model should be able to
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reason that crack eggs could be one of the plausible future
actions.

However, action anticipation is challenging because the
uncertainty in precisely predicting the future makes the task
non-deterministic in nature. In other words, given what has
happened so far, there are infinitely many possibilities for
what future actions might happen. Moreover, action antic-
ipation is accompanied by an additional challenge of un-
derstanding the implicit temporal information present in an
action sequence, which makes the sequence plausible in the
real-world. For example, the model should be able to un-
derstand that an action like crack eggs will always happen
before cook omelette as shown in Figure 1.

To this end, there has been some progress for the ac-
tion anticipation task. Earlier works have explored an
LSTM based approach by summarizing the past and in-
ferring the future [17, 43], by logging the past history ac-
tions in text [38], or using RNN-based approaches [51, 54]
by learning goals. However, such LSTM/RNN-based ap-
proaches are unable to effectively capture the temporal
relations among the actions over a long horizon due to
their sequential nature. There have been efforts to resolve
this limitation by implementing different types of atten-
tion mechanism [25], skip-connection [30], and message-
passing framework [56]. However, they show marginal im-
provement in modeling longer horizon. Recent works have
also explored transformer-based approaches [24, 25, 52],
with a memory-based system [65] or leveraging multiple-
modalities [70]. While transformer-based approaches are
able to model longer temporal understanding, they can still
become confined to the information present in the training
data and cannot model the diverse nature of the future ac-
tions. They rely on the ability of the transformer encoder to
learn from the given training data which limits their gener-
alization and scaling capability.

To overcome the above challenges, recent methods [3,
31, 32, 61] have attempted to leverage the autoregressive
text generation capabilities of generative large-language
models (LLMs) to improve generalizability for various vi-
sion tasks. Taking inspiration from these works and to ad-
dress the challenges present in anticipating plausible ac-
tions, we introduce PlausiVL, Plausible action anticipation
through a large Video-Language model.

Given the generative capabilities of large language mod-
els, in this work, we introduce a video-large-language
model which can efficiently model and leverage the tem-
poral cues present in a video to generate plausible action
sequences for the task of action anticipation. We use a Q-
former [31] based transformer architecture to embed videos
into spatio-temporal visual representations. This architec-
ture ensures an effective alignment between the visual fea-
tures and the desired text in the LLM embedding space. In
addition to the alignment, we try to address the challenges

that are specifically present in the task of action anticipation
and thus, introduce a method with the following important
characteristics: 1). The ability to understand the temporal
correlations present among the actions in a sequence which
in turn makes the action sequence temporally plausible in
the real-world, 2). Being able to model the diverse, possi-
ble actions that can happen in the future. For example, for
the former characteristic, a model should follow a temporal
constraint that an action X has to happen before for the ac-
tion Y to happen to make the sequence action X → action Y
plausible in the real-world.

To build such temporal understanding required for
generating plausible action sequences, we design a
counterfactual-based plausible action sequence learning
loss where we create temporal logic constraints and train
the model to be able to differentiate between the plausible
and not plausible action sequences. Additionally, we also
use verb-noun action logical constraints to further improve
the model’s understanding about which verbs are possible
with which nouns to create a plausible action in the real-
world (for example, cook spoon is not a plausible action).
To our knowledge, the aspect of plausibility in generating
an action sequence has not been explored for the task of
action anticipation. While this loss is helpful for efficient
temporal understanding, we also aim for the model to be
able to understand the diverse nature of actions and generate
plausible action sequences with less repeated actions as lan-
guage models are prone to the issue of repetition. To resolve
this, we devise a long-horizon action repetition loss where
the later actions that are more prone to repetition have a
higher penalty and the earlier, immediate actions have lower
penalty. We summarize our contributions as follows:
1. We present PlausiVL, a large video-language model

which leverages the spatial-temporal information present
in videos for anticipating plausible future action se-
quences.

2. To learn the temporal cues and understand the temporal
dependencies among actions in a plausible sequence, we
design a counterfactual-based plausible action sequence
learning loss. We create temporal logic rules and verb-
noun action pair logic constraints for the model to be
able to understand plausibility in action sequences.

3. To be able to generate less diverse future actions with
less repetition, we devise a long-horizon action repeti-
tion loss by penalizing the longer-horizon actions more.

2. Related Works
Large Language Models. Language Modeling is a method
to model the generative likelihood over the word token se-
quences and predict the probabilities of the next/future to-
kens. Large language models (LLMs) [5, 10, 58, 59] are
transformers with billions of parameters that have been
trained on massive amounts of data and have shown im-
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pressive capabilities on the task of question-answering and
chat-conversation with humans. Methods like in-context
learning [5], prompt tuning [64], chain-of-thought reason-
ing [63], and reinforcement learning with human feed-
back [11, 44] have improved the language models to per-
form very well on few-shot tasks. While these models show
great capabilities in understanding the input and solving
complex tasks via text generation, these models can only
understand the text modality and are at a loss of the rich
information that is present in other modalities like video,
audio. In our work, we utilize videos as input and learn
from the visual and temporal information present in them.
Large Vision-Language Models. Recent strides in this
domain have seen diverse pre-training methods leveraging
extensive multimodal datasets driving the progress of large
vision-language models. Some models [20, 29, 35, 48, 62]
merge visual and linguistic modalities by co-training text
and image encoders using contrastive loss on large datasets
containing image-caption pairs. Meanwhile, other ap-
proaches [3, 7] integrate visual input directly into language
model decoders through a cross-attention mechanism, es-
chewing the use of images as additional prefixes. Another
category of vision-language models [9, 33, 34, 37, 55, 57]
leverage Masked-Language Modeling (MLM) and Image-
Text Matching (ITM) objectives to align image segments
with text. BLIP-2 [31] was one of the works which pro-
posed a Qformer-based method to ensure visual-text align-
ment. Since these works explore the image-text alignment,
they are unable to model and understand the temporal in-
formation that is present in videos. There have been ef-
forts towards video-text alignment by using a linear layer
to project the video space to the LLMs textual space [6] in
Video-LLM or by using a Q-former based module [68] in
Video-LLaMA. While these works explore video-text align-
ment, these models can be ineffective for the task of action
anticipation as they do not understand the temporal correla-
tions among the actions in a sequence.
Temporal and symbolic logic reasoning. Symbolic logic
reasoning is a method to create a system of rules and
symbols in the form of logical expressions. Temporal
logic reasoning specifically designs logical expressions for
representing and reasoning about time. Linear tempo-
ral logic [46], metric temporal logic [42], signal temporal
logic [15], and interval temporal logic [27] are some meth-
ods for develop temporal logical rules. We take inspiration
from the work DTL [66] to generate temporal logic rules
and create counterfactual sequences of actions.
Action Anticipation. This task has been explored for
third-person videos [2, 8, 22, 49, 60] as well as egocentric
videos [12, 13, 18, 24, 26, 47, 50]. Standard approaches for
this task can be divided into LSTM/RNN-based [13, 54] ap-
proaches and transformer-based approaches. LSTM-based
approaches [17, 43] mainly use a rolling LSTM to encode

the observed video and store an updated summary. For in-
ference, an unrolling LSTM is initialized with the hidden
and cell state of the rolling LSTM to predict the next action.
While LSTM/RNNs have shortcomings in modeling long-
horizon temporal dependencies, some approaches mitigate
this issue via goal-based learning [51], diverse attention
mechanism [25], skip-connections [30], message passing
framework [56], memory-based modules [38, 65] or simi-
larity metric [16]. Recent works have explored transformer-
based [24, 26] approaches with global attention [25], mod-
elling apperance change in human-object interactions [52],
conditioning on intention [40], hierarchical feature aggre-
gation [40]. While most of the works explore it in a uni-
modal setting by using the visual modality, other works also
present a multi-modal approach for this task by using opti-
cal flow [17, 43], object-based features [17, 43, 67] or au-
dio [41, 70]. Other works explore uncertainty-based meth-
ods [1, 19] and GAN-based approach [21]. We take inspi-
ration from the object detection [36] literature for the rep-
etition loss. Concurrent to our work, there have been text-
based LLM approaches [28, 69] which explore the task of
action anticipation, however, they only operate in the tex-
tual space and lose the visual-temporal information present
in video.

3. Method

In the following sections, we present the details of our
method, PlausiVL, to learn the temporal cues for plausible
action sequence generation.

3.1. Model Architecture

Given a video clip of N frames, V = [v1, v2, v3....vN ], we
use a frozen visual encoder (ViT) to extract video-frame-
level representations, V = [v′1, v

′
2, v

′
3....v

′
N ]. After this,

each frame feature is passed through a Q-former [31] with
k number of query tokens, to get the dq-dimensional visual
representation as v′′i ∈ Rk×dq . These queries are helpful
in extracting the visual features with the most information
aligned to the text. For the frames to have an understanding
of the temporal relations among them, a frame position em-
bedding layer is applied to each Q-former feature. At the
same time, we also apply a clip-position embedding layer
to infuse more grouping information about the frames that
belong to a clip. These features are then passed through a
video Q-former to aggregate the spatio-temporal informa-
tion of the video. Finally, a linear projection layer is used
to project these output representations to the LLM text em-
bedding space of dl dimension, vi ∈ Rkl×dl . These video
embeddings can be considered as visual prompts which are
concatenated with the input text embeddings ti to make the
LLM generate text conditioned on the video content.
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Figure 2. Model diagram:(a) PlausiVL: Given a video, a frozen visual encoder a Q-former with k number of query tokens is used to extract
frame level representations which are further concatenated with a frame position embedding layer to add temporal understanding. Next,
the representations are passed through the video Q-former and a linear layer is added to project these features into the LLM space. These
visual embeddings (visual prompts) and are concatenated with text-prompts to get the desired output text (Sec 3.1), (b) Augmentation: For
plausible action anticipation, we use logical rules to create counterfactual implausible action sequences. Given an input video, we create a
positive augmentation of the video and a negative augmentation by using temporal logical and verb-noun action pair constraints (Sec 4.1).
(c) Objective Functions and Training: We train our model with two losses: (i) Plausible Action Sequence Learning Loss (Lplau)
which aligns the original video-plausible text pair closer to the positive augmentation of video-plausible text, and brings the original video-
plausible text far apart from the video-counterfactual text. (Sec 4.1), (ii) long-horizon action repetition loss that ensures diverse and less
repetitive actions by adding a higher penalty to the later tokens (mix mixture and wipe hands) and lower penalty to immediate future
actions (pour water, pour water). The graph shows the linearly increasing γ penalty for the tokens over the long-horizon (Sec 4.2).

4. Training

While the above backbone network ensures the alignment
of the visual features with the LLM textual space, we also
focus on making the model learn to better understand long-
horizon temporal dependencies among the actions which is
crucial for plausible action anticipation. To develop such

temporal understanding in a model, we train our system to
optimize two losses, (1). Plausible Action Sequence Learn-
ing loss Lplau and (2). Long-horizon action repetition loss
Lrep. With these two losses, the model can understand the
temporal cues better to be able to generate a plausible and
diverse sequence of future actions.
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4.1. Plausible Action Sequence Learning loss

For a model to be able to understand the plausible nature
of an action sequence, it should be able to leverage the im-
plicit temporal information present in input videos. Thus,
we design a self-supervised plausible action sequence learn-
ing loss, Lplau. The key idea is to create counterfactuals
based on temporal logical constraints as well as verb-noun
action pair logical constraints and optimize the network by
minimizing a loss with two negative log-likelihood terms:
(1) increase the probability of associating the visual modal-
ity with the temporally correct and plausible sequence of
actions, and (2) decrease the probability of associating the
video with the action sequences that are not plausible in the
real-world and temporally incorrect. Here, sequences of ac-
tion that satisfy the temporal as well as verb-noun action
pair logic constraints are considered as logically correct.
Temporal logical constraints: In our work, we define a
temporal constraint for an action sequence as follows: an
action X that has to happen before an action Y to make it
a plausible sequence in the real-world. Consider for exam-
ple, given a sequence of take eggs → crack eggs → whisk
eggs → cook omelette, a counterfactual of this sequence of
actions would be, take eggs → cook omelette → whisk eggs
→ crack eggs since crack eggs would always happen before
cook omelette. Mathematically, we define it as follows:

CF temp(ai, aj) =


1, if ∀t∈T (tai → taj ) ∧ ¬(taj → tai),

−1 if ∀t∈T (taj → tai) ∧ ¬(tai → taj ),

0, otherwise.
(1)

where CF temp(ai, aj) is an action pair matrix with a value
of 1 if ai always happens before aj for all the ground truth
sequences t ∈ T , a value of -1 if ai always happens after
aj , and 0 otherwise if there is no relation between the two
actions. With this temporal logical constraint, given a text
sequence t, we perform a swap operation if there is a for-
ward or backward relation between an action pair. Hence,
given a ground truth text sequence t, we define the operation
if aj always happens before ap as follows:

tcf (ai, aj , ap, an) =

{
ai, ap, aj , an, if CF temp(aj , ap) = 1,

ai, aj , ap, an, otherwise.

(2)

Similarly, we define the operation if aj always happens after
ai as follows:

tcf (ai, aj , ap, an) =

{
aj , ai, ap, an, if CF temp(aj , ai) = −1,

ai, aj , ap, an, otherwise.
(3)

Next, we define the another logical constraint - verb-noun
action pair constraint.

Verb-Noun Action pair constraints: For this, we create a
counterfactual where a verb-noun action pair is not plausi-
ble in the real-world, for example, cook spoon. We define
a verb-noun action constraint as follows: a verb-noun pair
consisting of an action verb that is plausible with the ob-
ject noun in the real-world. Mathematically, we define it as
follows:

CF act(ai, aj) =

{
1, if ∀t∈T¬(avi ∧ anj ),

0, otherwise.
(4)

where CF act(ai, aj) is a verb-noun pair matrix with a value
of 1 if for a verb, the corresponding noun is not plausible or
vice-versa in all the ground truth actions t ∈ T and 0 other-
wise if the verb-noun pair is plausible. Similar to the tempo-
ral constraints mentioned above, with this verb-noun action
pair constraint, given an action, we swap either the verb or
noun with a uniform probability to create implausible verb-
noun action pairs. Given a text action pair t, we define the
operation of a counterfactual, implausible verb-noun action
pair as follows:

tcf (avi , a
n
i )=

{
(avi , a

n
j )||(avj , ani ), if CF act(avi , a

n
j ) = 1,

(avi , a
n
i ), otherwise.

(5)

Loss: With this, for every video-text action sequence pair
(Vi, Ti) in the dataset D, we create a temporal as well
as verb-noun action pair counterfactual T cf

i for every tex-
tual ground truth text sequence and collect it as a dataset,
Dvtcf . Finally, we define plausible action sequence learn-
ing loss (Lplau) as follows:

(6)
Lplau = E(vi,ti)∈Dvtcf

[
− log

(
z(vi, ti, v

′
i)
)

− log
(
1− z(vi, ti, t

cf
i )

)]
In the above equation, z(vi, ti, v′i) and z(vi, ti, t

cf
i ) proba-

bilities are computed as follows:

z(vi, ti, v
′
i) = σ

(
sim(∆p(vi, ti),∆p(v′i, ti))/τ

)
(7)

z(vi, ti, t
cf
i ) = σ

(
sim(∆p(vi, ti),∆p(vi, t

cf
i ))/τ

)
(8)

where vi and v′i are the visual embeddings of the original
video and augmented video (respectively), ti and tcfi are
the text embeddings of the ground truth text sequence and
counterfactual text (respectively), τ is the temperature,
σ is the sigmoid function, ∆p(., .) is the cross-modal
video-text representation from LLM after passing through
a MLP projection layer (absorbed in the equation for better
readability), and sim is the similarity function.

18584



In summary, training the model to optimize the Lplau loss
helps the model to differentiate between the plausible and
counterfactual/implausible action sequences by aligning the
visual modality closer to the temporally correct, plausible
action sequence. By learning this alignment, it is able to un-
derstand the implicit temporal information that defines the
dependencies and correlations among actions in a plausible
sequence.

4.2. Long-Horizon Action Repetition Loss

While the plausible action sequence learning loss Lplau
helps the model to understand the implicit temporal infor-
mation present in the action sequences, we consider another
aspect of plausibility by reducing the repetition of actions
and in turn generating more diverse actions. We observe
that while the model is able to generate accurate, temporally
correct, and diverse actions over a short temporal window,
it starts repeating the same actions over a longer horizon.
To mitigate this, we train the model by enforcing a larger
penalty on the actions that happen over a longer horizon
in the temporal window and lesser penalty to the actions
that are immediately near to the observed video. We add a
penalty of γt over the negative log-likelihood of the proba-
bility as follows:

pt =
exp(ŷt)

Σj exp(ŷj)
, (9)

Lrep(pt) = −γtlog(pt) (10)

where ŷt is the output from the language model for the t’th
token over which softmax operation is applied to get the
probability pt. γt is the γ value temporally unique to the
t’th token following the order, γ0 < γ1 < γ2 < · · · < γN .
In summary, by optimizing the Lrep loss, the model is
penalized more for the actions that happen over a longer
horizon and less penalized for immediate actions. This is
helpful in regulating repetition and ensuring more diverse
actions in the generated text.
Finally, we train our model with the overall loss as:

L = αLplau + βLrep (11)

where α and β are the weight hyper-parameter for the two
losses.

5. Experiments
5.1. Implementation Details

We process the videos of size 224 × 224 with Ego4D
containing 8 clips with 4 frames, making a total of 32
frames, and EPIC-Kitchens-100 with 32 frames as well. We
use the pretrained Qformer model, BLIP2-FlanT5xxl from
BLIP2 [31] with number of query tokens as 32 and ViT-
G/14 as our vision encoder. We train our method end-to-end

with a learning rate of 1e−5, for 100 epochs, and α = 0.5
and β = 0.5. We use LLaMA-2-7B as our language model.
For long-horizon action repetition loss, Lrep, we use γ in
the uniform distribution from [0, 2] with number of steps
equal to the number of output tokens from the language
model. For plausible action sequence learning loss Lplau,
we use video augmentation of color jitter, random horizon-
tal flip, and a random rotation of 10 degrees.

5.2. Experimental Setup

Datasets: We evaluate on two action anticipation datasets:
Ego4D [26] and EPIC-Kitchens-100 [13]. Ego4D is a large-
scale egocentric dataset covering diverse indoor and out-
door scenarios like home, workplace, etc. It consists of
3670 hours of videos with 115 verbs and 478 nouns. To
evaluate our method on Ego4D, we use videos from the
Forecasting and Hand-Object interaction subset and show
results on the validation set. In Ego4D, a video and a stop-
ping time is given, and the model predicts N sets of se-
quences having Z number of actions in the form of verb-
noun pairs, {{(v̂z,n, n̂z,n)}Zz=1}Nn=1, where, v̂z,n is the pre-
dicted verb and n̂z,n is the predicted noun.
EPIC-Kitchens-100 [13] is an egocentric dataset of a
kitchen-based environment. It consists of 100 hours of ego-
centric videos with 97 verbs and 300 nouns. For this dataset,
given an action segment that starts at time τs, the model has
to predict the anticipated action by observing a video seg-
ment of duration [τs − (τo + τa), τs − τa] where τo is the
observation time and τa is the anticipation time. The antic-
ipation time τa means how much in advance the model has
to anticipate the action.
Baselines: We compare our method with large video-
language models , Video-LLaMA [68] and Video-LLM [6].
We also compare our method with the transformer and
LSTM-based approaches for action anticipation along with
text-based large language models for a more exhaustive
analysis.
Ablation Study: In the ablation study, we present results
of PlausiVL with and without Lplau and Lrep objective
functions to show the effect of each component on the final
performance of the model.

5.3. Discussion of Results

Referring to Table 1 and Table 2, we can observe that Plau-
siVL is able to perform better when compared with the
baselines. This can be attributed to its ability to be able
to understand the plausibility in the action sequences and
leverage the temporal correlations among the actions in a
sequence. We present a closer analysis of the results in our
discussion following next.
PlausiVL shows performance gain towards action antic-
ipation: Prior large video-language models [6, 68] have
only explored the visual-text alignment and lack the tem-
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Method ED@(Z=20) ↓
Verb Noun

RepLAI [41] 0.755 0.834
SlowFast [26] 0.745 0.779
ICVAE [39] 0.741 0.739
HierVL [4] 0.723 0.734
Video+CLIP [14] 0.715 0.748
AntGPT [69] 0.700 0.717
Video LLM [6] 0.721 0.725
Video LLaMA [68] 0.703 0.721
PlausiVL 0.679 0.681

Table 1. Performance on Long-term action anticipation on Ego4D
↓: Lower is better. This shows shows that our method, PlausiVL
is able to outperform all the previous baselines for verb, noun, and
action.

Method
Class-mean

Top-5 recall (%) ↑
Verb Noun Action

RU-LSTM [13] 23.20 31.40 14.70
Temporal Aggregation [53] 27.80 30.80 14.00
Video LLM [6] - - 15.40
AFFT [70] 22.80 34.60 18.50
AVT [24] 28.20 32.00 15.90
MeMViT [65] 32.20 37.00 17.70
RAFTformer [23] 33.80 37.90 19.10
InAViT [52] 52.54 51.93 25.89
Video LLaMA [68] 52.90 52.01 26.05
PlausiVL 55.62 54.23 27.60

Table 2. Performance of action anticipation on EPIC-Kitchens-
100 on class-mean Top-5 recall (%) ↑): Higher is better. Our
method is able to outperform all the previous baselines.

Ego4D EPIC-Kitchens-100

Lplau Lrep
ED@(Z=20) ↓ Class-mean

Top-5 recall (%) ↑
Verb Noun Verb Noun Action

✓ ✓ 0.679 0.683 55.62 54.23 27.60
✓ 0.686 0.698 54.50 53.60 26.67

✓ 0.691 0.707 54.15 53.03 26.21
0.703 0.721 52.90 52.01 26.05

Table 3. Ablation study of modules, Lplau and Lrep in our
method on Ego4D ↓: Lower is better, and EPIC-Kitchens-100 on
class-mean Top-5 recall (%) ↑): Higher is better. The analysis that
starting from our method, row (1), there is a dip in the performance
as each module is removed showing that the losses, Lplau and
Lrep are helpful in improving the performance.

poral understanding needed for the action anticipation. To
show that our model is able to learn the temporal un-
derstanding, we compare PlausiVL with Video-LLM and
Video-LLaMA in Table 1 and observe an improvement of

BLEU Score ↑ Repetition Score ↓
Video-LLaMA [68] 37.89 7.12
PlausiVL 45.54 5.87
Ground Truth 100.00 4.33

Table 4. BLEU score and Repetition Score on the Ego4D dataset.
For BLEU score, ↑: Higher is better, and for repetition score, ↓:
lower is better. We can observe that both the BLEU score and
repetition score are better for PlausiVL than Video-LLaMA.

4.2% and 2.4%, respectively on verbs. Similarly, we ob-
serve an improvement of 2.72% and 2.22% on verbs for
EPIC-Kitchens-100 in Table 2. The improvement in the
performance emphasizes that the model is able to learn the
temporal dependencies among the actions to generate more
accurate and plausible action sequences. Qualitative results
presented in Figure 3 also show the quality of our generated
sequence in comparison to the ground truth. We can see
that our method is able to understand the activity happening
the video and anticipate the temporal future action sequence
accordingly. We also exhaustively compare PlausiVL with
prior approaches in Table 1 and Table 2 that utilize trans-
former and LSTM-based architectures and show that our
method is able to perform better.
Lplau helps the model to learn plausible future action
sequences: We hypothesize that for generating accurate fu-
ture action sequences, a model should have an understand-
ing about the temporal plausibility of an action sequence in
the real-world. To assess if our devised loss function, plau-
sible action sequence learning loss, Lplau is able to create
such understanding in the model, we compare our method,
row (1) and our method without Lplau, rows (3) and (4)
in Table 3. We observe by removing this module, there is
a drop in the performance of 1.2 % on verbs for Ego4D
and 1.47 % for verbs of EPIC-Kitchens-100 (row(1) and
row(3) are compared). This shows that training a model
with Lplau as an objective function helps the model to
learn the implicit temporal information of action correla-
tions in a sequence. Through learning to differentiate be-
tween the plausible and not plausible action sequences and
aligning the video representations closer to the plausible
action sequences, the model learns an effective video-text
alignment which helps in generating more accurate, plausi-
ble future action sequences.
Lrep helps with lesser repetition and more diversity
over long horizons: We also try to address another as-
pect of plausibility in action sequences by making the model
learn to generate sequences with less repetitive actions and
more diverse actions via our devised objective function,
long-horizon action repetition loss, Lrep. To assess the
efficacy of this module, we compare our method, row (1)
and our method without Lrep, row (2) and row (4) in Ta-
ble 3. We observe that there is performance dip of 1.5 %
on Ego4D nouns and 0.63 % on EPIC-Kitchens-100 nouns.
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Prediction: take iron, take pants, put pants, adjust pants, take iron, press pants, put 
iron, adjust pants, take iron, press pants, turn pants, adjust pants, take iron, press 
pants, put iron, adjust pants, take iron, turn pants, put iron, adjust pants

Ground Truth: take iron, press pants, hold iron, press pants, put iron, take iron, press 
pants, turn pants, arrange pants, take iron, press pants, adjust pants, turn pants, 
arrange pants, take iron, turn pants, put pants, touch pants, take pants, fold pants

Video

Prediction: put screwdriver, take plier, move bicycle, hold screwdriver, take bicycle, 
put bicycle, take screwdriver, put screwdriver, take bicycle, turn screw, take bicycle, 
turn screwdriver, turn screw, take bicycle, move screwdriver, move plier, put bicycle, 
turn screwdriver, turn screw, take bicycle, turn screwdriver

Ground Truth: put screwdriver, move plier, put plier, hold screwdriver, hold 
screwdriver, loosen screw, move screwdriver, take screwdriver, put screwdriver, 
unscrew screw, put screwdriver, take screwdriver, move screwdriver, unscrew screw, 
carry plier, adjust wire, put plier, move screwdriver, put bicycle, put bicycle

Video

Time

Time
Figure 3. Qualitative Results: Given a video, the top blue box shows the prediction from PlausiVL and the green box contains the ground
truth action sequence for reference. We can observe that PlausiVL is able to generate action sequences that satisfy the temporal logic
constraints and are diverse with less repetitions. The predicted action sequence is also closer to the ground truth action sequence.

This indicates that by penalizing the actions more over the
long horizon, Lrep is able to reduce the repetition of ac-
tions in the sequence generation and hence, contribute to-
wards plausible action anticipation sequences.

Large Video-language model vs Text-large-language-
model: Given the exploration of text-only large language
models, we also address the comparison between text-based
LLM and large video-language models for the task of ac-
tion anticipation. We compare PlausiVL with AntGPT [69]
which is a text-based LLM and observe a performance gain
of 2.1% on verbs and 3.6% on nouns for Ego4D from our
method. We reason that a major drawback of text-based
LLM for this task is that they completely discard the vi-
sual as well as temporal information present in the videos.
Whereas, the task of action anticipation is highly dependent
on the visual spatio-temporal information to understand the
real-world temporal flow of actions and anticipate actions
accurately. Incorporating visual modality can give crucial
information such as the environment of the agent, the ob-
jects interacted with, and other objects in the scene which
might be interacted with later in the future. Such vital in-
formation is lost when converting a video into textual ac-
tions [69] or into a summary [28]. Summarizing a video into
text-based information can only provide the high-level de-
tails about a video, but it doesn’t give a signal about the real-
world temporal flow of the actions and objects in a video.

PlausiVL is able to generate plausible action sequences:
To further emphasize the plausibility, less repetition and
quality our generated text, we compute the BLEU score [45]
and repetition score. The repetition score is an average of
the number of actions that are repeated in an action se-
quence and the BLEU score measures the similarity be-
tween our generated text and ground truth. We report the

results in Table 4. By having a better BLEU score than the
baseline, we show that the generated text from our method
is a more plausible action sequence, thus emphasizing the
efficacy of our objective functions. Similarly, by having
a lower repetition score than the baseline, we show that
the model has lesser repetitive actions in the generated se-
quence. Our method repeats 5.87 actions in an action se-
quence on average whereas Video-LLaMA repeats an aver-
age of 7.12 actions. We also observe an average repetition
of 4.33 actions in ground truth action sequences. Moreover,
a lower edit distance metric in Table 1 also indicates less
repetition and more plausibility in the generated text as a
lower metric would mean less substitutions were made to
bring the output text closer to the ground truth.

6. Conclusion
In this work, we leverage the generative capabilities of large
video-language models for plausible action anticipation. In
addition to the abilities of large video-language models , for
the model to better understand the plausibility in an action
sequence, we introduce a plausible action sequence learn-
ing loss which helps the model to differentiate between
the plausible and not plausible action sequences, and thus
learn anticipation related temporal cues. We further de-
vise a long-horizon action repetition loss that puts a higher
penalty on the actions that happen over a longer temporal
window and are more prone to repetition, thus mitigating
action repetition and ensuring more diverse actions. Exper-
imental results show that our model is able to perform better
by generating more plausible and accurate action sequences
on Ego4D and EPIC-Kitchens-100. While our method is an
initial step towards plausible action anticipation, there can
be further exploration mitigating the issue of hallucinating
implausible action sequences in the future work.
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