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Abstract

Text-to-image generative models, specifically those
based on diffusion models like Imagen and Stable Diffu-
sion, have made substantial advancements. Recently, there
has been a surge of interest in the delicate refinement of
text prompts. Users assign weights or alter the injection
time steps of certain words in the text prompts to improve
the quality of generated images. However, the success of
fine-control prompts depends on the accuracy of the text
prompts and the careful selection of weights and time steps,
which requires significant manual intervention. To address
this, we introduce the Prompt Auto-Editing (PAE) method.
Besides refining the original prompts for image generation,
we further employ an online reinforcement learning strat-
egy to explore the weights and injection time steps of each
word, leading to the dynamic fine-control prompts. The re-
ward function during training encourages the model to con-
sider aesthetic score, semantic consistency, and user prefer-
ences. Experimental results demonstrate that our proposed
method effectively improves the original prompts, generat-
ing visually more appealing images while maintaining se-
mantic alignment. Code is available at this https URL.

1. Introduction

Text-to-image generative models take a user-provided text
to generate images matching the description [1, 16, 29, 30].
The input text is called a prompt since it prompts the gen-
erative models to follow the user’s instructions. However,
it has been reported that recent text-to-image models are
sensitive to prompts [5, 15, 19]. The organization of the in-
put prompts plays a crucial role in determining the quality
and relevance of the generated images. Interestingly, even
when two prompts convey identical meanings, different ex-

†Corresponding authors.

pressions of these prompts may yield vastly different image
interpretations. Therefore, it is crucial to craft appropriate
prompts that convey the user’s intended ideas and establish
clear communication with the generative model.

For a given pre-trained text-to-image generative model,
it is unclear which type of prompt is the most suitable. Con-
sequently, users heavily rely on heuristic engineering meth-
ods [21] by repeatedly running the generative model with
modified prompt candidates in search of an optimal one.
They append modifier words to enhance the art style or
emphasize the image quality. These hand-crafted heuris-
tics need to be implemented separately for each design in-
tention and generative model, resulting in a costly, time-
consuming, and labor-intensive trial-and-error process. Al-
though there are learning-based methods [9, 44] that aim to
enhance the quality of image generation results by rephas-
ing or appending modifiers to user-input prompts, these
methods lack control over the extent to which the added
modifier words influence the image generation process.

It is a common practice to assign varying levels of impor-
tance to specific words in the design of text prompt*. This
technique allows for more precise control over the gener-
ation process, as illustrated in Fig. 1 (a). Another notable
characteristic of the diffusion model is the multi-step de-
noising process. This multi-step design allows us to use
different prompts at different time steps, thus achieving bet-
ter results. By precisely adjusting the effect time range of
modifier words during this process, a significant enhance-
ment of the visual aesthetics of the generated image can be
achieved, as shown in Fig. 1 (b). Therefore, to achieve more
precise and detailed control over various aspects of the gen-
erated image, we propose a novel prompt format called the
Dynamic Fine-control Prompt (DF-Prompt). It consists of
several triples of tokens, effect ranges, and importance lev-
els. Traditional hand-crafted heuristic prompt engineering

*https://github.com/AUTOMATIC1111/stable-diffus
ion-webui/wiki/Features#attentionemphasis

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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(a) (b)

a red horse on the yellow 
grass, detailed, 1 ↦ 0, 1

a red horse on the yellow
grass, detailed, 1 ↦ 0.85, 1

a red horse on the yellow 
grass, anime, 1 ↦ 0, 1 style

a red horse on the yellow
grass, anime, 1 ↦ 0, 1. 𝟓 style

Figure 1. Generation results with the same seed using dynamic fine-control prompt (one plain token is extended into a triple of
⟨token, effect range,weight⟩). It can be seen that (a) increasing the weight of anime to 1.5 can amplify the sense of anime; (b) apply-
ing the word detailed in the first 15% denoising timesteps can generate more natural texture details than applying it in all timesteps.

approaches struggle to handle such intricate and granular
adjustments. Hence, it is necessary to develop an automated
method for providing fine-grained optimization of prompts.

In this study, we propose a method called Prompt Auto-
Editing (PAE). The primary aim of PAE is to optimize
user-provided plain prompts to DF-Prompts for generating
high-quality images. This optimization process is achieved
through reinforcement learning. PAE involves a two-stage
training process. In the first training stage of PAE, we
introduce an automated method to overcome the depen-
dency on manually constructed training samples. We de-
fine a confidence score to automatically filter publicly avail-
able prompt-image data. It ensures that the selected im-
ages are both visually pleasing and semantically consis-
tent with the corresponding text. We then use this filtered
dataset to fine-tune a pre-trained language model. The re-
sult is a tailored model that can enhance a given prompt
with suitable modifiers. The second stage of PAE is based
on the tailored model. We use online reinforcement learn-
ing tasks to encourage the model to explore better com-
binations of prompts and extra parameters, i.e., the effect
range and weight of each modifier. To support this, we
build a multidimensional reward system that takes into ac-
count factors such as aesthetic ratings, consistency between
image and text semantics, and user preferences. Through
the above process, PAE can automatically find the appro-
priate dynamic fine-grained prompt tokens. To demonstrate
the effectiveness of our approach, we apply PAE to opti-
mize text prompts from several public datasets, including
Lexica.art†, DiffusionDB [38], and COCO [14]. The exper-
imental results show that our method can greatly improve
human preference and aesthetic score while maintaining se-
mantic consistency between the generated images and the
original prompts. The contributions are as follows.

• Dynamic fine-control prompt editing framework: We
introduce a framework that enhances prompt editing
flexibility. By integrating the effect range and weight

†https://lexica.art/

of modifier tokens into a reinforcement learning frame-
work, we enable fine-grained control and precise ad-
justments in image generation.

• Effective results: Our method’s effectiveness is thor-
oughly validated through experiments on several
datasets. The results show that our approach improves
image aesthetics, ensures semantic consistency be-
tween prompts and generated images, and aligns more
closely with human preferences.

• Insightful findings: Our research reveals that artist
names and texture-related modifiers enhance the artis-
tic quality of generated images, while preserving the
original semantics. It is more effective to introduce
these terms in the latter half, rather than the initial half
of the diffusion process. Assigning a lower weight to
complex terms promotes a more balanced image gen-
eration. These findings hold significant implications
for creative work and future research.

2. Related work

Content generation AI-generated content (AIGC) [3, 22,
26, 28–30, 36, 42] has made revolutionary progress in
recent years, particularly in natural language processing.
Large language models such as BERT [6], GPT-1 to GPT-
4 [2, 17, 23, 24], and ChatGPT‡ have demonstrated excep-
tional text understanding and generation ability. Their ad-
vancements have greatly influenced the generation of text-
to-image content. With the development of generative mod-
els [7, 32–34] and multi-modal pre-training techniques [25],
text-to-image generative models such as DALL·E 2 [28],
Imagen [30], Stable Diffusion [29] and Versatile Diffu-
sion [42] have showcased impressive performance in gener-
ating high-quality images. These breakthroughs have cap-
tured the attention of both academia and industry due to
their potential impact on content production and applica-
tions in the open creative scene, etc. In this paper, the

‡https://chat.openai.com/
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Figure 2. The training process of PAE. (Stage 1) We select the training prompts based on a confidence score S as shown in Eq. (1), then
fine-tune a pre-trained language model. The result is EReP, a model that produces refined prompts. (Stage 2) We initialize the policy
model EDFP using EReP. We add two linear headers to this model. These headers, along with the one predicting word tokens, use the
same model’s intermediate representation for their predictions. We then transform these predictions into DF-prompts. These DF-prompts
modify the text injection mode of the diffusion model M, which in turn affects the output images. During the online exploration, we use
the original plain prompt s, the optimized DF-prompt sDFP, and their respective images I and IDFP to compute the reward R. Finally, we
update the policy model by minimizing a loss function as defined in Eq. (3).

proposed dynamic prompt editing framework utilizes a lan-
guage generation model to assist text-to-image generation.

Text-to-image prompt collection and analysis In recent
years, several studies have been conducted to explore the
generative ability of text-to-image generative models. Some
researchers collect prompt-image pairs from online commu-
nities or expert users [37, 38, 40, 41]. DiffusionDB [38],
containing 2 million images, is collected from online public
Stable Diffusion servers. It provides a valuable resource for
researchers to study and improve the performance of text-
to-image models. More recently, Xu et al. [41] build an
expert comparison dataset, including 137K prompt-image
pairs from text-to-image models. These pairs are evaluated
in terms of aesthetics, text-image alignment, toxicity, and
biases. With the wealth of data, we aim to develop an au-
tomatic prompt editing method that can improve the perfor-
mance of text-to-image models and generate high-quality
images that satisfy users’ demands.

Prompt design Text-to-image generative models [4, 10,
16, 27–30] are currently experiencing significant advance-
ments, resulting in impressive visual effects from the gener-
ated images. However, these models only yield satisfactory
images given appropriate input prompts, leading users to
invest considerable time in modifying the prompts to en-
sure the generated images are aesthetically pleasing. In
pursuit of higher-quality images, both researchers and on-
line communities contribute creatively to prompt engineer-
ing for text-to-image generation [18, 21, 38]. For instance,
Pavlichenko et al. [21] employ the genetic algorithm [8] to
select a range of prompt keywords that enhance the qual-
ity of the images. Concurrently, Oppenlaender [19] utilizes
auto-ethnographic research to understand the prompt de-
sign of online communities and categorizes existing prompt
modifiers into six categories. Additionally, Liu et al. [15]
collect over a thousand prompts for multiple group compar-

ison experiments and proposes design guidelines for text-
to-image prompt engineering. Recently, Hao et al. [9] pro-
pose a learning-based prompt optimization method using
reinforcement learning. These approaches primarily focus
on modifications to plain prompts and fail to achieve fine-
control information injection. In this paper, we introduce
a novel prompt editing framework to achieve fine-control
prompt optimization. A reinforcement learning strategy is
used to develop the capability of extending modifiers, ad-
justing weights, and adaptively fitting effect step ranges of
the modifier tokens, with aesthetics, text-image semantic
consistency, and human preferences serving as the reward.

3. Method
In this section, we introduce the novel prompt format
for diffusion-based text-to-image generative models. To
achieve automated prompt editing, we design a two-stage
training process, called Prompt Auto-Editing (PAE). PAE
includes a supervised fine-tuning stage for refined prompt
generation and an online reinforcement learning stage for
dynamic fine-control prompt generation.

3.1. Definitions of Dynamic Fine-control Prompt

Given a pre-trained text-to-image generative model M and
user input text s, our goal is to produce a modified prompt
sm with fine-grained control so that the generated image,
Im ∼ M(sm), exhibits enhanced visual effects while re-
maining faithful to the semantics of the initial prompt s.
The modified prompt sm contains the initial prompt s and a
set of predicted modifiers A = {x1, · · · , xi, · · · , xn}, i.e.,
sm = s⊕A. The ⊕ symbol indicates the append operation.

We hereby define a new prompt format that enriches the
information of the initial prompt, named Dynamic Fine-
Control Prompt (DF-Prompt). Within this paradigm, each
token xi of the modifier set A is coupled with an ef-

26629



fect range τi and a specific weight wi, resulting in a
triple ai = ⟨xi, τi, wi⟩, where wi is a float number that
weights the token embeddings for controlling the over-
all influences of token xi during image generating. The
range τi = [bi 7→ ei] (1 ≥ bi ≥ ei ≥ 0) is the nor-
malized range that delineates the start and end steps dur-
ing the iterative denoising process of the text-to-image
model. We define the DF-Prompt token set is ADFP =
{⟨x1, τ1, w1⟩, · · · , ⟨xn, τn, wn⟩}, and the DF-Prompt is
sDFP = s ⊕ ADFP. The essence of DF-Prompt lies
in facilitating a more precise and controlled generation,
ensuring the refined prompts are optimally structured for
M to process. In order to facilitate demonstration and
code implementation, we also define a plain-text format,
where the triples are written within square brackets, [to-
ken:range:weight]. For instance, as shown in Fig. 2, a DF-
Prompt is written as “portrait of a beautiful forest goddess,
[beauty : 0.5 7→0 : 0.75], [esoteric : 1 7→0.5 : 0.5]”.

3.2. Overview of PAE

We formulate the prompt editing problem as a reinforce-
ment learning task and propose a Prompt Auto-Editing
method named PAE. PAE enhances the user-provided
prompt by adding modifiers in an auto-regressive manner
while assigning corresponding effect ranges and weights.
As illustrated in Fig. 2, PAE operates in two distinct train-
ing stages. Stage 1: To enrich simple prompts, we fine-tune
a pre-trained language model on a curated prompt-image
dataset. The dataset is specifically selected based on a con-
fidence score S . The result of this stage is a refined prompt
model EReP. Stage 2: This stage involves an online rein-
forcement learning process. We implement a policy model
EDFP initialized from EReP. The policy model interacts
with the environment (the text-to-image model M) through
the current policy (the model-derived mapping from the in-
put prompt to the dynamic fine-control prompt). A reward
function is defined to evaluate the aesthetic appeal of the
generated image, its semantic similarity to the input text,
and its alignment with human preference. The policy model
EDFP is then optimized based on a defined loss function.

3.3. Finetuning for Plain Prompt Refinement

In the first stage, we utilize selected data to fine-tune the
GPT-2 [24] model to get a plain prompt refining model
EReP. The model EReP predicts suffix modifiers one by one,
and this process repeats until the model outputs the stop
sign, i.e., <|endoftext|>. Given a prompt s, we construct
the refined prompt as sReP=s⊕A, where A ∼ EReP(s).
Data Selection. Different from previous methods that de-
pend on human-in-the-loop annotation datasets [21], we
collect training data from public text-image datasets and on-
line communities. Given the inconsistent quality of images
in publicly available text-image pairs, not all prompts are

suitable for model training. Therefore, we devise an auto-
mated process for data filtration and training sample con-
struction. The rule for data filtration stipulates that only
instances that demonstrate an improvement in aesthetics
and maintain semantic relevance after the addition of mod-
ifiers are retained. As depicted on the left of Fig. 2, we
start with a given prompt s′ from publicly available prompt
logs. The original prompt s′ is split at a division point
p ∈ {1, · · · , N}. Here, N represents the number of to-
kens in s′. The text preceding the division point is consid-
ered to contain primary information, describing the main
theme of the image; the text following the division point
is regarded as secondary, providing supplementary suffixes
as modifier words. According to [38], we select the first
comma in s′ as the division point. Following this, we obtain
the short prompt s = {s1, ..., sp}, which is the first p tokens
joined together. The remaining tokens form the modifier set
A = {x1, · · · , xn|x1 = sp+1, · · · , xn = sN}. Lastly, we
define a confidence score, S(s, s′). Using this, we construct
the training samples as follows:

D = {⟨s,A⟩ | S(s′, s) > 0} ,
S(s′, s) = EI′∼M(s′),I∼M(s)

[
u (gaes(I

′)− gaes(I))

× u (gCLIP(s, I
′)− gCLIP(s, I) + γ)

]
,

(1)

where gCLIP measures the image-text relevance by using
pre-trained CLIP model [25] and gaes returns the aesthetic
score§. The parameter γ acts as a tolerance constant. Ad-
ditionally, u(z) represents a characteristic function that re-
turns 1 if z > 0 and 0 otherwise.

We train the language model based on the training
datasets D using teacher forcing methods [39], and perform
a direct auto-regressive style negative log-likelihood loss on
the next token:

LReP = −E⟨s,A⟩∼D [logP (A|s, EReP)] . (2)

In this way, the trained model EReP is proficient in handling
brief prompt inputs, i.e., simple text describing the image
theme, and predicting appropriate modifiers to formulate re-
fined prompts sReP, thereby elevating the aesthetic quality
of the generated image.

3.4. RL for DF-Prompt Generation

In the second training stage, we aim to explore bet-
ter prompt configurations by specifying effect ranges and
weights for additional modifier suffixes.
Online reinforcement learning. We utilize PPO algo-
rithm [31], a popular reinforcement learning method known
for its effectiveness and stability. The aim is to maximize
the expected cumulative reward over the training set D. We

§https://github.com/christophschuhmann/improv
ed-aesthetic-predictor
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add two head layers on EReP to predict the effect range and
weight corresponding to each token, and initialize the pa-
rameters of additional layers to output τi = [1 7→ 0] and
wi = 1 for every token xi. After that, EReP is used to ini-
tialize a policy model EDFP. During an episode of prompt
optimization, we set the initial state as the initial text s =
{s1, ..., sp}. The action space is tripartite: word space V ,
discrete time range space T = {0.5 7→ 0, 1 7→ 0, 1 7→ 0.5},
and discrete weight space W = {0.5, 0.75, 1, 1.25, 1.5}.
At each step t of online exploration, the model selects an
action at = ⟨xt, τt, wt|xt ∈ V, τt ∈ T , wt ∈ W⟩, in accor-
dance with the policy model at ∼ EDFP(s<t). To be con-
sistent with the input format of the language model, we
define the state at t-th step with tokens only, i.e., s<t =
s⊕ {x1, x2, · · · , xt−1}.

During training, the policy model EDFP interacts with
the text-to-image model M. We make adjustments to
the text encoder module of the model, with the specific
implementation details outlined in supplementary materi-
als. These modifications allow for weighting individual
tokens and customizing the effective time range during
the denoising process. The predicted action set ADFP =
{⟨x1, τ1, w1⟩, · · · , ⟨xT , τT , wT ⟩} are used to generate im-
ages. Using the generated images, we compute the reward
R(s,ADFP). We define a loss function LDFP, which is
used to optimize the policy model:

LDFP = −Es∼D,ADFP∼EDFP

[
R(s,ADFP)− ηDKL

]
,
(3)

where DKL computes the Kullback-Leibler diver-
gence [13]. It serves as a regulation constraint to minimize
differences between the output modifiers of the policy
model EDFP and those of the initial model EReP [20]. We
also use Gaussian distributions to supervise the effect range
probability distribution and weight distribution predicted
by EDFP. More implementation details are in Sec. 4.2.

Another component in PPO is the value model. Its role
is to estimate the expected cumulative reward from the cur-
rent state, directed by the policy model’s actions. Its opti-
mization objective is to minimize the difference between the
predicted and actual rewards. In the optimization process,
the policy model and the value model are optimized alter-
nately, so that they can promote each other to maximize the
expected cumulative reward. We initialize the value model
with EReP and replace the initial linear layer with a regres-
sion head for better performance.
Reward definition. We construct the reward R(s,ADFP)
using CLIP Score, Aesthetic Score, and PickScore [12]:

R(s,ADFP) =EI∼M(s),IDFP∼M(s⊕ADFP)[

min
(
gCLIP

(
s, IDFP

)
− ζ, 0

)
+min

(
gPKS

(
s, IDFP

)
− κ, 0

)
+ α ·

(
gaes(I

DFP)− β · gaes(I)
)
].

(4)

where gPKS denotes the learned human preference evalua-
tion metric of PickScore. The symbols ζ and κ set minimum
thresholds for CLIP score and PickScore contributions to
the reward, while α and β scale the Aes score’s impact.

4. Experiments
4.1. Experimental Setup

Data Collection. The public text-image pair sources in-
clude Lexica.art and DiffusionDB [38]. The NSFW images
are recognized with an image classification model and re-
moved from the training data. After that, we conduct data
selection as described in Sec. 3.3. Finally, we get about
450, 000 prompts. We randomly select 500 ⟨s, s′⟩ pairs
from DiffusionDB for validation and extract 1, 000 prompts
from Lexica.art and DiffusionDB respectively for evalua-
tion. In particular, we also use 1, 000 prompts randomly
selected from COCO [14] dataset for out-of-domain evalu-
ation. The training set, validation set, and test set are inde-
pendent of each other.
Comparison to other methods. We compare the prompts
edited with our method to four types of prompts: the short
primary prompts s, the original human-written prompts s′,
and the prompts generated from the same short prompt s
by the pre-trained GPT-2 [24] and Promptist [9]. Human-
written prompts are randomly chosen from user-provided
prompt datasets like Lexica.art and DiffusionDB, while
short prompts are the texts before the first commas.
Metrics. We utilize four metrics to evaluate the re-
sults of edited prompts: Aesthetic score, CLIP score [25],
PickScore [12], CMMD score [11]. The Aesthetic score
reflects the visual attractiveness of an image. Higher val-
ues indicate better visual quality. The CLIP score evaluates
the alignment between the generated image and the prompt.
PickScore is an automatic measurement standard used to
comprehensively assess the visual quality and text align-
ment of images. Larger values indicate a greater consis-
tency between the generated image and human preferences.
CMMD offers a more accurate and consistent measure of
image quality by not assuming a normal distribution of data
and being efficient with sample sizes. Lower CMMD val-
ues indicate more realistic images. In our evaluation, we re-
port the Aesthetic scores of the corresponding images, CLIP
scores between the short prompt and the images generated
by the edited prompt. For PickScore, We report the rel-
ative pairwise comparisons E[gPKS(s, I

m) ≥ gPKS(s, I)]
between the edited prompt sm and the short prompt s. We
report CMMD between the generated images and the real
images corresponding to the prompts in the COCO dataset.

4.2. Implementation Details

For the processes of data collection, model training, and
evaluation, we use Stable Diffusion v1.4 [29] with the
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a beautiful portrait of a symmetric woman face
[ with gorgeous hair face illustration:1↦0:1.0 ], 
[ by wlop:1↦0.5:0.75 ], [ artgerm:1↦0:1.0 ], 
[ greg rutkowski:1↦0:1.0 ],
[ alphonse mucha:1↦0:1.0 ]

a beautiful portrait of a symmetric woman face
, fantasy, intricate, elegant, highly detailed, 
digital painting, artstation, concept art, smooth, 
sharp focus, illustration,

a beautiful portrait of a symmetric woman face 

cats in suits smoking cigars together 
[ on a ship deck:1↦0:1.0 ], [ intricate:1↦0:1.25 ],
[ elegant:1↦0:1.25 ], [ highly detailed:0.5↦0:0.75 ],
[ digital painting:0.5↦0:1.0 ], [ artstation:0.5↦0:0.5 ],
[ concept art:0.5↦0:1.0 ], [ sharp focus:0.5↦0:0.75 ], 
[ illustration:0.5↦0:1.25 ], [ by justin gerard and 
artgerm:1↦0.5:1.0 ], [ 8 k:1↦0:0.5 ]

cats in suits smoking cigars together
, intricate, elegant, highly detailed, digital 
painting, artstation, concept art, smooth, sharp 
focus, illustration,

cats in suits smoking cigars together

illustration studio portrait of three friends 
dancing at a concert
[ in a scenic environment by beeple:1↦0:1.0 ], 
[ trending on artstation:0.5↦0:0.75 ]

illustration studio portrait of three friends 
dancing at a concert
, by wlop,

illustration studio portrait of three friends 
dancing at a concert

a black broken tv sitting in the desert
, ultra realistic, concept art, intricate details, 
eerie,

a black broken tv sitting in the desert
[ for 50 years:1↦0:1.0 ], [ intricate:1↦0.5:1.0 ],
[ elegant:1↦0.5:1.0 ], [ highly detailed:0.5↦0:0.75 ], 
[ digital painting:0.5↦0:1.0 ], [ artstation:0.5↦0:0.75 ],
[ concept art:0.5↦0:1.0 ], [ sharp focus:1↦0:1.0 ],
[ illustration:1↦0.5:1.0 ], [ by justin gerard and 
artgerm:1↦0:1.0 ], [ 8 k:1↦0:0.75 ]

a black broken tv sitting in the desert

Figure 3. Generated images using Stable Diffusion v1.4 with short prompts, Promptist [9], and our method. In each column, the images
are generated using the same random seed. Our method shows the ability to moderately expand the semantic content, such as “in a scenic
environment”, “with gorgeous hair face illustration”, “on a ship deck” and “for 50 years.” These expansions stimulate users’ imagination
while enhancing the comprehensiveness and aesthetic quality of the image.

DF-Prompt: biblic mecha cyberpunk soldier, [ sci - fi:0.5↦0:0.5 ], [ fantasy:1↦0.5:1.0 ], [ intricate:1↦0:1.0 ], [ elegant:1↦0.5:1.0 ],
[ highly detailed:1↦0.5:1.0 ], [ digital painting:1↦0:0.75 ],[ artstation:0.5↦0:0.75 ],

Short Prompt: biblic mecha cyberpunk soldier,

Refined Prompt: biblic mecha cyberpunk soldier, sci - fi, fantasy, intricate, elegant, highly detailed, digital painting, artstation,

Figure 4. Our method generate the DF-Prompt, which corresponds
to the generated images with more detailed textures and a richer
background for a better visual effect than the refined prompt. The
images are generated using the same random seed in each column.

UniPC solver [43], and set the inference time steps to 10.
Supervised fine-tuning. Empirically, we find that when
training with the default settings for both effect range and
weight (τi = [1 7→ 0] and wi = 1) as a one-point distri-
bution, the policy model is prone to overfitting to this set-
tings. To address this, we apply a strategy similar to La-
bel Smoothing [35] in the first stage to enhance the model’s
learning process. This strategy involves sampling discrete
values from Gaussian distributions. The means of these dis-
tributions are consistent with the values of the default set-
tings for effect range and weight, and they share a uniform

variance of σ. The frequency of different joint settings is
shown in the dotted line marked by “label” in Fig. 5 (b∼d).
This introduction of random sampling from Gaussian distri-
butions aims to diversify the training signal in the first stage,
thereby enabling better generalization in second stages. For
the model structure of EReP, we load the pre-trained GPT-
2 Medium [24] weights and add two linear heads directly
to approximate the distributions. We can use the distribu-
tions predicted by these heads to supervise the effect range
probability distribution and weight distribution predicted by
EDFP. We train the model for 50k steps, using a batch size
of 64 and a learning rate of 5 × 10−5, with the Adam opti-
mizer. The block size is 256. To avoid the model learning
fixed patterns, we introduce variability by randomly alter-
ing the case of the prompt’s first letter and replacing com-
mas with periods at a 50% probability. In our implemen-
tation, phrases separated by commas share the same effect
range and weight, calculated using the mode of the range
and weight among these phrases.
Online reinforcement learning. In our experiment, we fol-
low the approach by Hao et al. [9] to set ζ = 0.28 in the re-
ward function. The stability of the rewards is crucial in our
process. To ensure this, we calculate the reward by gener-
ating two images per prompt. We train both the policy and
the value models for 3,000 episodes, each with a batch size
of 32. For optimization, we set the learning rate to 5×10−5

and employ the Adam optimizer for both models. We ad-
just the Adam optimizer’s hyper-parameters, setting β1 to
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Figure 5. (a) The 15 most frequently generated modifiers. (b∼d) The frequency of different combinations of settings.

Method PickScore (↑) CLIP Score (↑) Aes Score (↑)

Short Prompt - 0.28 5.58

GPT-2 47.9% 0.25 5.38
Human 72.5% 0.26 6.07
Promptist 68.4% 0.27 6.11
PAE (Ours) 73.9% 0.26 6.12

Table 1. Quantitative comparison on Lexica.art.

0.9 and β2 to 0.95. The KL coefficient η is 0.02. To save
memory, we use a simplified version of the PPO algorithm
that processes one PPO epoch per batch.

4.3. Evaluation and Analysis

Qualitative analysis. As shown in Fig. 3, based on the
short prompts, PAE adds texture-related terms like “highly
detailed”, the artist’s name “justin gerard and artgerm”, and
some highly aesthetically related words “elegant”, “artsta-
tion” to enhance the aesthetic quality of the generated im-
ages. As shown in Fig. 4, the DF-prompt generated by our
method can provide finer control than the refined prompt.

Method CMMD (↓)
Promptist 1.147
PAE (Ours) 1.125

Table 2. Quantitative comparison using the CMMD metric.

Quantitative comparison. We evaluate PAE on two in-
domain datasets: Lexica.art and DiffusionDB. As shown
in Tab. 1 and Tab. 3, the results show that PAE surpasses
other methods in terms of Aesthetic Score, and it achieves
a human preference Pick Score that closely mirrors the
human-written prompt. This suggests that PAE aligns well
with human aesthetic preferences. Additionally, we eval-
uate PAE on the out-of-domain dataset COCO. As shown
in Tab. 4, PAE outperforms other methods in terms of
Pick Score. This consistent performance across various
datasets demonstrates the robustness and versatility of the
PAE method. Furthermore, as shown in Tab. 2, PAE outper-
forms Promptist, as it indicates lower CMMD scores [11].
This shows that the prompts edited by our method generate
images of superior quality and enhanced realism.
Statistical analysis of text. We apply our method to
3,500 prompts, gathering DF-prompt tokens from the pol-
icy model. The top 15 frequently generated modifiers are

Method PickScore (↑) CLIP Score (↑) Aes Score (↑)

Short Prompt - 0.28 5.58

GPT-2 48.1% 0.25 5.40
Human 70.5% 0.26 5.84
Promptist 62.3% 0.27 6.06
PAE (Ours) 64.4% 0.26 6.07

Table 3. Quantitative comparison on DiffusionDB.

Method PickScore (↑) CLIP Score (↑) Aes Score (↑)

Short Prompt - 0.27 5.37

GPT-2 51.2% 0.25 5.24
Promptist 53.4% 0.25 6.15
PAE (Ours) 53.8% 0.25 6.09

Table 4. Quantitative comparison on COCO.

displayed in Fig. 5 (a). They mainly pertain to art trends
such as “artstation”, artist names like “WLOP”, art styles
and types such as “digital painting” and “illustration”, and
texture-related terms like “highly detailed” and “smooth”.
These modifiers subtly boost the artistic vibe without sig-
nificantly altering the prompt’s semantics. In Fig. 5 (b∼d),
the red dotted lines indicate the frequency of the label case
as detailed in Sec. 4.2. We observe several phenomena and
attempt to interpret them: 1) In (c), most terms mentioned
above appear more frequently than the label case under the
1 7→ 0 and 0.5 7→ 0 settings. This suggests that these ef-
fect ranges yield higher rewards during training when the
weight is 1.0, hence the policy model leans towards select-
ing them. 2) Also in (c), the 0.5 7→ 0 setting outperforms
the 1 7→ 0.5 setting. This suggests that injecting texture-
related terms and art styles (except “smooth” and “illustra-
tion”) into the final 50% of diffusion time steps is more ef-
fective than in the first 50%. This latter half of the diffusion
time steps is typically when image details and structure start
to form. Hence, it’s optimal to introduce texture-related
terms and art styles at this stage, as they can directly impact
the image’s details and structure. Conversely, introducing
these elements in the initial 50% of the diffusion time steps
may not significantly influence the final image, as these ele-
ments could be overwhelmed by subsequent diffusion steps
when the image is still relatively unstructured. 3) Compar-
ing the 1 7→ 0 setting in (b) and that in (d), the setting with
weight = 0.75 occurs more frequently than weight = 1.25.
By assigning a lower weight (0.75), the prompt effectively
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instructs the generative model to pay less attention to these
tokens. This could lead the model to consider all tokens
more evenly when generating images, resulting in a more
balanced and potentially superior outcome. Furthermore,
these elements (like “digital painting”, “concept art”, “art-
station”, etc.) are inherently complex and can be interpreted
in various ways. If the model focuses excessively on the to-
kens (due to the higher weight of 1.25), it might struggle to
generate coherent images due to these concepts’ complexity
and ambiguity. Note that the aforementioned observations
merely reflect the trends, different prompts may have differ-
ent optimal choices, which is why our method is necessary.

4.4. Ablation Study

We conduct ablation experiments on the DiffusionDB val-
idation dataset to examine the effects of different data set-
tings, training settings, and prompt types.
Data Settings. The main parameters associated with the
training data are a variance σ in Sec. 4.2 and a tolerance
constant γ in Eq. (1). As shown in Tab. 5, the setting of
σ = 0.5, γ = 0.01 obtains the highest aesthetic score, so
we choose it as the parameter setting for other experiments.

Data Settings CLIP Score (↑) Aes Score (↑)

σ = 0.5, γ = 0.00 0.26 6.01
σ = 0.5, γ = 0.01 0.26 6.03
σ = 1.0, γ = 0.00 0.26 5.95
σ = 1.0, γ = 0.01 0.26 5.94

Table 5. Ablation experiments on hyperparameters of the valida-
tion set. We validate the results of the first-stage model EReP at
50k steps on the DiffusionDB Validation set.

Training Settings. In our method, the reward is primarily
influenced by three main parameters: α, β, and κ, as out-
lined in Eq. (4). In Tab. 6, we observe that when κ = 18, a
higher PickScore is achieved, while the CLIP score and Aes
Score remain relatively consistent compared to other values
of κ. Comparisons between (1) and (2), setting β = 1 re-
sults in a significant increase in the CLIP score, but leads
to a decrease in both the aesthetic score and PickScore,
compared to when β = 0. Furthermore, in comparing (2)
and (3), we find that an increase in α boosts both the latter
scores, albeit at the cost of the CLIP score. Given that our
task is primarily aimed at enhancing human preferences and
aesthetics without causing significant semantic deviations,
we choose α = 1, β = 0, κ = 18 for other experiments.
We also demonstrate the improvement brought by the sec-
ond stage of training. In Tab. 7, compared with EReP, the
policy model EDFP can bring comprehensive improvement.
Ablation experiments on different episodes. As shown
in Fig. 6 (a), the policy model achieves its peak reward after
3,000 episodes of training. Consequently, we adopt 3,000
episodes as the standard setting for other experiments.
DF-prompt format. As shown in Fig. 6 (b), when other

Reward Settings Pick* (↑) CLIP (↑) Aes (↑)

(1) α = 1, β = 0, κ = 16 53.8% 0.26 6.01
α = 1, β = 0, κ = 18 58.0% 0.26 6.04
α = 1, β = 0, κ = 20 56.4% 0.26 6.05

(2) α = 1, β = 1, κ = 16 3.8% 0.28 5.56
α = 1, β = 1, κ = 18 9.6% 0.28 5.54
α = 1, β = 1, κ = 20 5.2% 0.28 5.56

(3) α = 5, β = 1, κ = 18 52.0% 0.26 5.97
α = 10, β = 1, κ = 18 57.0% 0.26 5.93

* To highlight the disparity, we report the measure E[gPKS(s, I
m) >

gPKS(s, I)].

Table 6. Ablation experiments on different parameters of reward.
The second stage model EDFP is trained for 1,000 episodes.

Method PickScore* (↑) CLIP Score (↑) Aes Score (↑) Reward (↑)

EReP 53.8% 0.26 6.03 4.49
EDFP 57.8% 0.26 6.07 4.58

Table 7. Comparison between the initial model EReP and the sec-
ond stage model EDFP trained over 3,000 episodes.

settings remain the same, the reward increases with the out-
put of the policy model using the DF-Prompt format instead
of the plain prompt format. This indicates that compared to
plain prompts, DF-Prompts enhance the aesthetic appeal of
the generated images. They also strengthen the alignment
between the image and the prompt, making the image more
in line with human preferences.

Figure 6. (a) The relationship between episode and reward. (b)
Ablation experiments with different prompt types.

5. Conclusion
In this paper, we propose PAE, a novel method for auto-
matically editing prompts to improve the quality of images
generated by a pre-trained text-to-image model. Unlike ex-
isting methods that require heuristic human engineering of
prompts, PAE automatically edits input prompts and pro-
vides more flexible and fine-grained control. Experimental
evaluations demonstrate the effectiveness and efficiency of
PAE, which exhibits strong generalization abilities and per-
forms well on both in-domain and out-of-domain data.
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