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Abstract

Humans possess a remarkable ability to integrate audi-
tory and visual information, enabling a deeper understand-
ing of the surrounding environment. This early fusion of
audio and visual cues, demonstrated through cognitive psy-
chology and neuroscience research, offers promising poten-
tial for developing multimodal perception models. However,
training early fusion architectures poses significant chal-
lenges, as the increased model expressivity requires robust
learning frameworks to harness their enhanced capabili-
ties. In this paper, we address this challenge by leveraging
the masked reconstruction framework, previously successful
in unimodal settings, to train audio-visual encoders with
early fusion. Additionally, we propose an attention-based
fusion module that captures interactions between local audio
and visual representations, enhancing the model’s ability
to capture fine-grained interactions. While effective, this
procedure can become computationally intractable, as the
number of local representations increases. Thus, to address
the computational complexity, we propose an alternative
procedure that factorizes the local representations before
representing audio-visual interactions. Extensive evalua-
tions on a variety of datasets demonstrate the superiority of
our approach in audio-event classification, visual sound lo-
calization, sound separation, and audio-visual segmentation.
These contributions enable the efficient training of deeply
integrated audio-visual models and significantly advance the
usefulness of early fusion architectures.

1. Introduction

Humans naturally integrate audio-visual information to per-
ceive and understand the environment. Several studies in
cognitive psychology and neuroscience, as well as classic
perceptual illusions such as the McGurk effect, demonstrate

that such audio-visual fusion can occur early on in the percep-
tual stack, enabling deeper integration of the two modalities.
Early fusion models aim to emulate this human-like per-
ception. Specifically, it refers to the process of integrating
auditory and visual cues at an early stage of a multi-modal
perception model, in order to leverage the synergistic ef-
fects of both modalities. This can be especially powerful if
the fusion process can attend to and establish connections
between local components of the visual and audio signal
(e.g., the frequencies of someone’s voice with the pixels of
their lips). In sum, early fusion of local audio-visual interac-
tions holds the promise of a deeper and more sophisticated
understanding of audio-visual content, critical for many real-
world applications such as visually guided source separation,
localization/segmentation, and multi-modal recognition.

Despite the potential, audio-visual early fusion architec-
tures have remained under-explored, with the majority of
the recent literature focusing on late fusion or no fusion at
all. One recent prominent research direction [1, 47] seeks to
learn independent uni-modal encoders through contrastive
learning by requiring the representations of associated audio-
visual pairs to be synchronized in latent space. However,
contrastive learning is not compatible with early fusion, as
the connections between uni-modal representations lead to
trivial solutions to the contrastive learning problem. Another
line of recent work [20, 27] learns encoders with late audio-
visual fusion through a combination of contrastive learning
and masked reconstruction, focusing on downstream tasks
that require shallow integration of audio-visual features, such
as audio-visual action recognition.

One potential reason is that early fusion architectures
pose a significant training challenge due to the substantial
increase in model expressivity it offers. As a result, robust
learning frameworks are required to ensure the creation of
high-quality models and effectively harness their enhanced
capabilities. In this work, we demonstrate the effectiveness
of a masked reconstruction framework for training audio-
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Figure 1. Unlike prior works on Audio-Visual MAEs which learn either
late fusion encoders or separate encoders altogether, we demonstrate that
masked reconstruction is especially useful for learning deeply integrated
audio-visual encoders with powerful early fusion modules.

visual transformers with early-fusion of local interactions
(Fig. 1). Our hypothesis is that the simultaneous reconstruc-
tion of audio and visual inputs from a limited audio-visual
context promotes the learning of deeply integrated represen-
tations, as the model is required to understand the fine inter-
actions between the two modalities. Furthermore, masked
reconstruction has already been successfully deployed in
training uni-modal representations for a variety of input sig-
nals, including text [11], images [3, 22], and audio [28], as
well as for learning late fusion representations [20, 27]. How-
ever, unlike what was previously observed with uni-modal or
late fusion models, our work shows that masked audio-visual
reconstruction with early fusion encoders results in an inter-
esting emergent property. While uni-modal representations
encode the low-level details required for masked reconstruc-
tion, we observed that high-level semantics (surprisingly)
emerged from the tokens used for audio-visual fusion.

In addition to demonstrating the effectiveness of masked
reconstruction for early fusion transformers, we propose a
novel attention-based fusion module, which can effectively
attend to the interactions between local audio and visual
representations, thereby enhancing its capacity to capture
localized interactions between the two modalities. Take, for
instance, the sound of a dog barking. The sound signals
the presence of a dog and offers clues about its state, such
as an open mouth. While the link between the dog and its
bark can be made at a global level, our fusion module allows
the model to delve deeper into local interactions, like the
correlation between the dog’s mouth and the barking sound’s
spectral frequencies. As a result, localized fusion boosts
the quality of learned representations for numerous tasks.
However, it necessitates the model to explicitly represent all
pairwise interactions of local audio and visual tokens. Given
the vast number of tokens that current transformers process,
dense local interactions can quickly become unmanageable.
To enhance efficiency, our fusion module factorizes uni-
modal representations, thereby circumventing the need to

model all pairwise interactions.
In sum, we propose an attention-based fusion module that

can attend to local audio-visual interactions and deploy it
to learn deeply integrated audio-visual representations by
fusing uni-modal representations at early layers in the archi-
tecture. We also demonstrate that when paired with masked
reconstruction, our framework, denoted DeepAVFusion, can
learn strong audio-visual representations, yielding state-of-
the-art performance on a variety of audio-visual tasks, in-
cluding visually guided source separation, localization, and
segmentation. We extensively evaluated DeepAVFusion on
a variety of audio-visual datasets, and conducted thorough
ablation studies, showing the importance of early fusion,
dense interactions, and uni-modal pre-training when learn-
ing deeply integrated audio-visual representations.

2. Related Work
Audio-Visual Representations Learning. Audio-visual rep-
resentations learning has been addressed in many previous
works [1, 2, 14, 16, 23, 24, 30, 40, 43, 45–47, 50, 51, 65, 66]
to learn the audio-visual correlation between two distinct
modalities from videos. Such cross-modal alignments are
beneficial for many audio-visual tasks, such as audio-event
localization [31, 32, 37, 41, 42, 53, 62], audio-visual spa-
tialization [4, 17, 44, 45], audio-visual navigation [4–6] and
audio-visual parsing [33, 39, 54, 61]. In this work, our main
focus is to learn transferrable audio-visual representations
from masked audio-visual reconstruction, which is more
challenging than the above-mentioned tasks.
Masked Representations Learning. Masked representa-
tion learning aims to learn self-supervised representations
by reconstructing desired features of masked data given un-
masked parts as clues. In the recent years, masked repre-
sentation learning has achieved promising results in natu-
ral language processing [9, 11, 35, 52, 59] and computer
vision [3, 8, 12, 15, 22, 58, 60, 63] community. Typi-
cally, BERT [11] randomly masked 15% of word tokens
in the sentence and recovered them with unmasked words
to learn generalizable textual features via a self-attention
transformer [56]. A block-wise masking strategy was pro-
posed in BEiT [3] to reconstruct discrete tokens of masked
image patches for pre-training transferrable visual repre-
sentations. To simplify the masked image encoding frame-
work, MAE [22] directly reconstructed missing pixels of
75% masked patches using vision transformers [13] for self-
supervised pre-training.
Audio-visual Masked Autoencoders. More recently, re-
searchers introduced diverse masking pipelines [19, 20, 27]
to show the effectiveness of masked modeling in learning
audio-visual representations. For example, CAV-MAE [20]
combined contrastive learning and masked modeling to cap-
ture a joint and coordinated audio-visual representation.
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They tried to add a joint encoder on audio-visual features
from the last attention block of single-modality encoders to
fuse cross-modal information for audio-visual contrastive
objectives. MAViL [27] extended masked audio-video re-
construction with masked intra- and inter-modal contrastive
learning and self-training by recovering joint audio-video
contextualized representations. Despite their promising per-
formance, they ignored the importance of the early fusion of
audio-visual features in masked audio-visual reconstruction.
In contrast to AV-MAE [19] that simply concatenated the
audio and visual tokens before passing them through the
joint transformer for early fusion, we will design an early
fusion module with interactions between local and visual
representations for audio-visual masked auto-encoders. Our
audio-visual interactions are different from fusion bottle-
necks in MBT [48] that forces information between different
modalities to pass through a small number of bottleneck
latent. However, we develop a fully novel attention-based
fusion module that can effectively attend to interactions be-
tween local audio and visual representations, thus enhancing
its ability to capture fine-grained interactions between the
two modalities.
Audio-visual Early Fusion. Audio-visual fusion has been
the topic of extensive research, with several works proposing
a variety of architectures to aggregate multi-modal represen-
tations [19, 48, 49]. An example of an early fusion architec-
ture was proposed by Owens et al. [49] to learn representa-
tions from audio-visual correspondences, by concatenating
features from small unimodal encoders and feeding them
into a fused audio-visual network for the early fusion of
multisensory features. Beyond this early work, most recent
papers on audio-visual fusion [19, 48] propose alternative
fusion mechanisms, either through weight sharing [19] or
token-based fusion [48]. However, since all these works fo-
cused on downstream tasks (mostly classification) that do not
require fine multi-modal understanding, the benefits of early
fusion were not evident, with mid-level fusion often achiev-
ing optimal performance. Different from them, we proposed
an early fusion model that is designed for fine multi-modal
understanding, by attending to local interactions between
the audio and the visual while performing early fusion. The
new architecture design paired with masked reconstruction
objective is shown to outperform many of the prior works on
a variety of downstream multi-modal applications beyond
classification.

3. Method

We aim to learn audio-visual representations that can be ef-
fectively transferred to a variety of downstream tasks that
require a detailed understanding of audio-visual interactions.
To accomplish this, we introduce a novel audio-visual trans-
former architecture, named DeepAVFusion, that enables the

early fusion of audio and visual tokens through dense local
interactions. We also show how to effectively train such
early fusion transformers using multi-modal masked recon-
struction. In this section, we first describe the proposed
early fusion transformer and then introduce the multi-modal
masked reconstruction framework used for self-supervised
pre-training.

3.1. A Transformer Architecture for Joint Audio-
Visual Encoding

Downstream tasks such as visually guided sound source
separation, localization, and segmentation require a deep
understanding of fine audio-visual interactions present in the
data. However, late fusion often lacks the expressive power
to represent such interactions. We introduce a transformer
architecture that enables the early fusion of multi-modal
representations through factorized local interactions between
audio and visual tokens.
Early fusion architecture While we aim to learn deeply
integrated audio-visual representations, foundational uni-
modal transformers can still provide a strong starting point
for multi-modal learning. As such, we introduce a modu-
lar architecture to repurpose existing pre-trained uni-modal
transformers. Specifically, we propose a three-branch ar-
chitecture, illustrated in Fig. 2. The first two branches are
uni-modal transformers that process audio and visual tokens,
respectively, while the third branch is a multi-modal trans-
former that updates a set of learnable fusion tokens to fuse
audio-visual information. Formally, let Xf

0 ∈ ℜF×D be
F learnable fusion tokens. We progressively update these
tokens, at each layer l, through a fusion block Φf

l , which
can interact with and aggregate information from modality-
specific features Xv

l−1,X
a
l−1. Furthermore, fusion tokens

Xf
l−1 are fed into modality-specific blocks, Φv

l and Φa
l , to

modulate uni-modal representations from early stages in the
network. Overall, representations are updated as follows

Xf
l = Φf

l (X
f
l−1,X

v
l−1,X

a
l−1) (1)

Xv
l = Φv

l (X
v
l−1,X

f
l−1) (2)

Xa
l = Φa

l (X
a
l−1,X

f
l−1) (3)

This token update strategy is repeated for a total of L layers
to compute the final representations Xv

L,X
a
L and Xf

L.
Modality-specific blocks We use standard transformer self-
attention for the modality-specific blocks, Φv and Φa, while
allowing them to further attend to fusion tokens. Unless oth-
erwise specified, we initialize Φv and Φa from foundational
uni-modal models. This is possible since the parameter
space of the modality-specific blocks remains unchanged. In
particular, we empirically validated the benefits of bootstrap-
ping from [28] and [22], which are pre-trained on large-scale
audio and visual datasets, respectively, through a uni-modal
masked reconstruction objective.
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Figure 2. Audio-Visual Early Fusion Transformer with Dense Interactions. The architecture 1⃝ is composed of three interconnected branches - the visual,
audio, and fusion branches - each with an equal number of transformer blocks. The visual and audio branches process visual and audio tokens, respectively,
while simultaneously attending to fusion tokens. The fusion branch updates a set of learnable fusion tokens to fuse audio-visual information. To better
attend to local audio-visual interactions, we introduce a new fusion block 2⃝. At each layer l, all patch-level audio (visual) tokens, Xa

l−1(X
v
l−1), are first

aggregated into a small set of aggregation tokens, X̄a
l (X̄

v
l ) by cross-attention. Pairwise audio-visual interactions are then encoded through a linear layer into

latents X̄av
l , which are used to update the fusion tokens Xf

l by cross-attention.

Fusion blocks The design of the fusion blocks Φf is critical
to representing fine audio-visual interactions. In the context
of transformers, a natural way to combine audio-visual rep-
resentations is through a standard self-attention block which,
in addition to the fusion tokens Xf themselves, it can further
attend to all image and audio tokens, Xv

l−1 and Xa
l−1. This

approach, which we refer to as token fusion, has been used in
previous works such as MBT [48]. While intuitive, standard
self-attention cannot directly exploit interactions between
local audio-visual representations, which limits their expres-
sivity. To address this limitation, we designed a fusion block
that attends to local interactions.
Fusion with Dense Audio-Visual Interactions Interactions
between audio and visual data occur between local regions
in the image and the audio spectrogram. Given a set of na

audio tokens Xa and nv visual tokens Xv, aggregation of
local multi-modal interactions requires attending to repre-
sentations from all possible na × nv pairs, to identify the
ones that are most useful for the task at hand. While we
experimented with several ways to represent multi-modal
interactions, from bilinear aggregation to kernel-based ag-
gregation, we found that linear aggregation was sufficient to
capture audio-visual interactions for our tasks. Formally,

Xav
ij = W aXa

i +W vXv
j (4)

Xav =
[
Xav

ij ;∀i = 1, . . . , na∀j = 1, . . . , nv

]
. (5)

Fusion tokens Xf
l at layer l are then updated using stan-

dard cross-attention [56] over the representation of all local
interactions Xav

Xf
l = CrossAttention

(
Xf

l−1;X
av
l−1

)
. (6)

Factorized Audio-Visual Interactions While the procedure
above can attend to local interactions, it requires the model
to explicitly represent all possible na × nv pairs. Given
that the number of audio and visual tokens is typically large,
the number of interactions can quickly become intractable,

resulting in high memory consumption and low throughput.
To address this limitation, we introduce modality-specific
aggregation tokens updated by aggregation blocks. The goal
of the aggregation blocks is to summarize the large number
of audio/visual tokens Xa/Xv into a small set of nā/nv̄

aggregation tokens X̄a/X̄v, respectively. Specifically, at
layer l, aggregation tokens are updated by cross-attention

X̄a
l = CrossAttention

(
X̄a

l−1,X
a
l−1

)
(7)

X̄v
l = CrossAttention

(
X̄v

l−1,X
v
l−1

)
. (8)

Then, instead of explicitly representing all na × nv pair-
wise interactions, we restrict audio-visual interactions to the
sets of aggregated tokens. Formally, factorized interactions
between aggregated tokens X̄a

i and X̄v
j are represented as

X̄av
ij = W āX̄a

i +W v̄X̄v
j (9)

X̄av =
[
X̄av

ij ;∀i = 1, . . . , nā∀j = 1, . . . , nv̄

]
(10)

and the fusion tokens are updated at layer l by

Xf
l = CrossAttention

(
Xf

l−1, X̄
av
l

)
. (11)

Since we only represent interactions between the aggregated
uni-modal tokens, the number of possible interactions is
greatly reduced. We observed that a 700× reduction still
maintains the benefits obtained with local dense interactions.

3.2. Learning Early-Fusion Transformers Through
Audio-Visual Masked Auto-Encoding

Masked auto-encoders have been shown to learn effective
representations for a wide variety of input signals, including
images [3, 22] and audio [28]. Formally, the input signal
x is partitioned into a set of patch tokens x = {xt}Tt=1,
which is randomly split into the visible set Xvis = {xt}t∈V
and the masked set Xmask = {xt}t∈M (V and M are non-
overlapping index sets). In the case of images, visible and
masked tokens, Xvis and Xmask, are obtained from a grid
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of small image patches [3, 22], while in the case of audio
signals, tokens are obtained either from small windows of a
raw waveform or from small 2D patches of the audio spec-
trogram [28]. Then, to learn representations of the input
data, a transformer encoder f is first used to encode the
visible tokens Xvis = f(Xvis) ∈ ℜ|V|×d, where d denotes
the dimensionality of the token representation. These repre-
sentations together with a series of (position marked) mask
tokens Mmask are then fed to a decoder g(·) that seeks to re-
construct the masked input tokens X̂mask = g(Xvis,Mmask).
To accomplish that, the model is trained to minimize the
mean squared reconstruction error

LMAE

(
Xmask, X̂mask

)
=

1

|M|
∑

x∈Xmask

x̂∈X̂mask

∥x− x̂∥22 . (12)

Following prior work [20, 27], masked reconstruction can
be easily extended to multi-modal signals, by simultaneously
masking tokens from both audio and visual modalities. In
the case of early-fusion transformers, the encoder f is then
used to encode the visible tokens, Xv

vis and Xa
vis,

Xv
vis,X

a
vis,X

f = f(Xv
vis, X

a
vis) (13)

which, in addition to the uni-modal representations, Xv
vis

and Xa
vis, also returns a set of fusion representations Xf .

These representations are then fed to modality-specific de-
coders to reconstruct both audio and visual masked tokens,
X̂v

mask = gv(X
f
vis,M

v
mask) and X̂a

mask = ga(X
f
vis,M

a
mask),

by minimizing the loss

LAV-MAE = LMAE

(
Xv

mask, X̂
v
mask

)
+ LMAE

(
Xa

mask, X̂
a
mask

)
(14)

where LMAE is the auto-encoder loss of Eq. 12.
While multi-modal masked reconstruction has been previ-

ously explored in [20, 27], these approaches focus on learn-
ing separate audio and image encoders, fa and fv, with
multi-modal representations obtained through a late fusion
module ff . In contrast, we propose to learn a single multi-
modal early fusion encoder f , and demonstrate that masked
reconstruction is especially useful for learning multi-modal
representations capable of representing fine audio-visual in-
teractions through early fusion of local interactions between
audio and visual tokens.

4. Experiments

We now evaluate the proposed DeepAVFusion on a variety
of audio-visual downstream tasks that require a deep under-
standing of audio-visual interactions.

4.1. Implementation details

Pre-training. For pre-training, we experiment with two
datasets, namely VGG-Sounds [7] (with 144k training sam-

ples) and AudioSet [18] (with 1.73M training samples), both
of them containing diverse videos focused on audio events
and sound sources. The audio is represented by log mel
spectrograms extracted from 3s of audio at a sample rate of
16000Hz. To compute the log spectrograms, we apply an
STFT using approximately 50ms windows with a hop size
of 15ms, resulting in an input tensor of size 128× 196 (128
mel frequency bands over 196 time steps). Since we use im-
age models for the visual component, we randomly extract
single frames from within the time window defined by the
3s audio snippets. Input frames are augmented by random
crops with a minimum area of 0.5 and random horizontal
flips, and resized into a 224× 224 resolution.

Unless otherwise specified, we initialize the uni-modal
transformer blocks using modality-specific encoders pre-
trained with uni-modal masked reconstruction objectives [22,
28]. Specifically, we use the ViT-Base model from [22]
pre-trained on ImageNet [10], and the Spec-MAE model
(with the same ViT-Base architecture) pre-trained on Au-
dioSet [18]. In our base configuration, we add multi-modal
fusion blocks on all 12 layers of the model, together with 16
multi-modal fusion tokens, 8 visual aggregation tokens, and
8 audio aggregation tokens. For efficiency, we reduced the
dimensionality of the MLP embeddings using an MLP ratio
of 1 (instead of the standard 4), as well as the dimensionality
of space in which the similarity for self and cross-attention
is computed to 16 (as opposed to the standard 64).

The models were trained using the Adam optimizer [29].
Ablation and parametric studies were conducted on VG-
GSound, training for 200 epochs with a total batch size
of 512 (split between 2 GPUs and 4 iterations of gradient
accumulation). Large-scale training on AudioSet was con-
ducted for 200 epochs with a total batch size of 2048 (split
between 16 GPUs and 4 iterations of gradient accumula-
tion). In all cases, we use a base learning rate of 1.5e − 4
adjusted for the effective batch size by the linear scaling
rule lr= blr×bs/256 [21], a 40 epoch learning rate warm-
up schedule followed by cosine learning rate decay, and a
weight decay of 0.05.
Downstream tasks. After pre-training, we fine-tune our
models on a variety of downstream tasks.
Visually-guided sound source separation. Following [65],
we use a mix-and-separate strategy for training. The pre-
trained model is used to obtain audio-visual representations
that are fed to a UNet decoder to generate the separated
audio. We use a similar separation strategy by predicting
a separation mask that is directly applied to the input mix-
ture SFTF. To compute the separation masks, we deploy a
10-layer UNet decoder, which conditions its predictions on
(1) the spatially pooled visual representations and (2) five
intermediate audio representations obtained during the en-
coding stage at layers 1, 3, 6, 9, and 12. Following [65], the
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predicted separation masks are trained to regress the STFT
magnitude ratio between the separated source and the mix-
ture at each time-frequency bin. We evaluate on three differ-
ent datasets: the MUSIC [65] dataset and two subsets from
VGG-Sounds [7]. MUSIC [65] consists of 448 untrimmed
YouTube music videos of solos and duets from 11 instrument
categories, where we use 358 solo videos for training and 90
solo videos for evaluation. This dataset was slightly smaller
than the original MUSIC dataset since some videos are no
longer publicly available to be downloaded. We also use two
subsets of VGG-Sounds [7]: the VGGSound-Instruments
subset [25] which includes 32k video clips of 10s lengths
from 36 musical instrument classes, and a broader newly
defined “VGGSound-Music” subset which includes 40,908
video clips from 49 music categories for training and 1201
clips for testing. As commonly done in the source sepa-
ration literature, we measure performance using Signal-to-
Distortion Ratio (SDR), Signal-to-Artifact Ratio (SAR), and
Signal-to-Interference Ratio (SIR).
Audio-visual segmentation. We fine-tune our models on
AVSBench [67] for the tasks of Single Source Source Seg-
mentation (S4) and Audio-Visual Segmentation with Seman-
tics (AVSS). Task S4 aims to predict pixel-level segmentation
maps of the visible sound sources, while AVSS further re-
quires the model to recognize the class of the sound source
(in addition to the segmentation maps). We use the standard
train/val/test split [67] and measure performance using mIoU
and F1 scores. Similarly to the source separation task, audio-
visual representations, obtained from the pre-trained model,
are fed to a UNet decoder to generate the segmentation maps.
This decoder conditions its predictions on a globally pooled
audio representation and intermediate visual feature maps
obtained at layers 1, 3, 6, 9, and 12.
Recognition through Linear Probing or Finetuning. We fur-
ther assess the pre-trained representations on multi-modal
recognition tasks by conducting linear probing and fine-
tuning evaluations on the VGGSound-Music, VGGSound-
All, and the balanced AudioSet dataset. In all cases, we
simply attach three linear classifiers on the average pooled
visual, audio, and fusion representations, respectively. The
three classification logits are then averaged to obtain the final
prediction. As usual, on VGGSound datasets, we measure
performance by class accuracy, while on AudioSet (a multi-
label dataset) we use the average precision (AP) and Area
under the ROC curve (AUC) scores averaged across classes.

4.2. Comparison to prior work

To demonstrate the effectiveness of the proposed method,
we extensively compare it to prior work on audio-visual
downstream tasks that require a detailed understanding of
audio-visual data. Unless otherwise specified, we use our
model trained on VGGSound for comparisons to prior work,

Table 1. Sound source separation performance on the MUSIC and VG-
GSound datasets.

Method MUSIC VGGS-Instruments VGGS-Music
SDR SIR SAR SDR SIR SAR SDR SIR SAR

NMF [57] -0.89 2.38 6.28 -3.52 0.78 6.95 -5.06 0.15 7.03
RPCA [26] 0.78 4.62 7.58 0.36 2.38 7.95 -1.68 1.57 8.26
SoP [65] 3.62 7.95 9.63 2.72 5.67 9.85 1.56 4.59 10.15
MP-Net [64] 3.98 8.36 9.86 3.05 6.12 10.17 1.95 5.02 10.59
CCoL [55] 5.27 8.75 10.52 4.07 6.93 10.85 2.73 5.86 11.03
OneAVM [38] 6.27 10.68 12.35 5.89 7.85 11.23 3.67 6.53 11.85
DeepAVFusion 7.95 12.41 12.80 6.95 9.52 13.23 5.79 8.24 13.82

Table 2. Audio-visual segmentation performance on the AVSBench
dataset for the Sound Source Segmentation (S4) and Audio-Visual Seg-
mentation with Semantics (AVSS) tasks.

Method AVSBench-S4 AVSBench-AVSS
mIoU F1 mIoU F1

AVS [67, 68] 78.74 87.90 29.77 35.2
LAVISH [34] 80.10 – – –
MMVAE [36] 81.74 90.10 – –
DeepAVFusion 89.94 92.34 52.05 58.29

as this enables us to make the fairest comparisons with the
largest number of works that require pre-training.
Sound source separation. Table 1 shows the comparison be-
tween DeepAVFusion and several prior works, including tradi-
tional signal processing methods, NMF [57] and RPCA [26],
deep learning methods specialized on the source separation
task, Sound-of-Pixels [65] and MP-Net [64], and deep learn-
ing methods trained for simultaneous localization and sepa-
ration, CCoL [55] and OneAVM [38]. While all listed deep
learning approaches to source separation use (supervised) Im-
ageNet pre-trained visual encoders, our model shows strong
performance using completely unsupervised pre-training. Ta-
ble 1 shows that DeepAVFusion outperforms prior works on
all metrics. For example, on VGGSound-Music, we outper-
form the recently proposed OneAVM [38] by 2.12 SDR and
1.71 SIR, which uses supervised pre-training for the vision
component and uses source separation as just one of multi-
ple pre-training objectives. Although the different models
use different architectures for their audio-visual encoders
(which make direct comparison challenging to analyze), the
improvements demonstrated on this task indicate that visual
source separation can benefit from early-fusion to extract
rich representations from fine audio-visual interactions.
Audio-Visual Segmentation. We assess the effectiveness
of DeepAVFusion for audio-visual segmentation on the AVS-
Bench dataset [67, 68]. We compared the proposed approach
to recent state-of-the-art methods (AVS [67], LAVISH [34]
and MMVAE [36]) on the S4 and AVSS downstream tasks
(sound source segmentation without and with semantics, re-
spectively). We compare against the mIoU and F1 scores
shown in the original papers in Table 2. As can be seen,
DeepAVFusion outperforms all prior work on both tasks
Audio-visual classification. The above experiments demon-
strate the effectiveness of DeepAVFusion on audio-visual
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Table 3. Comparing DeepAVFusion trained on VGGSound and AudioSet dataset.

Pre-training
Dataset

Pre-training
Epochs

VGGSound CLS AudioSet CLS VGGSS-Music SEP AVSBench S4
LP Acc Ft Acc LP AP Ft AP SDR SIR SAR mIoU F1

VGGSound 200 53.08 58.19 30.25 32.88 5.79 8.24 13.82 89.94 92.34
AudioSet 200 53.08 57.91 32.69 34.71 6.93 9.93 13.49 90.27 92.49

Table 4. Audio-visual classification performance on VGGSound-Music
and VGGSound-All datasets, using linear probing (LP) and finetuning (FT)
protocols. Performance is measured in terms of classification accuracy [%].

Method VGGS-Music VGGS-All
LP FT LP FT

(Image) MAE [22] 48.25 53.18 37.12 43.86
AudioMAE [28] 52.73 58.29 42.05 49.53
CAV-MAE [20] 59.18 67.58 49.83 55.32
DeepAVFusion 65.32 72.25 53.08 58.19

tasks that require a detailed understanding of audio-visual in-
teractions. We further evaluated the learned representations
on recognition tasks. In particular, we compared our model
to uni-modal masked reconstruction methods, MAE [22]
and AudioMAE [28], as well as to CAV-MAE [20], a late-
fusion model trained with both masked reconstruction and
contrastive learning objectives. For a fair comparison, we
use the same ViT-Base architecture for the uni-modal en-
coders and tune the model on image-audio pairs obtained
from the VGG-Sound dataset.

As can be seen in Table 4, we outperform both uni-modal
pre-trained encoders on linear probing and fine-tuning by
significant margins. DeepAVFusion outperforms the image
MAE [22] and AudioMAE [28] by 19.62% and 13.26% on
VGGSound-Music and 19.08% and 12.49% on the full VG-
GSound dataset. These direct comparisons to uni-modal
encoders highlight the importance of learning joint repre-
sentations for multi-modal recognition. Furthermore, our
DeepAVFusion also significantly outperforms CAV-MAE
which optimizes the same audio-visual reconstruction objec-
tive of Eq. 14 but does not leverage an early fusion encoder.

It should be noted that multi-modal recognition could
be further improved by learning from audio-video data (in-
stead of audio-image pairs). However, video modeling is
beyond the scope of this work. The improvements in Table 4
demonstrate nevertheless that even tasks like audio-visual
classification of sound sources can benefit from more deeply
integrated multi-modal representations.

4.3. Pre-training data

The comparisons above were conducted using VGGSound
for pre-training. To study the impact of pre-training data
distribution and scale, we also trained our model on the
larger AudioSet dataset [18] (with 1.73M training samples).
We then tuned the resulting model on several downstream
tasks, from classification on both VGGSounds and AudioSet
to source separation on VGGSS-Musion and sound source
segmentation on AVSBench (S4 task). As can be seen in

Table 5. Ablation study of major components of DeepAVFusion.

(#) Unimodal
Pre-Training Fusion Local AV

Interactions
Linear

Acc
Sep
SDR

Segm
mIoU

(1) ✓ Early ✓ 53.08 6.53 52.05
(2) ✗ Early ✓ 44.36 2.03 29.55
(3) ✓ Early ✗ 51.19 6.15 48.71
(4) ✓ Mid ✓ 51.21 5.85 48.04
(5) ✓ Late ✓ 46.52 5.32 44.32
(6) ✓ None ✗ 39.67 4.23 38.32

Table 3, pre-training on AudioSet yields better performance
on most downstream tasks, demonstrating the scalability of
the proposed method. The only exception is classification
on VGGSound, where pre-training on VGGSound yields
slightly better performance. This is likely due to a smaller
domain gap between pre-training and fine-tuning data.

4.4. Understanding DeepAVFusion

The previous section demonstrated the efficacy of early fu-
sion of local audio-visual interactions, with the proposed
method outperforming the state-of-the-art on a wide range
of audio-visual tasks. In this section, we conduct a thorough
analysis of our framework, revealing emergent properties
in our model, and assessing the benefits of uni-modal pre-
training, fusion depth, and other major design choices of
the proposed methodology. To provide a full-picture com-
parison, we evaluate all models on five downstream tasks,
namely linear probing and fine-tuning on VGGSound, sound
source separation on VGGSound-Music, sound source local-
ization on Flickr-SoundNet, and audio-visual segmentation
with semantics on AVSBench.
Ablation studies. We begin our analysis with a series of
ablation studies in Table 5 to measure the impact of three
important components of the proposed framework, namely
1) uni-modal pre-training, 2) early fusion, and 3) audio-
visual interactions. All models use the same backbone ar-
chitecture for the uni-modal encoders and are trained to
optimize the Audio-Visual MAE objective. Model #1 is the
full DeepAVFusion framework, and the remaining models
relax each of the three components in turn. Model #2 skips
uni-modal pre-training, significantly hurting performance
when compared to model #1 on all tasks, emphasizing the
value of uni-modal pre-training, when learning deeply in-
tegrated audio-visual encoders. Model #3 performs early
fusion but uses the "token fusion" strategy similar to that
used in MBT [48]. Token fusion attends to uni-modal rep-
resentations and cannot directly capture audio-visual inter-
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Table 6. Exploration studies on the efficiency of factorized interactions.

Early
Fusion

Factorized
Interactions

Speed
(video/sec)

Memory
(GB)

Linear
Acc

Sep
SDR

Segm
mIoU

✗ ✗ 14.5 10.3 46.52 5.32 44.32
✓ ✗ 4.3 31.6 52.82 6.30 52.13
✓ ✓ 12.8 13.1 53.08 6.53 52.05

Figure 3. Nearest neighbor accuracy (NNAcc) vs training steps (Step)
using Audio, Image, Fusion Tokens from an DeepAVFusion trained on
VGGSounds.

actions, limiting the expressivity of the fusion block, and
the overall performance of the model. Models #4, #5 and
#6 use the same fusion modules with dense interactions but
perform mid-fusion (at layers 9-12), late-fusion (at layer 12),
and no fusion at all. The results indicate that mid-fusion
outperforms, late-fusion which in turn is substantially better
than no-fusion. Nevertheless, early fusion achieves the best
results across all downstream tasks.
Efficiency of factorized interactions. While audio-visual
interactions are crucial for the performance of early fusion,
they also introduce a significant computational overhead, if
not handled properly. Table 6 lists the VRAM consumption
and model throughput during inference for three models: a
baseline model without fusion, an early fusion model with
dense interactions, and our proposed early-fusion model
with factorized interactions. Dense interactions enhance
the model’s effectiveness on subsequent tasks, but at a high
computational cost, both in terms of throughput (3.3 times
slower) and memory usage (3.1 times higher). Our proposed
factorized interactions significantly cut down the computa-
tional overhead, while maintaining (and even slightly enhanc-
ing) the performance of early fusion with dense interactions.
Emergent semantics. In addition to robust performance
across various tasks, the emergent semantics in fusion tokens
are worth highlighting. Despite the masked auto-encoder
objective typically favoring representations rich in low-level
details, fusion tokens surprisingly yield higher-level seman-
tic representations. Fig. 3 shows the nearest neighbor re-
trieval performance of our DeepAVFusion using either the
learned visual, audio, or fusion tokens as queries. As can be
seen, the retrieval using fusion tokens is substantially better
than uni-modal representations (i.e. better aligned with the

Table 7. Impact of early fusion and fusion tokens.

# Linear
Acc

Sep
SDR

Segm
mIoU

12 53.08 6.53 52.05
9 52.76 6.15 49.93
6 52.29 6.12 49.02
3 51.21 5.85 48.04
1 46.52 5.32 44.32
0 39.67 4.23 38.32

(a) # Fusion layers

# Linear
Acc

Sep
SDR

Segm
mIoU

1 51.86 5.94 50.67
8 51.97 5.83 51.14
16 53.08 6.53 52.05
32 52.18 6.43 50.60

(b) # Fusion tokens

# Linear
Acc

Sep
SDR

Segm
mIoU

4 51.78 5.68 49.59
8 53.08 6.53 52.05

16 52.25 6.16 50.89

(c) # Aggr tokens

semantics of the dataset). This suggests that fusion tokens
aggregate information that is indicative of high-level seman-
tics, while uni-modal representations encode the low-level
details required for masked reconstruction.
Impact of miscellaneous design choices. Lastly, we exam-
ine the effects of the number of fusion layers, fusion tokens
and aggregation tokens in Table 7. These results reveal that
early fusion is crucial for optimal performance, with model
performance improving as fusion depth increases. Further-
more, DeepAVFusion can benefit from a relatively large num-
ber of tokens, with the performance saturating after 16 fusion
tokens and 8 aggregation tokens.

5. Conclusion

In this work, we present DeepAVFusion, a simple yet ef-
fective early fusion approach with dense interactions that
achieves efficient audio-visual pre-training for audio-visual
masked auto-encoders. We introduce learnable fusion to-
kens to aggregate modality-specific information with early
fusion from each transformer block of audio and visual en-
coders, where two variants of parallel and sequential flows
are proposed to achieve early fusion between fusion tokens
and audio-visual patch tokens. Furthermore, we leverage
multi-modal blocks with dense interactions to fuse fusion
tokens and patches across audio-visual transformer blocks
and achieve efficient downstream fine-tuning with factorized
attention blocks. Empirical experiments on Flick-SoundNet,
VGG-Instruments, VGG-Music, VGGSound-All, and AVS-
Bench datasets demonstrate the state-of-the-art performance
of our DeepAVFusion in linear probing, fine-tuning classi-
fication, visual sound localization, sound separation, and
audio-visual segmentation.
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