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Abstract

The recent success in revealing scene details from sparse
3D point clouds obtained via structure-from-motion has
raised significant privacy concerns in visual localization.
One prominent approach for mitigating this issue is to lift
3D points to 3D lines thereby reducing the effectiveness of
the scene inversion attacks, but this comes at the cost of in-
creased algorithmic complexity for camera localization due
to weaker geometric constraints induced by line clouds. To
overcome this limitation, we propose a new lifting approach
called “ray cloud”, whereby each lifted 3D line intersects at
one of two predefined locations, depicting omnidirectional
rays from two cameras. This yields two benefits, i) cam-
era localization can now be cast as relative pose estima-
tion between the query image and the calibrated rig of two
perspective cameras which can be efficiently solved using a
variant of the 5-point algorithm, and ii) the ray cloud in-
troduces erroneous estimations for the density-based inver-
sion attack, degrading the quality of scene recovery. More-
over, we explore possible modifications of the inversion at-
tack to better recover scenes from the ray clouds and pro-
pose a ray sampling technique to reduce the effectiveness
of the modified attack. Experimental results on two public
datasets show real-time localization speed as well as en-
hanced privacy-preserving capability over the state-of-the-
art without overly sacrificing the localization accuracy.

1. Introduction

Visual localization refers to the task of estimating the
camera pose w.r.t. a known 3D scene given a query image.
It serves a central role for cutting-edge applications involv-
ing robotics [18], augmented reality (AR) [3], virtual re-
ality (VR) [6] and simultaneous localization and mapping
(SLAM) [11, 29, 33]. To this date, many visual localiza-
tion algorithms [27, 37] still utilize sparse 3D point clouds
constructed via structure-from-motion (SfM) [1, 44, 45, 48]
through which the camera pose is estimated from the cor-
respondences between 2D image features and 3D points.
This is commonly solved using a perspective-n-point (PnP)
solver [12, 20, 37] equipped with the random sample con-
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(c) Comparison of revealed scene geometries and images
Figure 1. Main characteristics of the proposed ray cloud. (a) shows
3D points lifted as 3D rays half of which intersects at center 1 and
the other half intersects at center 2. Estimating the camera pose re-
sembles relative pose estimation with respect to a calibrated rig of
perspective cameras. As shown in (b), this allows real-time single-
image-based localization on two public datasets [22, 55] while pre-
venting scene-revealing attacks [7, 40] as shown in (c).

sensus (RANSAC) meta-algorithm [9, 15, 42] or its deep
network alternative such as differentiable RANSAC [4, 5].

Surprisingly, it was recently shown [8, 10, 13, 30, 40,
57, 58] that a sparse 3D point cloud may contain enough
information to reveal image details of the underlying scene.
Most prominently, Pittaluga et al. [40] demonstrated a cas-
caded U-Net model [43] can generate high-fidelity images
of the scene just from the 2D projection of sparse 3D points
and their SIFT features [28]. This raised significant privacy
concerns [39, 50] as anyone with access to the 3D point
cloud could potentially search for sensitive details in the
private scene by employing this scene inversion network.

Currently, the mainstream approach for preventing the
aforementioned image inversion attack on the sparse 3D
point cloud is geometric lifting [26, 46, 50], whereby each
3D point is transformed to a 3D line passing through the
original point with aims to conceal the 3D scene geometry
(see Fig. 2).While the earlier approach of randomly drawing
the line direction (also known as the uniform line cloud) was
shown to be susceptible to geometry inversion attack [7],
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this was remedied by recent methods utilizing pairing of 3D
points [26, 36] to increase ambiguity in the lifted scene rep-
resentation. Nevertheless, single image-based localization
speeds for these algorithms [26, 36] are far from achieving
real-time performance, providing motivation for this work.

In this paper, we present a new geometric lifting ap-
proach called ray cloud with aims to address above issue
of slow camera localization runtime exhibited by previous
studies. As will be illustrated in Sec. 3, ray cloud is sim-
ple to construct and robust to the geometry inversion at-
tack [7]. Most importantly, camera localization using a ray
cloud can be formulated as a well-known relative pose esti-
mation problem between the query image and a virtual cal-
ibrated rig of cameras, enabling utilization of the efficient
5-point algorithm [35] with known scale [59]. Moreover, by
modifying and enhancing the geometry inversion attack [7]
in Sec. 4, we explore potential hidden privacy risks associ-
ated with ray clouds, and subsequently propose a technique
to enhance the privacy protection of ray clouds in Sec. 5.

The contributions of this work are summarized below:
• an efficient privacy-preserving visual localization frame-

work based on a new lifting approach called 3D ray cloud,
• customization of the geometry inversion attack [7] to

yield undesired (privacy leak) corner cases for ray clouds,
• a voxel-based ray sampling technique to prevent above

privacy leaks by disrupting nearest neighbor statistic and
inducing erroneous recovery of the scene points, and

• extensive experimental comparison of ray cloud against
other line cloud-based approaches on two public datasets,
achieving real-time single-image based localization speed
for the first time while preserving privacy-preserving ca-
pability and maintaining similar localization accuracy.

2. Related work
Privacy threats from image inversion attack While sev-
eral prior studies addressed the possibility of revealing im-
ages from sparse keypoints [13, 19, 30, 57, 58], it was Pit-
taluga et al. [40] who posed a real privacy threat for the
first time by recovering detailed scene images from a sparse
3D point cloud using a cascaded U-Net [43]. This network
called InvSfM takes in the 2D locations of the projected 3D
points as well as the corresponding depths and SIFT de-
scriptors, and outputs a synthesized image of the scene.

More recently, Song et al. [49] used a PointNet++ ar-
chitecture to extract deep features and synthesize scene im-
ages. Dangwal et al. [10] devised a generic inversion model
that can work with various descriptors [2, 28, 53] and pro-
posed selective feature suppression to hide privacy-sensitive
regions. Nonetheless, the pretrained InvSfM model still
serves as the baseline for qualitative and quantitative analy-
ses in privacy-preserving visual localization [7, 26, 36, 38].
Privacy-preserving scene representations After the
emergence of InvSfM [40], Speciale et al. [50] quickly em-

braced a geometric lifting approach, also known as the uni-
form line cloud, where each 3D point in the original sparse
point cloud is replaced by a 3D line passing through the
point with its direction drawn from a uniform distribution
on the unit sphere. This scene representation aims to intro-
duce anonymity to the locations of the 3D points thereby
preventing any image inversion via InvSfM. The work was
later extended by Shibuya et al. [46] to visual SLAM with
a prebuilt map provided in the form of uniform line cloud.

Unfortunately, above methods [46, 50] are now out-
dated and susceptible to the geometry inversion attack pro-
posed by Chelani et al. [7], which successfully recovers the
sparse 3D point cloud from a uniform line cloud (details in
the next subsection). To overcome this limitation, Lee et
al. [26] proposed to draw 3D lines through random pairs
of 3D points, thereby introducing non-uniform line distri-
butions and multiple 3D point candidates for each line both
of which are empirically shown to hinder point cloud in-
version. Pan et al. [36] proposed to permute the coordi-
nates of random pairs of keypoints to preserve privacy while
still enabling localization from multiple axis-aligned lines.
Geppert et al. [16] presented a partial localization approach
whereby three 1-dimensional partial maps are constructed
from the 3D points and separately stored to enhance secu-
rity. While these approaches can evade the geometry inver-
sion attack, they are not runtime-efficient to allow real-time
camera localization from single images. This issue is ad-
dressed through use of the ray cloud proposed in this work.

Other explored approaches include keypoint lifting [14],
carving [34] or obfuscation [41], whereby the feature de-
scriptors of the 3D points are transformed to hide keypoint
details, but this does not conceal the point cloud geometry.

Privacy threats for line clouds Chelani et al. [7] pre-
sented a density-based inversion attack that can reveal the
3D point geometry from a uniform line cloud [50]. While
the posterior probability of the point cloud P given a line
cloud L can be expressed as P (P|L) ∝ P (P)P (L|P) us-
ing Bayes’ rule, it is noted that the likelihood P (L|P) is
constant for uniform line clouds. Hence, maximizing the
posterior amounts to maximizing the marginal prior P (P).

For maximizing P (P), Chelani et al. [7] resorted to
an empirical observation that for any two 3D points xA

and xB with their corresponding uniformly-drawn lines
lA ∈ Gr(1, 3) and lB ∈ Gr(1, 3), P (

∥∥xA − x⊥
A

∥∥
2

<

∥xA − xB∥2) ≈ 0.8, where x⊥
A denotes the point on lA

closest to lB . This implies that if xA and xB are close to
each other, then x⊥

A is likely to become a good approxima-
tion of xA. Hence, P (P) can be maximized if the nearest
neighboring points of each 3D point are known in advance.

As it is non-trivial to find a set of true k-nearest neigh-
boring points in line clouds, Chelani et al. [7] approximates
this by the set of K-nearest lines {lK} for each line li, ex-
pecting some to include the true positives of the k-nearest
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(a) Point cloud (b) Uniform line cloud [50] (c) Paired-Point Lifting (PPL) [26] (d) Ray cloud (ours)

Figure 2. 3D line clouds yielded from different lifting approaches on the Office1 manolis in the Energy Landscape [55] dataset. Note each
line (ray) in the ray cloud passes through one of two center points. We show 10% of the total number of lines for visual comparison.

points when K > k is large enough (we distinguish K for
lines and k for points). Bearing this assumption, [7] com-
putes the closest point x⊥

k to each of the K-nearest lines for
the current line li, builds a histogram of closest points {x⊥

k }
and finds the peak of the histogram via Kuiper’s test [23] to
estimate the point xi. This attack is effective for uniform
line clouds [50], allowing recovered points to be used for
scene recovery with InvSfM [40]. However, it is less effec-
tive against more recent line-based approaches [26, 36] and
ray clouds presented in this work.

Camera localization using line clouds As mentioned in
Sec. 1, camera localization typically involves a RANSAC
algorithm [15] coupled with an efficient minimal solver
that can run fast over thounsands of iterations [25]. For
single-image based localization, a standard line cloud intro-
duces 2D points-to-3D line constraints, which are weaker
than 2D point-to-3D point constraints provided by the point
clouds. Consequently, the minimal solver for line clouds
(p6L) requires 6 correspondences between 2D points and
3D lines [50]. Since p6L innately uses the solver for gen-
eralized relative pose estimation [52], achieving real-time
speed with p6L is challenging due to the large number of
possible solutions (up to 64) and high algorithmic complex-
ity [52, 56]. Shibuya et al. [46] achieved real-time localiza-
tion with line clouds in the SLAM setup, but this requires a
video stream as input and construction of a client-side point
map. On the other hand, we will show it is possible to per-
form image-based localization in real-time using ray clouds.

3. 3D Ray cloud

We now illustrate the process of constructing a 3D ray
cloud shown in Fig. 2 and estimating camera pose from ray
clouds. We also discuss inversion attack [7] on ray clouds.

Motivation The concept of lifting 3D lines to intersect
at a particular point has been briefly addressed without de-
tailed investigation in [7, 47]. Chelani et al. [7] mentioned
that, if all lines were to intersect at a single point, then the
geometry inversion attack in Sec. 2 would fail. This is be-
cause the histogram of closest points (to other lines) be-
comes concentrated about the point of intersection, leading
to a degenerate solution. Unfortunately, this representation
possesses an intrinsic limitation that the camera pose can

(a) Original 3D points (b) Center assignment (c) Ray cloud
Figure 3. Illustration of the procedure for selecting points of inter-
section and constructing a 3D ray cloud.

only be recovered up to scale as camera localization resem-
bles relative pose estimation [35] between the query camera
and the intersecting 3D lines. We aim to overcome this is-
sue by utilizing two intersection points. This can be viewed
as adding another camera to the scene, forming a calibrated
rig of perspective cameras to resolve the scale ambiguity.

3.1. Construction procedure

Lifting 3D points to a ray cloud comprises three steps,
namely setting two ray centers and assigning 3D points to
one of two ray centers. We choose to set the ray centers
by applying the K-means clustering algorithm on the point
cloud with K=2, from which the centers of two clusters are
set as the ray centers (explained below). Then, we assign
half of randomly sampled points from the point cloud to
center 1 (c1 ∈ R3), and the other half to center 2 (c2 ∈ R3).
Note this assignment is not related to the K-means cluster-
ing. Finally, each point xi is lifted to a line as cj+λ(xi−cj)
for λ ∈ R, where j ∈ [1, 2] is the assigned center index
for point i. The final output resembles omnidirectional rays
from two perspective cameras (see Fig. 3).

Effect of changing ray center locations If the ray cen-
ters are located very close to each other, then they begin to
resemble a single ray center, increasing ambiguity in trans-
lation scale. On the other hand, if the ray centers are distant
from each other and the scene, then the resulting rays are
nearly parallel which degrades localization accuracy. We
empirically observe that using the centers from K-means
clustering usually avoids both extreme cases (see [32]).

3.2. Camera pose estimation

We now illustrate an efficient localization approach for
ray clouds that can benefit from faster inference speed com-
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Figure 4. Illustration of minimal pose estimation problems solved
by different line representations. Camera localization using a uni-
form line cloud can be seen as the special case of generalized rela-
tive pose estimation problem [52] involving one perspective cam-
era (query) and one generalized camera (line cloud). On the other
hand, camera localization using a ray cloud can be regarded as the
case of perspective relative pose estimation problem between the
query image and a rig of calibrated cameras (ray cloud). The latter
enjoys shorter runtime as shown in Sec. 6 partly due to stronger
ray constraints reducing the number of algebraic solutions.

pared to other line-based scene representations [26, 36, 50].
This is inspired by the illustration in Fig. 4b that the ray
cloud can be viewed as two virtual perspective cameras lo-
cated at the ray centers c1 ∈ R3 and c2 ∈ R3. Since the rays
from these cameras are omnidirectional, we can set their ro-
tation matrices R1, R2 ∈ SO(3) to be aligned with world
coordinates, i.e. [R1|t1] = [I| − c1] and [R2|t2] = [I| − c2],
where t1, t2 ∈ R3 are the camera translations.

Below, we show that having 5 correspondences between
2D keypoints from the query image and 3D rays from a ran-
domly selected virtual camera and one correspondence be-
tween a 2D query keypoint and a 3D ray from a remaining
virtual camera allows us to estimate the absolute camera
pose using a ray cloud. We denote this adaptation of mini-
mal 5+1 solver [59] as the perspective-(5+1)-rays (p5+1R)
solver. Similar to previous studies [26, 50], we assume the
camera intrinsics K ∈ R3×3 are known.

p5+1R solver We start by estimating the relative pose be-
tween the query image and the first virtual camera using
the 5-point algorithm [35]. It yields multiple candidates for
the relative pose of the query image w.r.t. the first virtual
camera defined as [Rq1|αt̂q1], where Rq1 ∈ SO(3) is the
relative rotation, t̂q1 ∈ S2 is the normalized relative trans-
lation and α ∈ R is an unknown scale factor. Subsequently,
the absolute pose of query camera is [Rq1|αt̂q1 − Rq1c1].

In order to disambiguate α, we utilize the additional cor-
respondence between a normalized query keypoint p :=
(p1, p2)

⊤ ∈ R2 and a 3D ray l ∈ Gr(1, 3) from the sec-
ond virtual camera. We note the ray from the query camera
center passing through p would ideally intersect l. Express-
ing both rays in the query-centered coordinates yields

λ1[p1, p2, 1]
⊤ = λ2Rq1n̂+ αt̂q1 − Rq1c1 (1)

where n̂ ∈ S2 is the line direction of l in world coordi-
nates and λ1, λ2 ∈ R are scale parameters. Since we have 3
equations with 3 unknowns, α can be determined.

While the p5+1R solver requires 6 correspondences like
p6L [26, 50], the utilized 5-point algorithm only yields up to
10 solutions [35] that is smaller than 64 solutions from the
generalized solver [52] in p6L. This significantly reduces
the computational complexity for determining the correct
configuration. We also enforce the cheirality constraint [17]
on the query image to discard infeasible solutions.

Robust estimation We equip above p5+1R solver with
the LO-RANSAC [31] algorithm for robust camera local-
ization. For selecting the best model candidate, we adopt an
MLESAC [54]-type cost function based on the squared sum
of epipolar distances in the query image defined as

∑
(i,j)∈Ω

ρ

(
([p⊤

i , 1] Ej n̂i)
2

(e⊤j1n̂i)2 + (e⊤j2n̂i)2

)
, (2)

where ρ(s) := min(s, τ2) is a robust kernel with upper
bound of threshold τ2, Ω denotes the pairing arrangement of
which keypoint i matches with ray i from center j, pi ∈ R2

is the i-th normalized keypoint in the query image, n̂i ∈ S2

is ray i passing through the ray center j ∈ [1, 2], and
Ej := [ej1, ej2, ej3]

⊤ is the essential matrix between the
virtual camera j and the query camera. Since the two virtual
cameras share the same rotation and only differ by transla-
tion, E2 can be easily computed from E1. The best solution
from RANSAC is refined by iteratively minimizing (2).

3.3. Geometry inversion attack on ray clouds

We show that applying the geometry inversion attack [7]
naively to a ray cloud yields a degenerate solution. For this
purpose, we make use of some prior knowledge regarding
the probabilistic viewpoint and algorithmic details of the
geometry inversion attack [7] reviewed in Sec. 2.

Let xi ∈ R3 be the i-th point and li ∈ Gr(1, 3) be
its lifted ray. The point cloud is defined as P:={xi} and
the ray cloud is defined as L:={li}. Since ray centers
C:={c1, c2} are easily found by inspecting the intersection
points, we aim to maximize the conditional posterior of P ,

P (P|L, C) ∝ P (L|P, C)P (P|C). (3)

Note the conditional likelihood P (L|P, C) is a non-zero
constant as long as each ray intersects the corresponding
pair of ray center and 3D point and the probability of each
ray being assigned to one of the ray centers is equally likely.
As long as each point xi is estimated to be on its lifted ray
li, then maximizing (3) amounts to maximizing P (P|C).

However, since P (P|C) can depend significantly on the
ray centers C, it seems difficult to yield a point statistic sim-
ilar to P (P) in [7]. We implicitly figure out the difference
between P (P|C) and the original prior P (P) by applying
the geometry inversion attack [7], which maximizes P (P),
as-is to the ray cloud. As visualized in Fig. 5a, the estimated
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Center2

Estimated peak

Center1

Original point

(a) Naive neighbor estimation [7]

Center2

Center1

Estimated peakOriginal point

(b) Modified neighbor estimation

Figure 5. Illustration of peak-finding [7] results from (a) naive
neighbor-lines estimation [7] and (b) modified neighbor-lines esti-
mation. (a) indicates that the estimated peak will always be located
at the center of the current ray. In contrast, our modification only
samples the neighborhood of lines using the bundle of rays origi-
nating from the opposite center, eliminating the trivial solution.

point for each ray becomes the center of the constituent ray,
yielding a trivial recovery. This is because, in the process
of the geometric inversion, the K-nearest neighboring lines
include a bundle of rays originating from the same center,
which yields an erroneous peak at the ray center on the his-
togram of point candidates, hindering general recovery.

4. Adapted inversion attack for ray clouds
In this section, we illustrate two main reasons for trivial

recovery of 3D points in Sec. 3.3, namely i) lower signifi-
cance of nearest points for estimating 3D points, and ii) bad
estimation of true nearest rays lifted from nearest points.

First, the assumption in [7] that the near-80% of candi-
dates which are closest to lines lifted from k-nearest neigh-
boring points yields accurate points does not hold for ray
clouds as some of the rays from these k-nearest points will
yield estimates at the current ray center. Second, the as-
sumption in [7] that K-nearest lines will overlap enough
with the set of rays lifted from the k-nearest points (K > k)
is weakened as the K-nearest lines will be rays sharing the
same center whose original points may be far away from the
original point of the current lifted ray.

In Sec. 4, we attempt to address these issues by consider-
ing known ray centers in order to approximately maximize
P (P|C) instead of P (P). We also aim to address trivial
solutions by incorporating the known positions of the ray
centers C to approximate maximizing over P (P|C).

4.1. Eliminating the degenerate solution

The trivial recovery of 3D points (estimated 3D points P
always located at the two ray centers C) is due to rays inter-
secting the same ray center always ending up as the nearest
neighboring (NN) lines, producing the peak density of clos-
est points at the ray center (see Fig. 5a). To bypass this
issue, we exclude the rays intersecting through the current
ray when constructing the set of nearest neighboring lines
for estimating the peak density, and only select the NN-lines
from the other ray center. This can be viewed as incorpo-
rating the known locations of the ray centers for recovering
the points (see Fig. 5b) to maximize P (P|C).

(a) ULC [50] (oracle) (b) Ray cloud (oracle) (c) Ray cloud

Figure 6. 3D point cloud recovered on different settings of near-
est neighbors for the Apt1 living from [55] (black–original points,
red–recovered points). In (b) and (c), we have only utilized neigh-
boring rays connected to the opposite ray center to avoid degener-
ate solutions (in Sec. 4.1). For the oracle cases of (a) and (b), rays
from the true nearest points of the original points are used to esti-
mate the points, showing feasible recovery. In contrast, when the
nearest neighboring points are approximated by the nearest neigh-
boring rays, it leads to worse recovery as shown in (c). This im-
plies false positive rays, which are close but whose original points
are distant, significantly degrade the recovery of points.

Fig. 6b shows that, in the oracle case when the ground
truth nearest points of the current ray’s original 3D point
are known, discarding NN-lines intersecting the current ray
can avoid degenerate solution and yield more feasible point
cloud. At the same time, Fig. 6c shows that the actual point
recovery from a ray cloud is worse. We conjecture this is
due to the misalignment between the set of nearest neigh-
boring rays and the set of nearest neighboring points for a
given point and its lifted ray which is addressed in Sec. 4.2.

4.2. Rejecting rays closely aligned to the baseline

We first analyze the cause of the bad recovery in Fig. 6c
even after applying the trick in Sec. 4.1. We define the rays
close to the current ray but whose original points are far
away from the original point of the current ray as the false
positive rays. By comparing the oracle case (b) and the nor-
mal case (c) in Fig. 6, we anticipate that the false positive
rays are the culprits for degraded estimation of the points.

We conjecture two cases where the false positive rays can
lead to misleading estimations. First, when there are many
rays from the opposite center that are in the proximity of the
current ray center, the peak of the histogram may be located
near the current ray center. Vice versa, when the current ray
passes through the denser area around the opposite center,
the peak will be located near the opposite center. These two
cases partially cause the 3D points to shrink (see Fig. 6c).
Second, when there are many diverse rays in the proximity
of the current ray, multiple peaks can be formed from the
point candidates (closest points on the ray to neighboring
rays) along the current ray. This can arise when the ray
centers are embedded in a room-like environment to form
congested rays (see [32] for more discussions).

Out of above cases, we attempt to reduce the shrinking
effect of false positive rays by incorporating known C and
not considering any rays from the opposite center which are
within the proximity of the current ray center. This can be
effectively achieved by excluding a fraction (β) of rays most
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Line from center 2

(a) Visualization of rejection-sampling of rays near the baseline

Incorrect peakIncorrect peak

(b) Peak-fiding [7] w/o rejection

Correct peak

Rejected 

(c) Peak-finding [7] with rejection
Figure 7. Illustration of the effect of line rejection method. For a
synthetic room comprising 20k points, in (b), peak estimation fails
to estimate the correct point due to false positive rays. In (c), the
rejection excludes false candidates to estimate an accurate point.

aligned with the baseline when estimating the histogram of
point candidates. Fig. 7 illustrates the effect of this ray re-
jection which can lead to better point estimation.

We outline some limitations of this approach. First, if the
ray lifted from a 3D point is within the region of rejection
sampling, then the estimated point can be inaccurate due to
the lack of nearby rays to support the estimation process.
Second, the method introduces a hyperparameter (β) that
needs to be carefully set (see results in Table 2).

5. Voxel-based ray sampling
We now present a new ray sampling technique that can

neutralize the modified inversion attack from Sec. 4.
Our approach is motivated from Fig. 6 that the quality of

point recovery depends on finding the true point candidates
once the degenerate solution is eliminated. This time, we try
to discourage the true nearest neighboring points from be-
ing included in the set of K-nearest neighboring lines when
lifted to rays with aims to lower the inversion accuracy.

For the above purpose, we partition the 3D points into
voxels and assign one of two ray centers to each voxel such
that i) 3D points within the same voxel are lifted to rays in-
tersecting through the assigned ray center and ii) no neigh-
boring voxels share the same ray center (see Fig. 8). As
long as the voxels are large enough, many 3D points except
those near the voxel boundaries will have most of their re-
spective k-nearest points to be inside the same voxel and
subsequently share the same ray center when lifted to rays.
Since the rays lifted from these true k-nearest neighboring
points inside the same voxel will yield a trivial solution as
illustrated in Sec. 4.1, these will be disallowed from being
used for peak estimation. Hence, we essentially minimize
the overlap between the set of K-nearest lines and the set of
k-nearest points which is a necessary condition for success-
ful recovery of points from lines in [7].

Lifting

Center2

Center1

Grid assignmentVoxel-gridPoint cloud

Figure 8. The procedure of voxel-based ray sampling. After parti-
tioning the point cloud into a voxel grid, the whole grid is divided
into two clusters in such a way that neighboring grids belong to
different clusters. Then, all 3D points in each grid within the same
cluster are paired with one center, while the other cluster is paired
with the remaining center for lifting.

We adopt a 3D checkerboard pattern for assigning ray
centers to voxels with aims to achieve stable camera local-
ization accuracy by uniformly distributing rays from dif-
ferent ray centers across the scene. While a larger voxel
size will allow more true nearest neighboring points to be
discarded and provide better privacy protection, it will also
cause the rays to be more non-uniform and lower the cam-
era localization accuracy (see [32]). Currently, the voxel
size needs to be manually determined for each dataset as
the optimal trade-off point can vary across different scenes.

6. Experimental Results
We present comprehensive experimental results showing

the effectiveness of ray cloud in terms of localization accu-
racy, inference speed, and privacy-preserving performance.

Datasets We used the same two public datasets as in [7,
26]. The Energy Landscape [55] dataset consists of 12 in-
door scenes with multiple sequences of scanned RGB im-
ages. The Cambridge [21, 22] dataset comprises 6 distinct
outdoor landmarks, containing multiple image frames with
labeled 6-DOF camera poses for the camera re-localization.
As in [26], we excluded the scenes of Street and Great
Court from [22] due to the presence of large geometric
outliers. We followed the same experimental protocols
from [26, 50] for constructing sparse 3D point clouds us-
ing COLMAP [44] and evaluation. Separated queries not
included in 3D map construction were used for evaluation.

Implementation details We used Poselib [24] to utilize
the p5+1R solver and the repository of PPL [26] to run
experiments. We report coarse estimation results of inver-
sion in ray cloud and voxel-based ray cloud as the refine
estimation [7] diverges due to incorrect initial estimation
(see [32]). We used a workstation with an Intel CPU i9-
13900K running at 3.0 GHz and NVIDIA RTX 4090 GPUs.

Evaluation metrics For camera localization, we esti-
mated the absolute 6-DOF pose of the query image with
given 2D-3D correspondences. We define R ∈ SO(3) and
t ∈ R3 as the ground truth camera rotation and translation
respectively, and R̂ ∈ SO(3) and t̂ ∈ R3 as the estimated
rotation and translation respectively. Then, we obtained the
estimated pose errors by following [26, 50, 51], where the
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Dataset Scene
representation

Minimal
solver

Pose error RANSAC Privacy preserving
∆R ↓ ∆t ↓ i r t ↓ eg ↑ PSNR ↓ SSIM ↓ MAE ↑

mean median mean median mean mean mean median mean mean mean

Energy
Landscape

Point cloud p3P 0.178 0.031 0.007 0.001 11 99.54 4 - 15.76 0.516 33.29
Uniform line cloud [50] p6L 0.272 0.098 0.010 0.003 124 81.12 90 0.045 13.45 0.403 42.83

PPL [26] p6L 0.292 0.113 0.011 0.004 123 81.51 88 0.056 10.42 0.355 62.61
PPL+ [26] p6L 0.293 0.115 0.011 0.004 125 81.30 85 0.056 10.39 0.355 62.70

Ray cloud (ours) p5+1R 0.262 0.087 0.010 0.003 146 80.03 6 0.669 10.29 0.319 62.97
Voxel-based ray cloud (ours) p5+1R 0.297 0.116 0.011 0.004 144 80.15 6 0.770 10.05 0.315 64.84

Cambridge

Point cloud p3P 0.700 0.101 0.142 0.043 12 98.48 7 - 14.00 0.433 39.40
Uniform line cloud [50] p6L 0.775 0.169 0.172 0.066 436 71.87 289 0.745 12.71 0.331 46.08

PPL [26] p6L 0.775 0.183 0.181 0.081 264 74.49 186 0.977 11.21 0.296 55.53
PPL+ [26] p6L 0.764 0.183 0.178 0.081 284 74.11 190 0.948 11.16 0.297 55.91

Ray cloud (ours) p5+1R 0.855 0.222 0.219 0.107 239 74.89 12 9.614 10.41 0.261 60.98
Voxel-based ray cloud (ours) p5+1R 0.880 0.256 0.235 0.120 250 75.24 12 10.54 10.23 0.253 62.56

Table 1. Comparison of localization and privacy-preserving performance with different 3D scene representations (∆R: rotation error [◦],
∆t: translation error [m], i: number of iterations, r: inlier ratio (%), t: runtime [ms], eg: geometric (3D point) error [m]). We applied
modified inversion attack from Sec. 4 with 25% line rejection to ray cloud and voxel-based ray cloud with voxel size of 0.5m and 5.0m for
Energy Landscape and Cambridge respectively. Bold indicate the best result in each metric among privacy-preserving representations.

(a) Ground truth (b) Uniform line cloud [50] (c) PPL [26] (d) Ray cloud (e) Voxel-based ray cloud
Figure 9. Comparison of revealed scene geometries and images for Apt2 bed [55]. Modified inversion attack is applied to (d) and (e).

rotational error is computed as ∆R = arccos Tr(R̂⊤R)−1
2 and

the translation error computed as ∆t =
∥∥R̂⊤t̂− R⊤t

∥∥
2
.

To compare the quality of recovered point clouds, we
calculated the 3D median point errors between the orig-
inal and estimated points in meters as in [26]. We also
compared the quality of revealed images by feeding recov-
ered point cloud and ground truth camera pose of query im-
ages to InvSfM [39] and calculating peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM),
and mean absolute error (MAE) values against the queries.

6.1. Camera localization accuracy and runtime

As shown in Table 1, our ray cloud family of ap-
proaches achieved the fastest inference speed among the
line-lifting methods with no significant decline in pose ac-
curacy. Notably, these achieved real-time performance on
both datasets, reaching 137 FPS for the ray cloud and 136
FPS for the voxel-based ray cloud on average. As further
demonstrated in [32], this is mainly due to the introduction
of the p5+1R solver which is only available for ray clouds.

The ray cloud showed the lowest localization error
on [55] but slightly higher errors than ULC and PPL on [22].
We conjecture this is due to the increased baseline between
two ray centers for the outdoor scenes. We also note that
the voxel-based ray cloud does not exhibit a significant re-
duction in pose error compared to the standard ray cloud.

6.2. Quality of revealed scene geometry and images

The quantitative comparisons of scene reconstruction
quality are also shown in Table 1. For a fair comparison,
we applied our adapted inversion attack in Sec. 4 for ray
cloud and voxel-based ray cloud, while we used the origi-
nal geometry inversion attack [7] with 3 refinement steps for
uniform line cloud (ULC), PPL and PPL+. We set β=25%
for the ray rejection threshold as it shows the best point esti-
mation in Table 2. Results with β=50% are included in [32].

Recovery of 3D point clouds The median point errors for
ray cloud and voxel-based ray cloud are notably larger than
those of other methods, even after applying our adjusted
density-based attacks. Additionally, to validate the impact
of our adapted inversion attack, we compared the geomet-
ric error with and without rejection sampling, showing that
rejection sampling contributes to error reduction in Table 2.
The qualitative result in Fig. 9 shows that the results from
ray cloud and voxel-based ray cloud are unrecognizable.

Degraded quality of scene details Fig. 9 shows the im-
ages recovered from the ray cloud and the voxel-based ray
cloud are hardly recognizable. In Table. 1, the voxel-based
ray cloud yields the lowest PSNR, SSIM and MAE values
with the original ray cloud as a runner-up. This indicates
large point errors exhibited by ray clouds translate to lower
image quality.
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Figure 10. Average localization performance vs. reconstructed image quality across different levels of the ray density on the Energy
Landscape [55] dataset. The tested line densities are 100% (biggest marker), 50%, 25% and 10% (smallest marker).

Dataset Rejection
threshold (β)

eg[m] PSNR SSIM MAE
median mean mean mean

Energy
Landscape

None 1.027 9.959 0.330 66.06
10 (%) 0.761 10.24 0.323 63.62
25 (%) 0.669 10.29 0.319 62.97
50 (%) 0.746 10.32 0.320 62.52

Cambridge

None 11.47 10.10 0.273 64.06
10 (%) 10.29 10.35 0.267 61.60
25 (%) 9.614 10.41 0.261 60.98
50 (%) 12.98 9.944 0.242 64.70

Table 2. Effect of ray rejection (see Sec. 4.2) on the quality of
scene recovery. Rejecting rays close to the baseline of two ray
centers overall reduces the point estimation errors. Bold represents
the best inversion results amongst different thresholds.

Additionally, Fig. 10 comparing the pose estimation er-
rors against image reconstruction qualities demonstrate that
the ray cloud-based approaches are capable of preserving
the privacy especially for dense scenes while significantly
decreasing the inference runtime. In contrast, the voxel-
based ray cloud shows slightly higher pose estimation errors
potentially due to coagulation of rays yielding less uniform
distribution of rays across the scene. The fact that the SSIM
value increases for lower density ray clouds also needs fur-
ther investigation (see [32] for qualitative results).

In Fig. 11, we demonstrate some corner cases revealed
through our adapted inversion attack in Sec. 4. Fig. 11d
shows the voxel-based ray sampling proposed in Sec. 5 can
degrade the quality of scene recovery.

7. Conclusion

We presented a privacy-preserving visual localization
framework based on a new scene representation called 3D
ray cloud, which is robust to the known geometry inver-
sion attack and achieves an order of magnitude faster lo-
calization than previous line-based approaches without sig-
nificantly compromising the localization accuracy. This is

(a) ground truth (b) w/o rejection (c) w/ rejection (d) voxel-based
Figure 11. Illustration of point-to-image translation [40] results
with point clouds from (a) ground truth, (b) recovered from ray
cloud without rejection sampling, (c) recovered with rejection
sampling, and (d) recovered from voxel-based ray cloud. While (c)
shows improved recovery via ray rejection in Sec. 4.2, (d) shows
voxel-based ray sampling lowering the reconstruction quality.

enabled by the intrinsic geometry of the ray cloud allowing
utilization of efficient widely-available perspective relative
pose estimation solver. We have also explored potential im-
provements for the geometry-inversion attack on ray clouds
and proposed a respective defense mechanism.
Limitation Although this work can successfully defend
the known inversion attack [7], we note it may be potentially
vulnerable to a new type of attack in which omnidirectional
rays are projected to a cylindrical or spherical image plane
which is then unfolded and directly passed through an inver-
sion network for image reconstruction. While realizing this
attack may face its own challenges such as unknown depths
and mixed cheirality, we believe utilizing more ray centers
will provide a defense against such attack by reducing the
density of ray projections in each ray center.
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(Natioanl Research Foundation of Korea) grants funded by
the Korea government (MSIT) (No. 2022R1C1C1004907).
We thank anonymous reviewers for their valuable feedback.

9780



References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building Rome in a day. Communications of the ACM,
54(10):105–112, 2011. 1

[2] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst.
Freak: Fast retina keypoint. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 510–517, 2012. 2

[3] Clemens Arth, Daniel Wagner, Manfred Klopschitz, Arnold
Irschara, and Dieter Schmalstieg. Wide area localization on
mobile phones. In 2009 8th IEEE International Symposium
on Mixed and Augmented Reality, pages 73–82. IEEE, 2009.
1

[4] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten
Rother. DSAC — Differentiable RANSAC for camera local-
ization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2492–2500,
2017. 1

[5] Eric Brachmann and Carsten Rother. Learning less is more
- 6D camera localization via 3D surface regression. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4654–4662, 2018. 1

[6] Robert Castle, Georg Klein, and David W Murray. Video-
rate localization in multiple maps for wearable augmented
reality. In 2008 12th IEEE International Symposium on
Wearable Computers, pages 15–22. IEEE, 2008. 1

[7] Kunal Chelani, Fredrik Kahl, and Torsten Sattler. How
privacy-preserving are line clouds? Recovering scene details
from 3D lines. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
15663–15673, 2021. 1, 2, 3, 4, 5, 6, 7, 8

[8] Kunal Chelani, Torsten Sattler, Fredrik Kahl, and Zuzana
Kukelova. Privacy-preserving representations are not
enough: Recovering scene content from camera poses. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13132–13141, 2023. 1

[9] Ondrej Chum, Jirı́ Matas, and Josef Kittler. Locally opti-
mized ransac. In Pattern Recognition: 25th DAGM Sympo-
sium, Magdeburg, Germany, September 10-12, 2003. Pro-
ceedings 25, pages 236–243. Springer, 2003. 1

[10] Deeksha Dangwal, Vincent T Lee, Hyo Jin Kim, Tianwei
Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Bran-
don Reagen, Timothy Sherwood, Vasileios Balntas, et al.
Mitigating reverse engineering attacks on local feature de-
scriptors. In Proceeding of the British Machine Vision Con-
ference (BMVC), 2021. 1, 2

[11] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton,
and Olivier Stasse. MonoSLAM: Real-time single camera
SLAM. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(6):1052–1067, 2007. 1

[12] Yaqing Ding, Jian Yang, Viktor Larsson, Carl Olsson, and
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