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Abstract

Post-training quantization (PTQ) is an efficient model
compression technique that quantizes a pretrained full-
precision model using only a small calibration set of unla-
beled samples without retraining. PTQ methods for convo-
lutional neural networks (CNNs) provide quantization re-
sults comparable to full-precision counterparts. Directly
applying them to vision transformers (ViTs), however, in-
curs severe performance degradation, mainly due to the dif-
ferences in architectures between CNNs and ViTs. In par-
ticular, the distribution of activations for each channel vary
drastically according to input instances, making PTQ meth-
ods for CNNs inappropriate for ViTs. To address this, we in-
troduce instance-aware group quantization for ViTs (IGQ-
ViT). To this end, we propose to split the channels of acti-
vation maps into multiple groups dynamically for each in-
put instance, such that activations within each group share
similar statistical properties. We also extend our scheme to
quantize softmax attentions across tokens. In addition, the
number of groups for each layer is adjusted to minimize the
discrepancies between predictions from quantized and full-
precision models, under a bit-operation (BOP) constraint.
We show extensive experimental results on image classifi-
cation, object detection, and instance segmentation, with
various transformer architectures, demonstrating the effec-
tiveness of our approach.

1. Introduction
Transformers [34] can capture long-range dependencies

across sequential inputs, which is of central importance

in natural language processing, aggregating contextual in-

formation and providing discriminative feature representa-

tions. Recently, vision transformers (ViTs) [10] has demon-

strated the effectiveness of transformers for images, pro-

viding state-of-the-art results on various visual recognition

tasks, including image classification [24, 33], object detec-

tion [24, 40], and semantic segmentation [24, 32, 38]. How-

ever, a series of fully-connected (FC) and self-attention lay-
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Figure 1. Visual comparison of group quantization and IGQ-ViT.

(a) Conventional group quantization techniques [7, 31] divide con-

secutive channels uniformly into a number of groups without con-

sidering their dynamic ranges. The distribution of activations in

each group varies significantly for individual input instances. (b)

To alleviate this problem, IGQ-ViT proposes an instance-aware

grouping technique that splits the channels of activation maps and

softmax attentions across tokens dynamically for each input in-

stance at runtime.

ers in ViTs requires a substantial amount of memory and

computational cost, making it challenging to deploy them

on devices with limited resources (e.g., drones and mobile

phones). The growing demand for ViTs to operate on the

resource-constrained devices has led to increased interest in

developing network quantization techniques for ViTs.

Network quantization generally reduces bit-widths of

weights and activations of a model for an efficient infer-

ence process, which can be categorized into two groups:

Quantization-aware training (QAT) and post-training quan-

tization (PTQ). QAT methods [11, 41, 42] train full-

precision models, while simulating the quantization pro-

cess by inserting discretizers into networks to quantize, such

that the discrepancy between the full-precision and quan-

tized models is minimized in terms of accuracy. This sug-

gests that QAT methods require entire training samples, and

they are computationally expensive, making them impracti-

cal for the prompt deployment of neural networks. PTQ

methods [19, 26, 36], on the other hand, calibrate quanti-

zation parameters (e.g., quantization intervals, zero-points)

from pretrained full-precision models, enabling faster quan-

tization of networks compared to QAT methods with only a
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limited number of training samples (usually less than 1k).

Several PTQ methods for transformers [9, 25, 39] apply

layer-wise quantization techniques, where a single quan-

tizer is applied to all activation values for efficiency. These

methods, however, are not directly applicable for quantiz-

ing models using extremely low bit-widths (e.g., 4-bit), due

to the significant scale variation on the activations for each

channel. Exploiting channel-wise quantizers (i.e., apply-

ing different quantizers for each channel) could be a po-

tential solution, but at the expense of computational over-

heads, due to floating-point summations of channel-wise

outputs for matrix multiplication. Group quantization tech-

niques [7, 31] could be an alternative to address this prob-

lem, where they divide consecutive channels uniformly into

multiple groups, and apply a single quantizer for each group

(Fig. 1a). However, we have observed that the channel-wise

distributions of activation values vary largely among differ-

ent samples, making conventional approaches inappropriate

for ViTs.

In this paper, we present instance-aware group quantiza-

tion for ViTs (IGQ-ViT), that effectively and efficiently ad-

dresses the variations of channel-wise distributions across

different input instances (Fig. 1b). Specifically, we split the

channels of activation maps into multiple groups dynami-

cally, such that the activation values within each group share

similar statistical properties, and then quantize the activa-

tions within the group using identical quantization param-

eters. We also propose to use the instance-aware grouping

technique to softmax attentions, since the distributions of

attention values vary significantly according to tokens. In

addition, we present a simple yet effective method to op-

timize the number of groups for individual layers, under

a bit-operation (BOP) constraint. IGQ-ViT can be applied

to various components in ViTs, including input activations

of FC layers and softmax attentions, unlike previous meth-

ods [20, 22, 25, 39] that are limited to specific parts of trans-

former architectures. We demonstrate the effectiveness and

efficiency of IGQ-ViT for various transformers, including

ViT [10] and its variants [24, 33], and show that IGQ-ViT

achieves state-of-the-art results on standard benchmarks.

We summarize the main contributions of our work as fol-

lows:

• We introduce a novel PTQ method for ViTs, dubbed IGQ-

ViT, that splits channels of activation maps into a num-

ber of groups dynamically according to input instances.

We also propose to use the instance-aware grouping tech-

nique to split softmax attentions across tokens.

• We present a group size allocation technique searching

for an optimal number of groups for each layer given a

BOP constraint.

• We set a new state of the art on image classification [8],

object detection, and instance segmentation [21], with

various ViT architectures [10, 24, 33].

2. Related work
Network quantization. Network quantization aims at re-

ducing bit-widths of weights and activations of neural net-

works. QAT methods simulate the quantization process

by applying a round function to weights and activations of

the network. Since derivatives of the round function is ei-

ther zero or infinite, they approximate the gradients (e.g.,

using the straight-through estimator [3]) to train the net-

work with backpropagation. These methods also adjust the

derivatives of the round function [17, 18] or train quanti-

zation parameters jointly with network weights based on

task losses [11, 16]. For better convergence of the train-

ing process, many heuristics have been introduced, e.g.,

progressively shrinking bit-widths [42] or freezing parts of

the network weights [28, 41]. Quantized networks using

QAT show performance comparable to or even better then

full-precision counterparts. However, the quantization pro-

cess is computationally demanding, requiring a significant

amount of training time. PTQ offers an alternative approach

to quantizing neural networks. Instead of training full-

precision models and simulating the quantization process at

training time, PTQ methods calibrate quantization parame-

ters (e.g., quantization intervals) using a subset of training

samples. Early efforts focus on optimizing the quantization

parameters to minimize the difference between floating-

point and quantized values [2, 27]. Another line of research

proposes to consider distributions of weights and/or activa-

tions to design quantizers. For instance, the work of [12]

has observed that network weights follow a bell-shaped dis-

tribution. Based on this, it introduces piecewise linear quan-

tizers that assign different quantization intervals according

to the magnitudes of activations, performing better com-

pared to uniform quantizers. Recent PTQ methods learn

to either round up or down network weights by using a re-

construction error of layer outputs [26] or exploiting the

Hessian of training losses [19], and they have proven the

effectiveness on CNN architectures (e.g., ResNet [13], Mo-

bileNetV2 [30]).

Transformer quantization. While ViTs [10] and the

variants [24, 33] have become increasingly popular in com-

puter vision, the unique structure and characteristics of ViT

architectures makes network quantization challenging. For

example, PTQ methods for CNNs [2, 19, 26, 27] do not

perform well on quantizing softmax attentions and GELU

activations in transformers, suggesting that directly apply-

ing them for ViT quantization results in significant perfor-

mance degradation [25]. To date, only a limited number

of PTQ methods have been developed for ViTs. The work

of [25] estimates quantization parameters that maximize

similarities between full-precision and quantized outputs of

linear operations, and proposes to preserve a relative order

of attention values after quantization. APQ-ViT [9] intro-

duces a calibration metric to minimize the discrepancies
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between full-precision and quantized outputs, while main-

taining the power-law distribution of softmax attentions.

PTQ4ViT [39] introduces twin uniform quantizers to handle

asymmetric distributions in softmax attentions and GELU

activations effectively. Most PTQ methods for ViTs ex-

ploit a single quantizer for all channels, suggesting that they

do not consider the distributions of activation values across

channels, typically having extreme scale variations. Recent

works [20, 22] attempt to alleviate the scale variation prob-

lem efficiently. FQ-ViT [22] proposes to consider inter-

channel scale variations for LayerNorm [1], and exploits

channel-wise quantizers with the constraint of the ratio of

quantization intervals being power-of-two values. This en-

ables using bit-shift operations, calculating mean and vari-

ance of LayerNorm in an integer level. The scale reparame-

terization technique, introduced by RepQ-ViT [20], allows

to use layer-wise quantizers, instead of adopting channel-

wise ones, by adjusting the affine factors of LayerNorm and

the weights of FC layers. However, this technique applies

to the activations for LayerNorm only, and does not fully

address the inter-channel scale variations for other layers in

transformers.

Similar to ours, the works of [4, 7, 31, 35] adopt group

quantization techniques for transformers. For instance, Q-

bert [31] and VS-quant [7] divide consecutive channels uni-

formly into a number of groups without considering the dy-

namic range of each channel, and thus the channels assigned

to each group do not follow similar distributions. PEG [4]

alleviates this issue by sorting the activations across chan-

nels w.r.t. the dynamic ranges during calibration, before

grouping the channels. Quantformer [35] proposes to use

a differentiable search [6, 23] for QAT in order to group

channels of activation maps. The channels assigned to

particular groups are however fixed after calibrating pre-

trained networks for PTQ in the group quantization tech-

niques [4, 7, 31], which makes them inappropriate for ViTs

having diverse channel distributions according to input in-

stances. In contrast, our approach apply group quantization

along channels of activation maps and tokens of softmax

attentions dynamically at runtime for each input instance,

without additional parameters for PTQ.

3. Method
In this section, we provide a brief description of uniform

quantizer (Sec. 3.1). We then present our approach in detail,

including IGQ-ViT (Sec. 3.2) and a group size allocation

technique (Sec. 3.3).

3.1. Uniform quantizer

Given a floating-point value x and the quantization bit-

width b, uniform quantizers discretize the inputs into a finite

set of values with equally spaced intervals. To this end, it

normalizes the floating-point value x using a scale param-

(a) (b) (c)

Figure 2. (a) Plots of standard deviations of activations across

channels for DeiT-S [33]; (b-c) Boxplots of activation values

across different input instances for a particular channel of ResNet-

50 [13] and DeiT-S, respectively. We use ImageNet [8] for the

visualizations. We have observed that there is a significant scale

variation across channels, and the activation ranges for each chan-

nel change drastically among different samples for ViTs, in con-

trast to CNNs.

eter s, calibrate the normalized value with a zero-point z,

and clip the output as follows:

x̂ = clip(�x
s
�+ z, 0, 2b − 1), (1)

where the scale parameter s and zero-point z are defined as:

s =
u− l

2b − 1
, z = clip(�− l

s
�, 0, 2b − 1). (2)

We denote by u and l upper and lower bounds of the

quantizer, respectively. �.� is a rounding function, and

clip(.,m, n) restricts an input to the range with lower and

upper bounds of m and n, respectively. The quantized out-

put is then obtained as follows:

Q(x; s, z) = s(x̂− z). (3)

3.2. IGQ-ViT

Following the work of [25], we quantize all network

weights except for the positional embedding. We also quan-

tize input activations of FC layers in the multi-layer per-

ceptron (MLP) block, and the activations for the multi-head

self-attention (MSA) block, including queries, keys, values,

and softmax attentions. We exploit uniform quantizers for

all weights and activations in ViTs.

3.2.1 IGQ for linear operations

In the following, we first provide empirical observations

on input activations of FC layers, and explain the details of

our IGQ framework for linear operations.

Distributions of activations across channels. Most

quantization frameworks [2, 19, 25, 26] exploit layer-wise

quantizers for activations, applying a single quantization pa-

rameter for all channels for efficient inference. However,

we have observed that the input activations of FC layers

have significant scale variations across channels (Fig. 2(a)).

Similar findings can be found in [20, 22]. This suggests

16134



that layer-wise quantizers degrade the quantization per-

formance significantly, as they cannot handle scale vari-

ations across different channels. Although adopting sep-

arate quantizers for individual channels could be an ef-

fective strategy for overcoming the scale variation prob-

lem, this requires a summation of a floating-point out-

put for every channel, which is computationally expen-

sive. We have also found that the ranges of these acti-

vations for each channel vary drastically among different

input instances (Fig. 2(b, c)), since ViTs do not have pre-

ceding BatchNorm [15] layers in contrast to state-of-the-

art CNNs (e.g., ResNet [13], MobileNetV2 [30]). Con-

ventional approaches (e.g., [4, 7, 31, 35]) exploit a fixed

quantization interval (i.e., from lower to upper bounds of

the quantizer) for every input instance, thus cannot adapt to

such diverse distributions across different samples.

Instance-aware grouping across channels. We intro-

duce an instance-aware group quantization framework for

linear operations that alleviates the scale variation problem,

while maintaining efficiency. We split the channels of acti-

vation maps into G1 groups based on statistical properties,

where activation values within each group are quantized

with identical quantization parameters. We assign the chan-

nels of activations to appropriate groups, and optimize the

scale parameter si and the zero-point zi for the i-th group.

Specifically, given floating-point activations of X ∈ R
N×C

and a set of candidate quantizers {Qi}G1
i=1, where we denote

by N and C as the number of tokens and channels, respec-

tively, we define a distance metric between the c-th channel

of the activations X, denoted by Xc, and the quantizer Qi

as follows:

d(Xc, Qi) = (min(Xc)− ui)
2 + (max(Xc)− li)

2 (4)

where ui and li are upper and lower bounds of the quantizer

Qi, respectively. We then assign each channel of the acti-

vation X to one of candidate quantizers with the minimum

distance as follows:

π(c) = argmin
i

d(Xc, Qi) (5)

where we denote by π(c) a group index assigned to the c-th
channel. The upper and lower bounds of quantizers are then

optimized by minimizing the distances as follows:

u∗
i , l

∗
i = argmin

ui,li

∑

π(c)=i

d(Xc, Qi). (6)

We optimize ui and li by solving Eq. (5) and Eq. (6) alter-

nately similar to the expectation-maximization (EM) algo-

rithm, which guarantees the convergence [37]. Finally, we

obtain quantization parameters of each group (i.e., s and z)

using Eq. (2). At test time, we fix the quantization param-

eters, and assign the channels to appropriate groups using

Eq. (5).

Table 1. Comparison of BOPs for a 4-bit DeiT-B [33] model us-

ing various quantization strategies. We denote by ‘Model’ the re-

quired BOP for layer-wise quantization. In contrast to layer-wise

quantization, IGQ-ViT involves additional computations, includ-

ing (1) computing the min/max values of each channel, (2) as-

signing channels to quantizers with the minimum distance, and

(3) summing the outputs of each group in a floating-point format.

The corresponding BOPs for these steps are denoted by ‘Minmax’,

‘Assign’, and ‘FP sum’, respectively.

Methods Model MinmaxAssignFP sum Total
Layer-wise 340.3G - - - 340.3G

IGQ-ViT(#groups=4) 340.3G 0.99G 0.57G 1.57G 343.4G

IGQ-ViT(#groups=8) 340.3G 0.99G 1.14G 3.66G 346.1G

IGQ-ViT(#groups=16) 340.3G 0.99G 2.28G 7.84G 351.4G

Computational overhead. Compared to layer-wise

quantization, our approach requires (1) computing the

min/max values of each channel, (2) assigning channels to

quantizers with the minimum distance, and (3) summing

the floating-point outputs of each group. Specifically,

consider a matrix multiplication between a quantized

activation Q(X) and the quantized weight Q(W) with

a group size of G1. The quantized activation Q(X) is

obtained by partitioning X into a number of groups across

channels using Eq. (5), i.e. X = [X1, ...,XG1 ], followed

by quantizing Xi with a scale parameter of si, where

i ∈ {1, ..., G1}. The matrix multiplication between Q(X)
and Q(W) can then be represented as follows:

Q(X)Q(W) = sw · (
G1∑

i=1

si · X̂iŴi). (7)

Note that we omit zero-points for clarity. We denote by sw

the scale parameter for W. X̂i and Ŵi are obtained by

applying Eq. (1) to Xi and Wi, the channels and rows of

X and W associated with group i, respectively. Computing

Eq. (7) requires the summation of floating-point matrices

for each group (i.e., si · X̂iŴi), which can be reduced with

sufficiently small values of G1. As the values of G1, we

use no more than 16 in our experiments, which is extremely

small compared to the number of channels, usually scaling

up to over a thousand. We show in Table 1 BOPs of IGQ-

ViT for DeiT-B [33] quantized with 4-bit. We can see that

IGQ-ViT introduces only 3.3% additional BOPs for a group

size of 16, compared to layer-wise quantization.

3.2.2 IGQ for softmax attentions

Here, we present our observation for the distribution of

softmax attentions, and present the details of IGQ for soft-

max attentions.

Distributions of softmax attentions. ViTs capture cor-

relations between tokens through softmax attentions. The

distribution of attention values varies drastically across dif-

ferent tokens (Fig. 3). Therefore, using a single quantization
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Figure 3. Distributions of softmax attentions across tokens. We

can see that the distributions are different significantly across to-

kens. Our approach can handle this issue by splitting the rows

of softmax attentions into several groups and applying separate

quantizers for each group, such that the attentions assigned to each

group share similar statistical properties.

Figure 4. Comparisons for dynamic ranges of activation val-

ues across channels, chosen from different layers of ViT-S [10].

σrange is the standard deviation of the dynamic ranges of chan-

nels for each layer. We can see that the degree of scale variations

across channels varies according to the layer, suggesting that the

number of groups for each layer would be adjusted.

parameter to quantize softmax attentions degrades quantiza-

tion performance severely. Separate quantizers might be ex-

ploited for individual tokens to handle the attention values,

but this requires a large number of quantizers, and needs to

adjust the quantization parameters for each instance.

Instance-aware grouping across tokens. We extend our

approach in order to quantize softmax attentions across to-

kens. We split softmax attentions for tokens (i.e., the rows

of the softmax attentions) into G2 groups, according to the

distribution of attention values. Specifically, given softmax

attentions A ∈ R
H×N×N and a set of quantizers {Qj}G2

j=1,

where we denote by H the number of heads, we define

the distance between each row of softmax attentions and

a quantizer Qj as follows:

d(An, Qj) = (max(An)− vj)
2 (8)

where we denote by An and vj the n-th row of A and the

upper bound of the quantizer Qj , respectively. Note that

we set lower bounds to 0, as all attention values are posi-

tive. We then optimize vj with the EM algorithm and set

the quantization parameters for quantizer Qj using Eq. (2).

Algorithm 1 IGQ-ViT

1: Hyperparameter: Number of iterations Niter; update period

of group size T .

Input: Pre-trained model; calibration set; target BOPs Nbop.

2: For inputs of FC layers and softmax attentions, compute the

distance between their channels/rows and quantizers using

Eq. (4) or Eq. (8).

3: for k = 1, ..., Niter do
4: Update the parameters for each group using Eq. (5) and

Eq. (6).

5: if k % T == 0 then
6: Update the group size for each layer using Eq. (10).

7: end if
8: end for
9: Obtain quantization parameters s, z using Eq. (2).

10: Output: Quantized model

3.3. Group size allocation

We observe that activations and softmax attentions in

different layers show different amount of scale variations

across channels and tokens, respectively, indicating that us-

ing the same number of groups for different layers might

be suboptimal (Fig. 4). To address this, we search for the

optimal group size for each layer that minimizes the dis-

crepancy between the predictions from quantized and full-

precision models, under a BOP constraint. However, the

search space for finding the optimal group sizes is expo-

nential w.r.t. the number of layers L, which is intractable

for a large model. We propose a group size allocation

technique that efficiently optimizes the group size for each

layer within such a large search space. Concretely, we de-

fine a perturbation metric for a particular layer ψ(.) as the

Kullback-Leibler (KL) divergence between predictions of

the model before and after quantization as follows:

ψ(g, l) = DKL(yl||ygl ), (9)

where we denote by yl and ygl the predictions of the model

before and after quantizing l-th layer with a group size of g,

respectively. Note that we quantize all other layers except

for the l-th layer for computing the predictions of yl and

ygl , to account for the effects of quantization on different

layers. For a target BOP Nbop, we formulate the group size

allocation as a integer linear programming (ILP) problem,

and search for the optimal group size for each layer, such

that an overall perturbation of the model is minimized as

follows:

g∗ = argmin
g

L∑

l=1

ψ(gl, l) s.t. B(g) ≤ Nbop, (10)

where g = {gl}Ll=1, and gl is the group size assigned to l-th
layer. We denote by B(g) the BOP of the model with the
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Table 2. Quantitative results of quantizing ViT architectures on ImageNet [8]. W/A represents the bit-width of weights (W) and activations

(A), respectively. We report the top-1 validation accuracy (%) with different group sizes for comparison. The numbers of other quantization

methods are taken from [9, 20]. †: Results without using a group size allocation (i.e., a fixed group size for all layers).

Method #bits(W/A) ViT-T ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-T Swin-S Swin-B
Full-precision 32/32 75.47 81.39 84.54 72.21 79.85 81.80 81.39 83.23 85.27

PTQ4ViT [39] 4/4 17.45 42.57 30.69 36.96 34.08 64.39 - 76.09 74.02

APQ-ViT [9] 4/4 17.56 47.95 41.41 47.94 43.55 67.48 - 77.15 76.48

RepQ-ViT [20] 4/4 - 65.05 68.48 57.43 69.03 75.61 - 79.45 78.32

IGQ-ViT† (#groups=8) 4/4 54.46 72.99 77.91 61.94 74.01 78.85 76.91 80.54 82.88

IGQ-ViT† (#groups=12) 4/4 55.66 73.46 79.13 62.28 74.52 79.21 77.53 80.79 83.08
IGQ-ViT (#groups=8) 4/4 55.29 73.18 78.28 62.25 74.23 79.04 77.19 80.66 83.02

IGQ-ViT (#groups=12) 4/4 56.01 73.61 79.32 62.45 74.66 79.23 77.77 80.98 83.14
IGQ-ViT (upper bound) 4/4 57.59 74.73 79.88 62.55 75.08 79.74 78.58 81.48 83.53

PTQ4ViT [39] 6/6 64.46 78.63 81.65 69.68 76.28 80.25 - 82.38 84.01

APQ-ViT [9] 6/6 69.55 79.10 82.21 70.49 77.76 80.42 - 82.67 84.18

RepQ-ViT [20] 6/6 - 80.43 83.62 70.76 78.90 81.27 - 82.79 84.57

IGQ-ViT† (#groups=8) 6/6 72.90 80.07 83.11 70.71 78.92 81.34 80.23 82.55 84.43

IGQ-ViT† (#groups=12) 6/6 73.63 80.66 83.63 71.02 79.17 81.48 80.59 82.66 84.70
IGQ-ViT (#groups=8) 6/6 73.19 80.48 83.46 70.92 79.04 81.44 80.48 82.65 84.62

IGQ-ViT (#groups=12) 6/6 73.77 80.76 83.77 71.15 79.28 81.71 80.89 82.86 84.82
IGQ-ViT (upper bound) 6/6 74.61 80.99 84.27 71.42 79.42 81.75 81.20 83.08 85.06

group sizes of g. We solve Eq. (10) with the PULP [29]

library, using group size for each layer within the set of

{4, 6, 8, 10, 12, 16}. We allocate the group sizes for every T
alternating steps of Eq. (5) and Eq. (6), where T is a hyper-

parameter. We show in Algorithm 1 an overall quantization

process of our approach.

4. Experiments
In this section, we describe our experimental settings

(Sec. 4.1), and evaluate IGQ-ViT on image classification,

object detection and semantic segmentation (Sec. 4.2). We

then present a detailed analysis of our approach (Sec. 4.3).

4.1. Implementation details

We evaluate our IGQ-ViT framework on the tasks of im-

age classification, object detection, and instance segmen-

tation. We use the ImageNet [8] dataset for image clas-

sification, which contains approximately 1.2M images for

training, and 50K for validation. We use COCO [21] for

object detection and instance segmentation, which includes

118K training, 5K validation, and 20K test images. We

adopt various transformer architectures, including ViT [10],

DeiT [33], and Swin transformer [24], for image classifi-

cation. For the tasks of object detection and instance seg-

mentation, we use Mask R-CNN [14] and Cascade Mask

R-CNN [5] with Swin transformers as the backbone. Fol-

lowing [9, 20], we randomly sample 32 images from the

ImageNet [8] dataset for image classification, and a single

image from COCO [21] for object detection and instance

segmentation to calibrate the quantization parameters. We

apply our instance-aware grouping technique for all input

activations of FC layers, and softmax attentions. More de-

tailed settings are available in the supplement.

4.2. Results

Results on ImageNet. We show in Table 2 the top-1 accu-

racy (%) on the validation split of ImageNet [8] with various

ViT architectures. We report the accuracy with an average

group size of 8 and 12. We summarize our findings as fol-

lows: (1) Our IGQ-ViT framework with 8 groups already

outperforms the state of the art except for ViT-B [10] and

Swin-S [24] under 6/6-bit setting, while using more groups

further boosts the performance. (2) Our approach under

4/4-bit setting consistently outperforms RepQ-ViT [20] by a

large margin. Similar to ours, RepQ-ViT also addresses the

scale variations between channels, but it can be applied to

the activations with preceding LayerNorm only. In contrast,

our method handles the scale variations on all input activa-

tions of FC layers and softmax attentions, providing better

results. (3) Our group size allocation technique boosts the

quantization performance for all models, indicating that us-

ing the same number of groups for all layers is suboptimal.

(4) Exploiting 12 groups for our approach incurs less than

0.9% accuracy drop, compared to the upper bound under

the 6/6-bit setting. Note that the results of upper bound are

obtained by using a separate quantizer for each channel of

activations and each row of softmax attentions.
Results on COCO. We show in Table 3 the quantization

results for object detection and instance segmentation on

16137



Table 3. Quantitative results of quantizing Mask R-CNN [14] and Cascade Mask R-CNN [5] using Swin transformers [24] on COCO [21].

We report the box average precision APbox for object detection and the mask average precision APmask for instance segmentation.

Method #bits(W/A)
Mask R-CNN Cascade Mask R-CNN

Swin-T Swin-S Swin-T Swin-S Swin-B
APbox APmask APbox APmask APbox APmask APbox APmask APbox APmask

Full-precision 32/32 46.0 41.6 48.5 43.3 50.4 43.7 51.9 45.0 51.9 45.0

PTQ4ViT [39] 4/4 6.9 7.0 26.7 26.6 14.7 13.5 0.5 0.5 10.6 9.3

APQ-ViT [9] 4/4 23.7 22.6 44.7 40.1 27.2 24.4 47.7 41.1 47.6 41.5

RepQ-ViT [20] 4/4 36.1 36.0 44.2 40.2 47.0 41.4 49.3 43.1 - -

IGQ-ViT (#groups=8) 4/4 40.5 38.5 44.7 41.3 48.4 42.3 50.5 44.0 50.4 44.0
IGQ-ViT (#groups=12) 4/4 41.0 38.8 44.8 41.3 48.5 42.4 50.5 44.0 50.5 44.0
PTQ4ViT [39] 6/6 5.8 6.8 6.5 6.6 14.7 13.6 12.5 10.8 14.2 12.9

APQ-ViT [9] 6/6 45.4 41.2 47.9 42.9 48.6 42.5 50.5 43.9 50.1 43.7

RepQ-ViT [20] 6/6 45.1 41.2 47.8 43.0 50.0 43.5 51.4 44.6 - -

IGQ-ViT (#groups=8) 6/6 45.4 41.5 48.2 43.1 50.4 43.7 51.9 44.9 51.9 45.0
IGQ-ViT (#groups=12) 6/6 45.5 41.5 48.2 43.2 50.4 43.8 51.9 45.0 51.9 45.0

Table 4. Quantitative comparison of our instance-aware group

quantization technique with various configurations under a 4/4-

bit setting. We denote by ‘Linear’ and ‘Attention’ the quantization

method for linear operations and softmax attentions, respectively.

For applying our method, we use a group size of 8 for all layers.

Linear Attention ViT-S DeiT-B Swin-T
Layer-wise Layer-wise 42.82 62.23 55.51

Layer-wise Ours 53.69 65.05 62.27

Ours Layer-wise 57.32 75.51 72.89

Ours Ours 72.99 78.85 76.91
Ours Row-wise 73.22 78.88 77.19

Channel-wise Ours 74.56 79.69 78.39

Channel-wise Row-wise 74.73 79.74 78.58

COCO [21]. We quantize the backbones of Swin transform-

ers [24] and the convolutional layers in the neck and head of

Mask R-CNN [14] and Cascade Mask R-CNN [5]. We ob-

serve that PTQ4ViT [39] and APQ-ViT [9], that use layer-

wise quantizers for activations, do not perform well. In con-

trast, IGQ-ViT outperforms the state of the art with 8 groups

only, and the quantization performance further boosts by

exploiting more groups. In particular, it provides the results

nearly the same as the full-precision ones for the the 6/6-bit

setting. This suggests that scale variations across different

channels or tokens are much more critical for object detec-

tion and instance segmentation.

4.3. Discussion

Comparison with different quantizers. We compare in

Table 4 the results of the variants of our method adopting

different types of quantizers on input activations of FC lay-

ers and softmax attentions. From the first four rows, we can

see that our approach outperforms layer-wise quantization

by a large margin, both for linear operations and softmax at-

tentions. This indicates that adopting a single quantization

parameter for all channels and rows without considering

Table 5. Quantitative comparison of quantizing transformer archi-

tectures using various group quantization techniques under a 4/4-

bit setting, with a group size of 8 for all linear operations. Note

that we use layer-wise quantization for softmax attentions for a

fair comparison.

Grouping methods ViT-S DeiT-B Swin-T
No grouping (#groups=1) 42.82 62.23 55.51

Grouping consecutive channels [7, 31] 41.04 65.50 70.39

Sorting before grouping channels [4] 41.26 62.61 56.04

Ours 57.32 75.51 72.89

their individual distributions can severely limit the quantiza-

tion performance. The last three rows compare the results

of our approach with channel/row-wise quantization. We

observe that the difference in performance between our ap-

proach and channel/row-wise quantization is less than 1.8%

for three different models. With a small group size, our

framework can achieve comparable performance to the up-

per bound, while maintaining efficiency.

Table 5 shows the results of quantizing ViT architec-

tures using various group quantization techniques, includ-

ing [4, 7, 31], and ours. While the works of [7, 31] divide

consecutive channels uniformly into a number of groups,

the method of [4] first sorts channels w.r.t. the dynamic

ranges before partitioning them into groups. In contrast,

we dynamically assign channels to groups according to the

statistical properties of the channels. We find that our ap-

proach outperforms other methods by a large margin, in-

dicating that fixing the channels assigned to each group can

degrade the quantization performance significantly. We also

observe that sorting the channels w.r.t. their dynamic ranges

during calibration does not boost the quantization perfor-

mance for DeiT-B [33] and Swin-T [24], suggesting that

the dynamic range of each channel vary drastically across

different input instances.
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Figure 5. Top-1 validation accuracies on ImageNet [8] w.r.t. group

sizes for linear operations (G1, left) and that for softmax attentions

(G2, right). We set either G1 or G2 to 8, while varying the other

to compute the accuracies. We report the quantization results of

ViT-S [10], Swin-T [24], and DeiT-B [33] under a 4/4-bit setting,

with a fixed group size across different layers. We visualize the

upper bounds with horizontal stripes of corresponding colors.

Table 6. Quantitative comparison of ViT architectures with and

without a group size allocation technique under the 4/4-bit setting.

#groups
Group size
allocation

ViT-S DeiT-B Swin-T

6
71.44 78.44 76.31

� 71.80 78.57 76.99

8
72.99 78.85 76.91

� 73.18 79.04 77.19

10
73.34 79.00 77.21

� 73.51 79.19 77.64

Analysis on group size. We show in Fig. 5 the results of

IGQ-ViT according to the group size for linear operations

(left) and softmax attentions (right). We can see that the

quantization performance improves as the group size in-

creases, for both linear operations and softmax attentions,

demonstrating that using more groups better addresses the

scale variation problem for channels and tokens. We also

observe that the performance of our approach reaches near

the upper bound with a small group size. This suggests that

IGQ-ViT can effectively address the variations with a small

amount of additional computations.

Convergence analysis. We compare in Fig. 6(top) dis-

tances between channels of activation and quantizers in

Eq. (4) (rows of softmax attention and quantizers in Eq. (8))

over optimization steps. It shows that our algorithm con-

verges quickly within a small number of optimization steps.

We show in Fig. 6(bottom) the dynamic ranges of activa-

tions and attentions in a particular layer, along with their

assigned groups after convergence. We can see that activa-

tions/attentions in each group share similar statistical prop-

erties, demonstrating that they can be effectively quantized

with a single quantization parameter.

Group size allocation. We compare in Table 6 the results

of our approach with/without the group size allocation tech-

nique. We can see that the group size allocation improves

the quantization performance consistently, suggesting that

assigning the same group size for all layers is suboptimal.

Figure 6. (Top) Distances between channels of activations/rows

of softmax attentions and quantizers in a particular layer of DeiT-

S [33], that is, the distances as in Eq. (4) and Eq. (8), respectively;

(Bottom) Dynamic ranges of activations and attentions in a spe-

cific layer of DeiT-S w.r.t. the assigned group of the same color.

Note that we sort the activations and attentions based on the group

indices for the purpose of the visualization only.

5. Conclusion

We have observed that activations and softmax atten-

tions in ViTs have significant scale variations for individual

channels and tokens, respectively, across different input in-

stances. Based on this, we have introduced a instance-aware

group quantization framework for ViTs, IGQ-ViT, that alle-

viates the scale variation problem across channels and to-

kens. Specifically, our approach splits the activations and

softmax attentions dynamically into multiple groups along

the channels and tokens, such that each group shares similar

statistical properties. It then applies separate quantizers for

individual groups. Additionally, we have present a simple

yet effective method to assign a group size for each layer

adaptively. We have shown that IGQ-ViT outperforms the

state of the art, using a small number of groups, with various

ViT-based architectures. We have also demonstrated the ef-

fectiveness of IGQ-ViT compared with its variants, includ-

ing layer-wise quantizers, channel/row-wise quantizers, and

state-of-the-art group quantizers, with a detailed analysis.
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