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Figure 1. Overview of HuGS. Using multi-view video frames of a dynamic human, HuGS learns a photorealistic 3D human avatar
represented by a 3D Gaussian Splatting model. Given an arbitrary human body pose, our model deforms the canonical 3D representation
to the observation space, from which novel views can be rendered in real-time from any camera viewpoint.

Abstract

This work addresses the problem of real-time rendering
of photorealistic human body avatars learned from multi-
view videos. While the classical approaches to model and
render virtual humans generally use a textured mesh, re-
cent research has developed neural body representations
that achieve impressive visual quality. However, these mod-
els are difficult to render in real-time and their quality de-
grades when the character is animated with body poses dif-
ferent than the training observations. We propose an an-
imatable human model based on 3D Gaussian Splatting,
that has recently emerged as a very efficient alternative to
neural radiance fields. The body is represented by a set
of gaussian primitives in a canonical space which is de-
formed with a coarse to fine approach that combines for-
ward skinning and local non-rigid refinement. We describe
how to learn our Human Gaussian Splatting (HuGS) model
in an end-to-end fashion from multi-view observations, and
evaluate it against the state-of-the-art approaches for novel
pose synthesis of clothed body. Our method achieves 1.5 dB
PSNR improvement over the state-of-the-art on THuman4
dataset while being able to render in real-time (≈ 80 fps for
512× 512 resolution).

1. Introduction
Virtual human avatars are essential components of virtual
reality and video games for applications such as content cre-
ation and immersive interaction between users and virtual
worlds. The common procedure to create a highly realistic
avatar of a person involves expensive sensors and tedious
manual work. However, recent progress in 3D modeling
and neural rendering enabled data-driven models that learn
controllable human avatars from images.

Recent research in this area focuses on neural represen-
tations based on Neural Radiance Fields (NeRF) [36] or
Signed Distance Fields (SDF) [40]. Thanks to their contin-
uous design, they can represent highly detailed shape and
textures of a clothed human body, and thus exhibit better
quality than the commonly-used textured meshes. However,
their deployment is difficult, first because they present long
training and rendering times, but also because animating the
character in a controllable way is challenging. As a result,
these neural avatars shine on novel view synthesis of body
poses observed during training, but struggle to generalize to
novel body poses with similar quality.

While animating meshes is a well understood problem
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that has been around for decades, e.g. using direct skin-
ning algorithms [15, 20, 35], transferring these ideas for
implicit neural representations is challenging. Some efforts
have been made to learn skinning weights fields, but they
often define a backward skinning methodology [23, 43, 60],
which is pose-dependent and where solutions are slow and
do not generalize well to unseen body poses.

In this work, we represent the human body with 3D
Gaussian Splatting (3D-GS) [16]. This novel paradigm for
view synthesis uses an explicit set of primitives shaped as
3D Gaussians to represent the radiance field of a scene. This
enables fast tile-based rasterization, which is orders of mag-
nitudes faster than the rendering speed of implicit methods
based on ray marching. Leveraging its explicit and discrete
nature, we explore its capability to be deformed with di-
rect forward skinning, similar to a mesh. We observe that
using Linear Blend Skinning (LBS) with skinning weights
learned for each Gaussian provides an efficient and effec-
tive method that generalizes well to new body poses, but is
not expressive enough to capture the local garment defor-
mations of clothed avatars. We propose to refine the de-
formation of Gaussians with a shallow neural network that
captures the local movements of the body surface.

The proposed algorithm, named Human Gaussian
Splatting (HuGS), paves the way for animatable human
body models based on Gaussian Splatting. Our contribu-
tions can be summarized as follows:
1. We propose a first algorithm for novel pose synthesis of

the human body based on 3D Gaussian Splatting.
2. We define a coarse-to-fine approach to animate the set

of Gaussian primitives, based on forward skinning for
skeleton-based movements and a pose-dependent MLP
for local garments deformations.

3. We compare HuGS to neural-based human models on
three public datasets and exhibit results on-par or better
than state-of-the-art methods, while rendering one order
of magnitude faster.

2. Related Work
Differentiable rendering of radiance fields Learning 3D
representations from 2D images for novel view synthesis
has been very active in the last few years [11, 37, 64]
since the seminal work of Neural Radiance Fields [36].
While NeRF methods usually define emitted color and den-
sity of each point of a static scene, it has been adapted to
model dynamic content by incorporating the time dimen-
sion in the representation [24, 41, 47]. These dynamic ra-
diance fields can be used to train volumetric representation
of humans in movement [10, 45] and to replay an existing
video from a new camera viewpoint. NeRF and related
approaches rely on ray marching and volumetric render-
ing [58], requiring to evaluate a neural network on many
points along each camera ray. Making this evaluation more

efficient can be tackled by storing information in an explicit
way [2, 18, 25, 38, 52, 57, 65] but the ray marching design
inherently limits the rendering time of these methods.

By contrast, 3D Gaussian Splatting [16] models the radi-
ance field of a scene with explicit primitives shaped as 3D
gaussians. The main advantage comes from the fast render-
ing step that avoids ray marching by sorting and splatting
primitives w.r.t. the camera position, enabling real-time ap-
plications. Each primitive is defined by its position, covari-
ance matrix, view-dependent color represented with spheri-
cal harmonics, and opacity. These parameters are optimized
through gradient descent to reconstruct the observed images
with high fidelity. Recent works have extended 3D-GS to
dynamic scenes by learning time-dependent gaussian pa-
rameters [33, 53, 63, 66, 67]. Instead, our work focuses on
a model tailored for a drivable human by learning gaussians
deformations that depend on the body pose.

Animatable human body models We refer to an animat-
able body model as a 3D representation of a human charac-
ter, which is defined in a canonical space (i.e. a reference
body pose, often set as T-pose) and can be deformed to
represent any body pose in their respective observation (or
posed) space. Pioneer works in human body modelling are
statistical mesh templates such as SMPL [32, 42]. Fitted to
3D scans of a large set of people, they provide a parametric
representation of the human body shape. The deformation
from canonical to observation space can be computed eas-
ily with linear blend skinning and thus these templates are
often used as a building block of more complex methods.
Avatars can be learned from different data modalities, such
3D scans [4, 51, 56], monocular videos [62, 69] or a single
image [3, 28]. We present below methods that use multi-
view RGB video capture.

Recent literature has explored the use of neural repre-
sentations, either based on NeRF or SDF. These methods
perform ray marching in the observation space but usu-
ally define a static radiance field in the canonical space.
One approach is to establish backward correspondences
(from observation to canonical) for each point. Neural Ac-
tor [29], Animatable NeRF [43] and InstantNVR [7] use
pose-dependent networks to learn deformation or blend-
weights fields, but they have been observed to generalize
poorly to novel body poses. ARAH [60], TAVA [23] and
PoseVocab [26] rather use a joint root-finding approach that
generalizes better but is slow to compute.

Another line of work, closer to ours, circumvent the
backward correspondence problem by applying forward
skinning deformation on different kind of canonical prim-
itives, resulting in a radiance field defined in the obser-
vation space. Neural Body [44] anchors latent codes to
SMPL vertices which are then decoded to density and col-
ors by a CNN. SLRF [72] and AvatarRex [73] use mul-
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tiple local NeRFs centered on vertices whose origins are
moved with LBS. DVA [50] computes deformation of ar-
ticulated volumetric primitives [31]. Several methods use
point-based primitives, for which forward skinning is well
defined, either with volumetric rendering [55, 68] or raster-
ization [46, 71] approaches. Overall, forward skinning is
more convenient to use than backward approaches. How-
ever, by defining the primitives on the SMPL template sur-
face, such approaches often struggle to represent characters
with loose clothing.

Finally, skeleton-based rigid deformations are not a suf-
ficient driving signal to explain all the movement observed
in the data [1]. Local garment wrinkles or muscles con-
tractions are typical examples of non-rigid motion that
need to be addressed. Modelling these phenomenons in a
proper way would require physics-based modelling [56],
but this remains difficult together with RGB supervision.
Most learning-based methods rather use local refinement
of the geometry with pose-dependent neural networks [23,
26, 72]. Some methods also add local shading compo-
nents [1, 23] to approximate the ambient occlusion used in
graphics pipelines.

3. Method
Our goal is to reconstruct human avatars from multi-view
videos and render images of the reconstructed virtual char-
acter from arbitrary camera view and body poses, i.e., novel
pose synthesis. An overview of our method is presented in
Figure 2. We train our model from a collection of multi-
view videos depicting various body poses, captured by N
calibrated cameras during T timesteps. We pre-compute or
assume access to SMPL [32] or SMPL-X [42] parameters,
i.e., body shape β and body poses θt = (θ1, θj , . . . , θJ) ex-
pressed as the 3D rotation of each body joint j, at timestep
t. We also use foreground segmentation masks.

3.1. Canonical representation

We represent the canonical human body as a set of volu-
metric primitives shaped as 3D Gaussians. Each Gaussian
is parametrized by its own set of learnable parameters.
• a 3D canonical position pc = (px, py, pz),
• a 3D orientation, represented by a quaternion qc,
• a 3D scale s = (sx, sy, sz),
• a color c = (cr, cg, cb),
• an opacity scalar value o,
• a skinning weight vector w = (w1, wj , . . . , wJ) that reg-

ulates the influence of each body joint j on how the gaus-
sian moves,

• a latent code l that encodes the non-rigid motion.
This builds up from the original 3D Gaussian splatting

formulation [16], with the addition of the last 2 parameters
that encode the pose-dependent movement of each primi-
tive. We consider scale and opacity consistent across novel

views and novel poses. For a given target body pose, we
transform canonical position, orientation, and color to the
posed space, as described in sections 3.2 and 3.3.

3.2. Deformation with forward skinning.

We use Linear Blend Skinning (LBS) to deform our model.
We consider body joints in the canonical space imported
from the SMPL template model. Given a body pose θt, we
can compute the rigid transformations Mj ∈ SE(3) for the
j-th body joint using the kinematic tree. Then, each gaus-
sian’s skinning transformation Tt for pose θt is defined by
weight-averaging joint transformations according to skin-
ning weights w:

Tt =

J∑
j=1

wjMj. (1)

The canonical Gaussian position is then transformed to
the posed space using Tt. We also rotate the gaussian using
the rotation component Rt of Tt = [Rt|tt]:

plbs = Ttpc qlbs = Rt ◦ qc. (2)

We apply directly forward skinning on the canoni-
cal primitives, similar to mesh deformation in common
pipelines, and learn only the skinning weights attached to
each Gaussian. In contrast, previous NeRF and SDF ap-
proaches, because they rely on ray marching on the posed
space, need backward skinning formulations [23, 43, 60]
which is notoriously more difficult and/or slower.

3.3. Local non-rigid refinement

LBS moves the Gaussians towards the target body pose and
provides excellent generalization to novel poses, but only
encodes the rigid deformations of the body joints. Because
we want our method to be able to operate on clothed avatars,
we also need to model local non-rigid deformations caused
by garments. To this end, we compute per-gaussian residual
outputs learned by a pose-dependent MLP that can translate,
rotate, and change the lightness of the primitive.

Body pose encoding We want our model to learn how
Gaussians move w.r.t. the body pose rather than w.r.t. time,
but we also expect the network to learn local deformations.
Thus, using the global pose vector θt as input can repre-
sent too many information for local primitives whose defor-
mation depends on a nearby joints orientations only. This
can ultimately enable the network to learn spurious corre-
lations and overfit [26]. Following SCANimate [51], we
use an attention-weighting scheme which uses the skinning
weights w and an explicit attention map W based on the
kinematic tree to define the local pose vector θl

t:

θl
t = (W ·w)⊙ θt, (3)
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Figure 2. HuGS method overview. We represent the different attributes of Gaussians at each step of the deformation pipeline. Canonical
positions and orientations are first deformed with LBS using the learned skinning weights. Then positions, orientations, and colors are
refined by an MLP using the latent codes. Finally, Gaussians in the observation space are rendered through the target camera view.

where θt is represented as a vector of quaternions and ⊙
denotes element-wise multiplication.

Shading While our approach does not model view-
dependent specularities because we consider the human
body as Lambertian, we allow the color to change depend-
ing on the local body pose. This enables us to take into
account self-occlusions and shadows caused by garment
wrinkles. This shading approximates ambient occlusion in
graphics pipelines [34]. Formally, the MLP outputs a scal-
ing factor s ∈ [0, 2] that multiplies the RGB color of each
Gaussian, which is then clipped in [0, 1].

MLP architecture Our neural network takes as input
the local body pose vector θt concatenated with the per-
gaussian learnable latent features l. This latent code identi-
fies each primitive and encodes their local motion depend-
ing on the body pose which is then decoded by the MLP. We
show in Section 4.4 that using this latent code leads to bet-
ter performance than using the position. This information is
processed by 2 hidden layers with 64 neurons and ReLU ac-
tivations and then decoded by 3 separate heads with 2 layers
that output respectively a translation vector tmlp, a quater-
nion that represents how the Gaussian rotates qmlp and the
ambient occlusion scaling factor s.

We obtain the final Gaussian position pobs and orien-
tation qobs by applying this residual transformation to the
LBS output. Importantly, to enable generalization the resid-
ual translation vector is defined in the canonical space and
thus needs to be rotated with the orientation from LBS:

pobs = plbs + (Rttmlp) qobs = qmlp ◦ qlbs. (4)

3.4. Image rendering

Once the parameters of Gaussians in the observation space
have been computed, we render the image using the fast and
differentiable Gaussian rasterizer from 3D-GS [16].

3.5. Training procedure

At each training step, given an image and its correspond-
ing body pose, we transform the canonical Gaussians from
the canonical space to the observation space, render the im-
age and finally optimize parameters from the Gaussians and
the MLP with gradient descent. We use the SMPL model
to initialize the primitives. Gaussian centers are set to the
vertices positions, from which we can import the skinning
weights from the template. During training, the set of Gaus-
sians is incrementally densified and pruned, following the
heuristics proposed by 3D-GS. We describe below the op-
timization objective of our method, which combines recon-
struction and regularization losses. As shown in section 4.4,
regularization plays an important role in guiding our over-
parametrized model to a solution that generalizes to novel
body poses.

Reconstruction losses The main objective of the model
is to reconstruct the training images. Using the segmenta-
tion mask, we set the background pixels from the ground-
truth image in black. We use a L1 loss LL1

, a D-SSIM [61]
loss Lssim and a perceptual loss [70] Llpips with VGG [54]
weights between rendered and groundtruth images.

Minimize MLP output: We want our deformations to
rely on LBS as much as possible and expect the MLP to
learn only local deformations. Thus, we restrict the MLP
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Figure 3. Visualization of MLP outputs. From left to right:
ground-truth image, rendered image, translation output tmlp norm
(lightest colors indicate largest translation vector) and ambient oc-
clusion factor s (grey: no color modification, blue: darker colors,
red: lighter color). We observe that our MLP learns to operate on
the dynamic parts of garments.

outputs to be as small as possible. We define one regular-
ization term for each output: Ltrans controls the norm of the
translation residual, Lrot pushes the rotation residual close
to the identity quaternion qid, and Lamb guides the ambient
occlusion factor to stay close to 1:

Ltrans = ∥tmlp∥2 Lrot = ∥qmlp −qid∥1 Ls = ∥s−1∥2.

Regularization of canonical positions: We encourage
Gaussian positions to stay close to the SMPL mesh to avoid
floating artifacts. Because our model represents the clothed
body, we define a threshold τpos that represents the maxi-
mum distance between the skin and the clothes. We search
the nearest vertex vi from each Gaussian canonical position
pi and apply the following loss, that penalizes points that
are further than the threshold:

Lmesh =
∑

i ReLU(∥vi − pi∥2 − τpos).

Skinning weights weak supervision: Because we train
on a limited amount of gestures, the training data can usu-
ally be fitted with skinning weights that do not general-
ize well. Consequently, we softly supervise the skinning
weights of our Gaussians with those from SMPL, i.e., the
closer a Gaussian is from a vertex, the more similar its skin-
ning weights need to be:

Lskn =
∑

i ReLU(∥w(gi)− w(vi)∥2 − τskn∥vi − pi∥2).

It should be noted that we do not backpropagate the gra-
dient of the distance ∥vi − pi∥2 through this loss.

We sum all the reconstruction and regularization terms
to obtain the final loss L. The weights and hyperparameters
used are given in the supplementary materials.

4. Experiments
In Section 4.3, we compare Human Gaussian Splatting
against state-of-the-art human avatars on novel views and

novel pose synthesis on public datasets. Then, we perform
several ablation studies in Section 4.4 to show the benefit
our design choices. This research has been conducted with
public datasets only, which, to the best of our knowledge,
have collected human subject data according to regulations.
More results are shown in supplementary materials, includ-
ing videos of novel pose synthesis and a demonstration of
real-time rendering.

4.1. Implementation details

Our algorithm is implemented in the PyTorch framework.
The LBS module is inspired by the SMPL-X reposi-
tory [42]. We optimize the total training objectives us-
ing Adam optimizer with hyperparameters β1 = 0.9 and
β2 = 0.99. More implementation details are given in the
supplementary materials.

4.2. Dataset and evaluation metrics

We validate our method on 3 datasets: THuman4 [72] is
captured by 24 calibrated RGB cameras at 30 fps with an
image resolution of 1330×1150. 3 different subjects are
covered, each sequence ranging from 2500 to 5000 frames.
DNA-Rendering [5] uses 60 cameras to capture a wide
range of human motions and clothing. ZJU-Mocap [44]
is obtained using 23 hardware-synchronized cameras, with
1024×1024 resolution. Similar to existing work, we utilize
PSNR, SSIM, and LPIPS to evaluate both novel view and
novel pose synthesis. Following PoseVocab [26], we also
include FID metric [8] on the THuman4 dataset to measure
the realism between rendered and ground truth data.

4.3. Comparison with state-of-the-art

Baselines We compare our approach with state-of-the-art
methods: 1) PoseVocab [26] uses SDF-based volume ren-
dering and joint-structured embeddings, 2) SLRF [72] de-
fines hundreds of local NeRFs defined on SMPL surface,
3) TAVA [23] is a template-free NeRF approach with for-
ward skinning weights field, 4) Ani-NeRF [43], uses a
canonical NeRF with backward skinning, 5) ARAH [60] de-
fines a canonical SDF and finds backward correspondences
with joint root-finding and 6) DVA [50] uses forward defor-
mation of articulated volumetric primitives.

4.3.1 Evaluation on THuman4 dataset

For this dataset, we carefully replicate experiments pro-
posed by PoseVocab [26] on the “subject00” sequence. One
of the 24 cameras is held out for the evaluation of novel
view synthesis. For novel pose synthesis, the method is
trained with the first 2000 frames and evaluated on the rest
500 frames. Quantitative results are given in Tab. 1, where
the score of other methods is reported from PoseVocab [26]
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Table 1. Quantitative comparison on Thuman4 dataset. We evaluate the performance on both novel view and novel pose synthesis, and
time efficiency. Our method achieves the best performance on all the metrics and supports real-time rendering in the inference stage.

Method Training poses Novel poses Efficiency
PSNR SSIM LPIPS FID PSNR SSIM LPIPS FID Render (s) Training (h)

HuGS(Ours) 35.05 0.99 0.020 9.48 32.49 0.984 0.019 11.76 0.015 10
PoseVocab [26] 34.23 0.99 0.014 23.957 30.97 0.977 0.017 37.239 3 48+
SLRF [72] 25.27 0.97 0.024 44.49 26.15 0.969 0.024 110.651 5 25
TAVA [23] 23.93 0.97 0.029 75.46 26.61 0.968 0.032 99.947 - -
Ani-NeRF [43] 23.19 0.97 0.033 85.45 22.53 0.964 0.034 102.233 1.09 12
ARAH [60] 22.02 0.96 0.033 74.30 21.77 0.958 0.037 77.840 10 36

and the efficiency metrics have been collected on each re-
spective paper, except for TAVA that does not report ren-
dering time and indicates training time as a limitation. Our
method obtains better PSNR, SSIM, and FID scores than
all the competitors. In terms of time efficiency, the training
time of our method is on par with or better with the base-
lines, while being the only method to present a real-time
rendering in the inference stage. This comparison shows
that our method can achieve state-of-the-art performance on
both novel view synthesis and novel pose animation while
maintaining real-time rendering speed. We show a qualita-
tive comparison against the best competitor PoseVocab in
Figure 6. HuGS and PoseVocab exhibit different strengths
and weaknesses. Our method shows more fidelity to the
groundtruth image, for example the logo on the hoody or
the head pose which is perfectly aligned. On the other hand,
PoseVocab exhibits a smoother surface thanks to SDF for-
mulation. Another drawback of PoseVocab are artefacts that
appears outside of the body topology, due to failure in the
inverse skinning process. Because we use forward defor-
mation, such artefacts do not happen with our method.

4.3.2 Evaluation on DNA-Rendering dataset

We further evaluate our method on DNA-Rendering [5] that
proposes more challenging subjects with loose clothing and
complex textures. We use 48 cameras and 80 % of the video
to train on 3 sequences. Novel view synthesis is evaluated
on 12 held out cameras and novel poses on the held out last
frames with all cameras. We compare HuGS to DVA [50],
which also performs forward deformation of 3D primitives.
Quantitative comparison is provided in Tab. 2 and render-
ings are shown in Fig. 4. The combination of complex tex-
tures, fast non-rigid motion and loose clothing make it very
difficult for both methods to render details with high fidelity.
Nonetheless, our method exhibits better results than DVA
and can fit unusual topology and preserve it under novel
poses. This is because we rely on the template only at ini-
tialization and are able to fit the canonical representation to
an arbitrary shape, unlike other methods such as DVA that
define primitives close to the template surface.

Table 2. Comparison with DVA on DNA-Rendering.

Seq Method Novel views Novel poses
PSNR SSIM LPIPS PSNR SSIM LPIPS

0165 HuGS 31.5 0.98 0.022 30.0 0.97 0.025
DVA [50] 29.8 0.97 0.025 28.8 0.97 0.036

0166 HuGS 27.0 0.97 0.050 25.7 0.96 0.056
DVA [50] 26.1 0.96 0.059 25.4 0.95 0.063

0206 HuGS 25.7 0.96 0.061 23.2 0.94 0.073
DVA [50] 22.8 0.94 0.076 23.1 0.93 0.079

4.3.3 Evaluation on ZJU-MoCap dataset

To benchmark HuGS on ZJU-MoCap [44], we follow the
setting of NeuralBody [44], i.e. use only 4 out of 21 cam-
eras to train, and report results given by SLRF [72]. On
this dataset, we train only for 50k iterations because we
observe that textures degrade on novel poses with further
training, due to the sparse camera setup. Table 3 presents
the quantitative results. Our method achieves the second-
best performance on novel views and the best performance
on novel pose synthesis, where we obtain the highest PSNR
and competitive SSIM. Moreover, our approach is notably
more efficient for training and rendering compared to the
baselines. These results shows that HuGS can generalize
well in novel pose animation tasks, as shown in Fig. 5.

Table 3. Results on ZJU-MoCap dataset. We present the second-
best performance on novel view synthesis while outperforming all
the baselines on PSNR metric for novel poses.

Novel Views Novel Poses
Method PSNR SSIM PSNR SSIM
HuGS(Ours) 26.58 0.934 23.69 0.896
SLRF [72] 28.32 0.953 23.61 0.905
Neural Body [44] 25.79 0.928 21.60 0.870
Ani-NeRF [43] 24.38 0.903 21.29 0.860

4.4. Ablation studies

Animate with a single transformation The core of our
method consists in combining two transformations: LBS
and a pose-dependent MLP. We study the performance of
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Figure 4. Comparison with DVA on the DNA-Rendering dataset. Despite fast non-rigid motion of complex textured garments, our
method preserves more details than DVA and is able to fit unusual topology with loose clothing.

our method by using either LBS or MLP as the only de-
formation. Qualitative are shown in Fig. 7. Using only
LBS is a strong baseline quantitatively competitive with the
state-of-the-art. However, because it only encodes the rigid
deformations of body joints, it is not able to model wrin-
kles on garments and lacks details compared to the proposed
method. The MLP only version fails to model large defor-
mations such that arms are not represented and thus is not a
suitable algorithm for animatable avatars.

Learning skinning weights One contribution of our work
is to learn per-gaussian skinning weights. We compare this
design choice to a simpler baseline: a model where weights
are not learned but imported from the closest SMPL ver-
tex. Because the MLP can potentially correct errors from
previous steps, we deactivate it for this experiment and de-
form gaussians only with LBS. We present the comparison
in Tab. 4, where we observe that the model with learned
skinning weights can bring more than 1dB improvement
on PSNR over the SMPL skinning weights. The main rea-
son is that SMPL weights are defined on the naked body
while ours can adapt freely to any body shape. Template
weights could also be inaccurate due to the pose estimation
error in the training data, causing misalignement between
the canonical gaussians and the template mesh.

Latent code or position We use a per-gaussian latent
code as input of our MLP. It is in contrast with previous

Novel Views Novel Poses

GT GT OursOurs Neural Body Neural Body

Figure 5. Comparison with Neural Body on ZJU-MoCap
dataset. While results in novel pose synthesis are comparable for
both methods, HuGS generalizes way better to novel poses thanks
to its forward deformation formulation.

Table 4. Ablation study on skinning weights. We evaluated the
ablated model with learned skinning weights and weights from the
SMPL template on novel view synthesis.

Method PSNR SSIM LPIPS FID
Learned 31.99 0.984 0.020 27.15
Template 30.97 0.981 0.022 28.50

work [66] that used the position to identify the primitive.
We train a model where we replace the latent code (16
floats) by canonical position augmented with fourier fea-
tures [59] (63 floats). As shown in Tab. 5, latent codes per-
form slightly better than position while being more com-
pact. With more MLP layers, we expect positional encod-
ings to work similarly, but the learned features help to de-
code the information in small MLPs, similar to explicit fea-
tures grids that accelerate NeRFs [38].

Table 5. Ablation study on MLP input. We compare learnable
latent codes with canonical position encoding as MLP input, for
novel pose synthesis on THuman4 Dataset.

Method PSNR SSIM LPIPS FID
Latent code 32.49 0.984 0.019 11.76
Position 32.20 0.985 0.019 17.78

Shading Finally, we verify the benefit of the shading
component of our pipeline. We train a model where the
MLP only outputs translation and rotation for each gaussian
on the sequence00 of THuman4 dataset. This model obtains
the following metrics on novel pose synthesis: 29.72dB
PSNR, 0.978 SSIM, 0.027 LPIPS. These scores are directly
comparable with those displayed in Tab 1. Removing this
component forces the model to learn duplicate gaussians
with different colors for shaded areas, leading to overfitting.

4.5. Efficiency

One of the main advantage of our method against previ-
ous work is its rendering time. We render an image of
size 512x512 in ≈ 12ms or 80fps on a single Tesla V100
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Figure 6. Qualitative comparison between PoseVocab and HuGS on Thuman4 dataset. On the left, our avatar shows better fidelity
w.r.t. the body pose than PoseVocab that fails to deform the hood and the knee at the correct location. In the middle, HuGS presents a more
detailed logo and more accurate head pose. On the right, PoseVocab presents artefacts due to failures of the inverse skinning process.

GPU. This runtime is two orders of magnitude faster than
the compared SoTA, as shown in Table 1. Computing trans-
formations from canonical to observation space takes 10ms
and gaussians rasterization 2ms. Training the model for our
experiments takes from 5 to 20 hours on a Tesla V100, de-
pending on the dataset size. It compares equally or favor-
ably to neural rendering competitors.

5. Discussion

Limitations and future work Our method is limited in
several aspects: 1) the 3D reconstruction quality degrades
with sparse camera setups because of overfitting on the
training observations, resulting in poor novel pose synthe-
sis. 2) The proposed MLP is able to fit observed garment

Groundtruth LBS + MLP LBS MLP

Figure 7. Ablation study on the importance of combining LBS
and MLP. We show the images in the order of ground truth, qual-
itative results of our full model with both LBS and posed-based
MLP, and the ablated model with LBS only and with MLP only.

deformations and replicate them for novel poses, but does
not extrapolate novel deformations. 3) Each gaussian in our
model is optimized and deformed independently, ignoring
the relation between gaussians in local neighbourhoods. We
think that defining structure and connectivity between prim-
itives would help and leave it as future work.

Potential societal impacts The proposed algorithm could
be used in Deep Fakes pipelines to synthesize fake videos of
people with reenactment for malicious purpose. This aspect
needs to be addressed and mitigated carefully.

Concurrent works There is a wide-spread interest in hu-
man modelling with gaussian splatting, such that many
preprints with related approaches have been released dur-
ing the review process of this paper [6, 9, 12–14, 17, 19, 21,
22, 27, 30, 39, 48, 49, 74]. We discuss key similarities and
differences in the supplementary materials.

6. Conclusion
We have proposed HuGS, a first approach for creating
and animating virtual human avatars based on Gaussian
Splatting, by defining a coarse-to-fine deformation algo-
rithm that combines forward skinning with local learning-
based refinement. Using Gaussian Splatting for this prob-
lem not only helps to accelerate rendering, but also enables
to bypass difficult inverse skinning approaches required in
NeRF-based formulations. In contrast with other forward
approaches, we are able to fit body shapes with loose cloth-
ing. Experimental results demonstrate that our approach
can achieve state-of-the-art human neural rendering perfor-
mance with good generalization. The fast rendering of this
approach should facilitate its deployment and we hope that
HuGS will also serve as an intuitive baseline for follow-up
research on gaussian-based avatars.
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Headgas: Real-time animatable head avatars via 3d gaussian
splatting. arXiv preprint arXiv:2312.02902, 2023. 8

[7] Chen Geng, Sida Peng, Zhen Xu, Hujun Bao, and Xiaowei
Zhou. Learning neural volumetric representations of dy-
namic humans in minutes. In CVPR, 2023. 2

[8] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 5

[9] Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao
Zhou, Boning Liu, Shengping Zhang, and Liqiang Nie.
Gaussianavatar: Towards realistic human avatar modeling
from a single video via animatable 3d gaussians. arXiv
preprint arXiv:2312.02134, 2023. 8
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