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Abstract

In order for reinforcement learning (RL) agents to be
deployed in real-world environments, they must be able to
generalize to unseen environments. However, RL struggles
with out-of-distribution generalization, often due to over-
fitting the particulars of the training environment. Although
regularization techniques from supervised learning can be
applied to avoid over-fitting, the differences between super-
vised learning and RL limit their application. To address
this, we propose the Signal-to-Noise Ratio regulated Param-
eter Uncertainty Network (SNR PUN) for RL. We introduce
SNR as a new measure of regularizing the parameter uncer-
tainty of a network and provide a formal analysis explaining
why SNR regularization works well for RL. We demonstrate
the effectiveness of our proposed method to generalize in
several simulated environments; and in a physical system
showing the possibility of using SNR PUN for applying RL
to real-world applications.

1. Introduction
Reinforcement Learning (RL) has emerged as a pow-
erful framework for teaching agents to make decisions
through trial-and-error interactions with dynamic environ-
ments. However, a critical challenge arises when agents
overfit to their training environments and fail to generalize
to new, unseen domains – a problem that is central to the
deployment of RL in real-world scenarios [22, 27]. Reg-
ularization techniques have been proposed as a solution to
this generalization dilemma. These techniques can be cat-
egorized into two distinct approaches: noise injection and
parameter regularization.

Noise injection strategies, such as entropy-based action
regularization [10, 45], state-dependent noise injection [36],
and dropout-induced parameter noise [16, 39], introduce
stochasticity into the agent’s policy or model parameters to
promote exploratory behavior and prevent over-reliance on
specific features of the training environment . However, the

downside of these methods is a potential destabilization of
the training process, as the added variability can interfere
with the agent’s ability to learn an effective policy [11].

On the other hand, parameter regularization techniques
aim to directly control the complexity of the model. Weight
decay and Lasso regularization are common approaches that
penalize large weights, encouraging the network to prefer
simpler functions that may generalize better [20, 28, 29].
Despite the effectiveness of parameter regularization tech-
niques in supervised learning, in the context of RL, these
approaches can lead to oversimplified networks that lack
the capacity to capture the complexities of the environment,
limiting the agent’s ability to learn the task [44].

Parameter uncertainty represents an intriguing middle
ground, potentially combining the explorative benefits of
noise injection with the structural discipline of parameter
regularization. Although it is well studied in supervised
learning [6, 23], and some methods have been applied for
exploration in RL [12, 33, 35], they have not been applied
to generalization. Additionally, such methods do not prop-
erly regulate the parameter uncertainty due to the difficulty
in applying standard Kullback–Leibler divergence regular-
ization [12, 35] (see Section 4.1), which can hinder their
application for generalization in RL.

In this paper, we propose a regularized parameter un-
certainty method for improving generalization in reinforce-
ment learning. The main contributions of this work are sum-
marized as follows:
• We propose a signal-to-noise (SNR)-regulated parameter

uncertainty network (SNR PUN). This approach first in-
troduces a parameter-specific ratio of the mean over the
standard deviation for each distribution, referred to as the
signal-to-noise ratio (SNR), as a measure of parameter
uncertainty. Then, instead of using KL divergence to con-
strain the parameter distribution into a predefined prior,
we limit each parameter’s uncertainty below a maximum
SNR. This regulation allows for both effective training
and enhanced network generalization.

• We provide a formal analysis on the relationship be-
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tween our proposed max SNR regularization and KL di-
vergence. This analysis indicates that SNR regularization
is equivalent to calculating the KL divergence against a
broader range of prior distribution sets for each parame-
ter, offering a novel perspective on parameter uncertainty
regularization.

• We further integrate the proposed SNR PUN into a Prox-
imal Policy Optimization method for RL. By modify-
ing the parameter sampling strategy, separating the actor
and critic networks, and employing a new initialization
method, we maximize the network’s uncertainty, aims to
achieve better generalization, while still ensuring success-
ful training.

• We demonstrate our method’s improvement in unseen en-
vironments across several RL tasks, highlighting its cor-
relation with better transferability to real-world systems;
and underscoring the utility beyond simulated shifts to ad-
dress the unpredictable variations of a physical system.

2. Related Work
Generalization in RL Network generalization problem is
a well-studied area. Readers are referred to Wang et al.
[42] for a comprehensive survey. Methods proposed for
improving the generalization in RL typically concentrated
on the reward function or transition dynamics. In robotics,
this issue has been studied extensively, particularly when
the exact dynamics of the environment are poorly defined
or entirely different from the simulated environment [21].
Randomization using noise has been applied to the input
state space [3] or the transition dynamics [34]. Adversarial
noise insertion into the domain space has been explored by
Mandlekar et al. [26]. Many of the aforementioned meth-
ods focus on utilizing noise on the inputs or outputs and not
throughout the network. Igl et al. [19] addressed this issue
by selectively inserting noise to one latent state to avoid ex-
cessive perturbation of the gradient estimation. The authors
in Igl et al. [19] and Lu et al. [24] argue that generalization
is improved by constraining the available information dur-
ing training. Still, the noise that can be inserted is applied
to only the input, output, or part of the latent space.

Parameter Uncertainty in RL Parameter uncertainty
allows for noise to be incorporated into deep neural net-
works by treating each parameter as a distribution rather
than a fixed value [1, 15]. We refer to these methods as
Parameter Uncertainty Network (PUN)s. The use of varia-
tional inference for parameter uncertainty in RL is a well-
studied area [31, 32]. The original variational parameter
uncertainty work, Blundell et al. [5], applied PUN to a sim-
ple contextual bandits problem. Fortunato et al. [12] applied
PUNs to a more complex set of environments and a variety
of policy gradient methods to improve exploration. These
methods are limited because they do not explicitly regulate
the learned distributions. In RL these PUNs are challenging

to regulate in standard ways because of the noisy learning.
Our work differs from previous approaches because it offers
a novel regularization method for PUNs.

3. Preliminaries
3.1. Bayes-by-backprop
The most common method for implementing the pa-
rameter uncertainty in a neural network is Bayes-by-
Backprop (BBB), where the parameters of a network ✓ =
{✓1, . . . , ✓N} are learned not as a fixed, deterministic value
but as a Gaussian distribution, ✓i ⇠ N (µi,�i) [25]. The
standard deviation �i is ensured to be positive by applying
the softplus function to auxiliary parameters �i 2 R, i.e.,
�i = log(exp(�i) + 1). During the forward pass of the
network, parameter values are sampled from these distribu-
tions:

✏i ⇠ N (0, 1) (1)
✓i = µi + log(exp(�i) + 1) · ✏i 8i 2 N (2)

The training process of BBB methods revolves around up-
dating these distributions, represented by µi and �i, to fit
the data while ensuring they stay close to the predefined,
fixed prior distributions. The loss function is accordingly
defined as:

L(D; ✓) = �Eq(✓)[log p(D|✓)]+c� ⇤KL [q(✓)||p(✓)] , (3)

Here, D denotes the dataset, q(✓) is the learned parame-
ter distributions and p(✓) refers to the predetermined prior
distribution. The first negative log-likelihood term is used
for training the network to fit the data while the Kullback-
Leibler (KL) divergence term is instrumental in maintaining
the learned distributions close to their predetermined priors
to prevent overfitting. c� is a scaling factor.

3.2. Proximal Policy Optimization
In RL the most commonly used optimization method is
Proximal Policy Optimization (PPO) [38], which has be-
come a benchmark in RL problems due to its empirical ro-
bustness and ease of implementation [18]. PPO is an actor-
critic algorithm that has two components: the actor decides
the actions to be taken, and the critic evaluates the actor’s
choices. In most approaches, the actor and the critic share a
network backbone.

We omit many of the PPO details for brevity and will
focus on the loss function. The PPO loss function has three
terms: a clipped surrogate objective LCLIP

t , a value function
error term LVF

t , and an entropy bonus term S[⇡✓](st) [38]:

LPPO
t (✓) = E

t

⇥
LCLIP
t (✓)� c1LVF

t (✓) + c2S[⇡✓](st)
⇤

(4)
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here, c1, c2 are coefficients. The clipped surrogate objective
serves to prevent the new policy from deviating too far from
the old policy by limiting the size of the policy update. The
value function error term measures the squared difference
between the predicted and target state values. The entropy
bonus term encourages exploration and prevents the policy
from becoming too deterministic.

4. Methods
In this section, we begin by analyzing the challenges of us-
ing the BBB framework to improve the generalization abil-
ity of trained networks. To address these challenges, we
propose infusing uncertainty into network parameters using
Signal-to-Noise ratio (SNR)-based regularization. Further-
more, we introduce a training scheme to ensure viable and
stable training outcomes.

4.1. Improving Regularization in BBB
In BBB, the Kullback-Leibler (KL) regularization term is a
fundamental component for constraining the parameter dis-
tributions, as mathematically expressed in Eq. 3. Ideally,
KL [q(✓)||p(✓)] should be minimized to ensure q(✓) aligns
closely with p(✓). However, the divergence can increase
significantly when the posterior mean µi for each parame-
ter ✓i diverges from zero, leading to a network behavior that
might have limited expressivity if the divergence form the
prior is overly regulated.

The RL framework compounds these challenges. RL op-
timization often has noisy gradient estimates. The inher-
ent noise in these estimates is further complicated by the
KL term in BBB. As such, the KL divergence term is often
dropped (or set to a value that is effectively 0) when BBB
is used for training in RL [12, 35]. As a consequence, the
learned distributions are under-regulated, often collapsing
each distribution’s standard deviation �i to zero.

4.2. SNR Constrained Parameter Uncertainty
To mitigate the challenges associated with regularization
and to enable effective training in BBB networks, while still
maintaining robust learning and network generalization, we
propose a SNR-based regularization method. This method
is designed to finely control parameter uncertainty, allowing
for sufficient model stochasticity without incurring the risk
of training collapse.

We define the parameter-specific SNR as:

⌦SNRi =
|µi|
�i

(5)

where µi represents the mean and �i represents the standard
deviation of the i-th parameter in the network. This ratio
quantifies the extent of noise relative to the signal in the
parameter distribution.

Without regularization, network parameters tend to ex-
hibit high SNRs after training, indicating less uncertainty
in parameters and leading to more deterministic behavior.
This reduction in parameter uncertainty may yield stable
and high-performance results on the training dataset, yet it
can lead to overfitting, constraining the network’s general-
izability to new environment configurations. Conversely,
lower SNR values, indicative of increased parameter un-
certainty, are associated with wider probability distributions
and a flatter loss landscape, which are favorable for gener-
alization.

Max SNR Regularization To control the parameter-
specific ⌦SNRi and prevent overfitting within the uncertainty
models used for RL, we introduce a regularization term that
penalizes deviations of the SNR from a predefined maxi-
mum threshold, ⌦Max SNR, which is realized by the follow-
ing SNR loss term:

LSNR =
X

i

[max (⌦SNRi � ⌦Max SNR, 0)]
2 (6)

where ⌦SNRi denotes the SNR for the i-th parameter distri-
bution as defined in Eq. 5, and ⌦Max SNR signifies the upper
limit for the SNR. The SNR loss term enforces a boundary
on the SNR, ensuring that the network does not select pdfs
with an SNR exceeding this limit. This approach imposes a
constraint that, while allowing the weights to vary in mag-
nitude, ensures that an appropriate level of noise is incorpo-
rated across the parameter spectrum. This trade-off between
precision and variability, achieved through the Max SNR
regularization, is essential for successfully adapting trained
networks to new environments.

Comparing SNR Regularization to KL Divergence
Both the proposed SNR Regularization and the conven-
tional KL divergence aim to control the distribution of net-
work parameters, yet they operate on different principles
that affect parameter constraints.

On the one hand, the SNR regularization is equivalent to
calculating the KL divergence for a parameter ✓q = q ⇠
N (µq,�q) with the prior p ⇠ N (µp,�p) such that it is the
closest value that does not violate the SNR constraint and
that �p = �q . This is mathematically depicted as:

KL[qkp] = 1

2

"
(µq � µp)2

�2
p

+
�2
q

�2
p

� 1 + ln

 
�2
p

�2
q

!#
(7)

�p=�q
=

1

2


|µq � µp|

�p

�2
(8)

µpµq>0
=

1

2


|µq|
�q

� |µp|
�p

�2
(9)

=
1

2

⇥
⌦SNRq � ⌦Max SNR

⇤2
=

1

2

⇥
LSNR(q)

⇤
(10)

This equivalence, valid as �p = �q and µp and µq always
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share the same sign, simplifies the KL divergence to the
squared SNR difference between the posterior and prior.

On the other hand, the differences between SNR and KL
regularization are evident when examining their impact on
parameter distributions, as illustrated in Figure 1. The stan-
dard KL term, with its zero-mean Gaussian constraint, re-
sults in a more pronounced regularization effect, requiring a
smaller constant in the loss function. In contrast, SNR reg-
ularization allows a wider range of parameter distributions
and can be more heavily penalized during training. This
flexibility in SNR regularization is advantageous as it per-
mits a larger selection of the parameter space. Networks
trained under SNR are more likely to find solutions that are
not only optimal for the current loss but also robust to vari-
ations in the parameter space. This robustness contributes
to an improved generalization ability of the network, high-
lighting a key advantage of SNR over the more restrictive
KL regularization.

Figure 1 highlights the impact of the KL divergence term
LKL(✓i) and the challenges it presents in the parameter up-
date process. In RL, where gradient estimates are often
based on incomplete or imperfect environmental informa-
tion [43], the sensitivity to the KL term is more accentuated.

Figure 1. Visualization of parameter-wise KL and SNR regular-
ization term effects on a parameterized distribution ✓i in a PUN
(given ✓i ⇠ N (µi,�i)). LKL will always be greater than or equal
to LSNR.

4.3. Training Scheme
Integrating the Max SNR loss term, i.e., Eq. 6, into the PPO
framework, the modified loss function used in our method
is presented as:

LPPO+SNR
t (✓) = E

t

⇥
LCLIP
t (✓)� c1LVF

t (✓)
⇤
+ c2LSNR (11)

Here, c1 and c2 are coefficients; LCLIP and LVF are the clip-
ping loss and value function loss terms in Eq. 4. To maxi-
mize the network’s uncertainty while still ensuring success-
ful training, we propose a novel training scheme that incor-
porates a new sampling strategy, a deterministic critic and a
new network initialization method.

Sampling Strategy Our approach differs from tradi-
tional methods that sample parameters only once per sim-
ulation rollout. We adopt a strategy of continuously resam-
pling the parameters of a stochastic model at every timestep
within each simulation. This method introduces a higher
level of stochasticity, enhancing the model’s adaptability
and robustness across various scenarios. The increased
stochasticity from this sampling strategy impacts our loss
function. In contrast to the standard PPO framework, which
uses an entropy bonus to encourage exploration and prevent
overly deterministic policies, our continuous resampling in-
herently makes the policy less deterministic. Therefore, we
omit the entropy bonus in our loss function.

Stabilizing Advantage Estimates Our work introduces
a novel approach using the SNR constrained PUN, which
has a highly probabilistic nature, as the backbone for policy
generation, aimed at improving generalization. This ben-
efit comes at the cost of complicating gradient estimates,
thereby introducing additional noise into the training pro-
cess. As a result, this highly stochastic backbone can lead
to unstable advantage estimates, posing challenges during
training. To address this, we propose a strategy to enhance
training stability by using separate actor and critic. Specif-
ically, the SNR constrained PUN is used as the actor, while
another deterministic network is utilized for the critic. This
approach not only stabilizes the loss function during train-
ing but also capitalizes on the benefits of stochastic ele-
ments.

Network Initialization The µi and �i for each param-
eter are initialized as follows: Each µi is sampled from
U(�

q
2
p ,
q

2
p ) where p is the number of inputs to each lin-

ear layer following He et al. [17]. Each �i is sampled from
U(�min,�max) where �min and �max are tuned hyper-
parameters.

We did a hyper-parameter search to select the values of
�min and �max for our environments. These values are an
order of magnitude larger than the �min and �max values in
previous work [12]. We found that using higher sigma val-
ues during initialisation lead to better generalisation results
from the network.

5. Experimental Setup

Evaluation of the efficacy of our approach is measured
by mutating the base environments after training and with
no further adjustment; these environments are defined in
Section 5.1. All models are trained using PPO (with our
changes for the stochastic models), and each combination
of parameters is evaluated with several seeds for each pos-
sible environment configuration.
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Model Experiment Cartpole Acrobot Quadruped Walker

MLP

– 529.64 ± 10.19 160.58 ± 19.07 670.57 ± 28.82 212.96 ± 14.89

+Dropout 597.61 ± 9.67 148.52 ± 23.28 713.87 ± 2.81 180.84 ± 15.84

+gSDE 571.46 ± 19.51 – 688.08 ± 8.21 166.03 ± 10.38

+Entropy Maximization 662.03 ± 17.77 145.47 ± 27.96 540.25 ± 45.91 301.19 ± 23.48

+Weight Decay 642.83 ± 21.31 213.71 ± 30.20 702.04 ± 3.53 210.87 ± 15.27

PUN – 534.43 ± 48.40 246.57 ± 22.55 738.95 ± 3.91 250.11 ± 16.28

+Dropout 500.09 ± 64.89 414.34 ± 31.91 686.79 ± 1.71 179.18 ± 13.86

VIB – 622.72 ± 23.06 302.95 ± 34.92 716.11 ± 3.77 255.27 ± 18.41

Use Mean 623.06 ± 17.84 303.51 ± 34.93 739.84 ± 16.93 259.18 ± 17.81

SNR PUN
– 670.48 ± 13.42 421.77 ± 32.74 750.47 ± 3.23 310.96 ± 16.96

Sample Once 664.88 ± 24.35 423.43 ± 50.98 751.21 ± 3.44 309.56 ± 17.33

Use Mean 693.86 ± 12.21 417.32 ± 31.97 749.13 ± 3.41 310.70 ± 17.01

Table 1. Model performance measured using Average Task Performance (ATP) as defined in Section 5.2. The standard errors are calculated
per-environment configuration and then averaged. The best metrics are highlighted in bold. Our approach is denoted as ’SNR PUN’ and
the parameter uncertainty model that did not include the LSNR is denoted as ’PUN’. In the experiment column, ’-’ means models without
any regularization term, ’+Dropout’ means dropout is included during training, ’+gSDE’ means state exploration is included (for Acrobot,
gSDE is omitted as it cannot be applied to discrete action spaces), ’+Entropy Maximization’ means models include entropy maximization,
’+Weight Decay’ means models include a weight decay regularization term, ’Sample Once’ means models that are sampled once per
simulation rollout.

5.1. Environments

Experiments are conducted on several control environ-
ments, various continuous control tasks and a discrete con-
trol task. The tasks are briefly described here, along with
the key changes we made to the environment, as well as the
domain parameters that were mutated during the evaluation.

CartPoleSwingUp The cart-pole task is a classic control
problem where a pole is attached to a cart that slides along a
track [4]. The environment’s reward function combines the
cart’s position on the track and the pole’s angle from verti-
cal. We use the environment proposed in Gaier and Ha [13]
and Gal et al. [14]. The mutable parameters in our domain
generalization task include the pole length, the pendulum
mass, and the magnitude of the force that can be applied to
the cart.

Acrobot-v1 Acrobot is a two-link robot with one end
fixed and one end free. The task objective is for the free end
of the chain to reach a particular height. The environment
is described in Sutton [40] and Sutton and Barto [41]. The
mutable parameters here are the link length, link mass, and
the magnitude of torque that can be applied to the links. In
the base environment, both links have the same values for
length and mass. This symmetry is maintained in our study.

Quadruped is a four-legged robot with each leg con-
sisting of two joints; the objective is to move forward with
a desired speed and receives a reward proportional to its
stability and forward speed, minus energy usage costs [37].
The environment has an observation space of 78 dimensions
and an action space of 12 dimensions. The shin length, joint

damping, and contact friction are mutable parameters.
Walker is a two-legged extension of the hopper envi-

ronment defined in Durrant-Whyte et al. [9]. Similar to
the quadruped, the agent receives a reward for forward lo-
comotion minus some energy costs. The environment has
an observation space and action space of 18 and 6 dimen-
sions respectively. The mutable parameters are thigh length,
joint damping, and contact friction are mutable parameters.
Both the Walker and Quadruped are implemented in Dulac-
Arnold et al. [8].

5.2. Evaluation Parameters and Baselines
We evaluate our approach by performing a combinatorial
search over the range of possible values for each environ-
ment parameter. These parameter ranges, were proposed in
previous work (Akl et al. [2] and Dulac-Arnold et al. [7]
as meaningful ranges for our environments. Each combina-
tion of environment parameters is evaluated with 10 seeds
and the simulations were carried out for 1000 time-steps.
The environment configuration space is discretized into sec-
tions for each mutable environment parameter, these sec-
tions are defined in Tables 2a and 2b of the appendix. This
totals 80000 evaluation simulations for CartPoleSwingUp
and Acrobot-v1, and 10000 total simulations for Quadruped
and Walker. In CartPoleSwingUp, the maximum possible
score is 1000, and the minimum possible score is 0. In
Acrobot-v1, the maximum possible score is 1000, and the
minimum possible score is 0. In Quadruped and Walker the
maximum score is approximately 1200. A higher score in-
dicates better performance in all environments.
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Figure 2. Three heatmaps that show the difference in mean performance between the SNR PUN and PUN models as a function of two of
the three CartpoleSwingUp environment parameters while the other parameter is set to a fixed value. The configurations where our model
performs better is shown in red, and where the baseline performs better is shown in blue.

Performance Measurement We use the ATP evalua-
tion metric for all models. Formally: ATP = 1

M

P
m Rm

where Rm is the average reward (over all seeds).

The goal of ATP is to capture the average performance
over all environment configurations. We intentionally set a
large enough search space such that all models fail in some
configuration; as such, reporting the worst-/best-case per-
formance is not particularly informative.

Baselines Five additional methods are included for base-
line comparison. The first baseline uses dropout regulariza-
tion. The second baseline is gSDE, a state-of-the-art ex-
ploration method proposed by Raffin et al. [36]. gSDE in-
jects state-dependent noise into the latent space of the net-
work during training. Although not explicitly designed for
generalization, it provides a meaningful baseline for eval-
uating the role of injected noise during training and offers
a more principled method for noise injection than random
noise in the observation or action space. The third base-
line method is maximum entropy (ME) RL [45]. This ap-
proach introduces an additional regularization term during
training to encourage more stochastic policy distributions,
that has been shown to improve robustness in RL [10]. We
also compare with weight decay [44]. Lastly, we compare
with a model that uses a Variational Information Bottleneck
(VIB), following the work in Igl et al. [19] and Lu et al. [24]
showing VIB’s success in generalization for RL.

6. Results and Discussion

6.1. Comparison Between Baselines

Table 1 presents our models’ performance compared to the
baselines for all environments. Our model, SNR PUN, out-
performs the baseline models in all environments. We find
VIB provides the closest performance to our models. Re-
cent work has shown that layers of stochastic neural net-
works, like PUNs, perform approximate information com-
pression, as such our method is similar to VIB [30].

Additionally, we find that dropout performs relatively
well in Quadruped, while it struggles to show the same per-
formance gain in the other environments. Whereas dropout
introduces stark changes in the gradient, PUNs present a
much smoother parameter perturbation to the loss function.
Interestingly, in Acrobot, we see a gain in combining PUN
with Dropout, possibly due to the environment’s chaotic na-
ture.

Furthermore, our empirical results show that using the
SNR regularization methods consistently improves the per-
formance of the PUN models. We find the model with pa-
rameters sampled once per rollout (SNR PUN - Sampled
Once) performs slightly worse than the SNR PUN model
but still outperforms all baselines, showing the stability of
the learned parameter distributions. The overall perfor-
mance gain in our model indicates that it has better gen-
eralization properties to unseen environments.
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Figure 3. Comparison of the parameter distributions as a function
of the mean value for (a) and (b) CartpoleSwingUp and (c) and (d)
Quadruped. The maximum possible SNR boundary (⌦Max SNR) is
shown by the red line and the distributions of the stochastic models
are shown as heatmaps. The heatmaps represent the frequency
with which each combination of µi and �i is selected by each of
the respective models.

6.2. Environment Case Study

Next, we focus on CartpoleSwingUp due to its ease of in-
terpretation and implementation.

Figure 2 shows 2D slices of the evaluation space for
each pair of the CartpoleSwingUp environment parameters,
while the other parameter is set to a fixed value; this subset
can be used to infer configurations where one model out-
performs the other. In general, the SNR PUN model out-
performs or performs equally as well as the MLP over all
environment configurations, shown in Figure 2(d-f). In lim-
ited cases, the SNR PUN appears to performs worse, e.g.
Figure 2(c) with light poles. In these scenarios, the MLP
often spins extremely small and light poles at the center of
the track without properly countering the momentum of the
pole, whereas the SNR PUN does not build sufficient mo-
mentum to lift the pole. In these scenarios, neither model
properly balances the pole. In Figure 2(a-c), the same re-
sults for a PUN model without the SNR loss term (again
compared to the MLP baseline) are presented. We can see
a performance increase along the limit of the baseline MLP
model. We can also see that the PUN model has more sce-
narios where it performs slightly worse than MLP. In con-
trast, the SNR PUN does not, highlighting that the parame-
ter uncertainty regularization term helps generalization.

The experiments presented here, were carried out for all
models in Table 1 and each environment; these results can
be found in the appendix (Figures 7, 8, 9, and 10). They
are omitted here for brevity. Similar results are seen across
environments.

Figure 4. Visualization of selected distributions for differ-
ent ⌦Max SNR values and the unconstrained case on the Cart-
poleSwingUp environment.

6.3. Ablation Study of SNR Term
The following sections discuss the potential benefits of SNR
regularization.

SNR Statistics The impact of removing the SNR regu-
larization term (LSNR) from the loss function during training
is demonstrated by the drop in the mean performance of the
stochastic (’PUN’) models in Table 1. Figure 3 plots the re-
lationship between µi and �i for the stochastic models with
and without the SNR loss term. For the CartpoleSwingUp
and Quadruped environments respectively, there is a 2.12%
and 10.2% increase in the SNR parameter values that ex-
ceed ⌦Max SNR in the ’PUN’ model, whereas no parameter
values exceed ⌦Max SNR in the ’SNR PUN’ model. Con-
straining the SNR of a small subset of the overall parameter
distributions could have led to the reduction in information
during training and thereby an increase in generalization
performance. We leave exploration of this relationship to
future studies.

Influence on Max SNR selection The results in the main
text were obtained using ⌦Max SNR = 10. Figure 4 presents
the visualization of the network parameter distributions for
different ⌦Max SNR values and in the unconstrained case. We
provide these results primarily as a sensitivity analysis of
the ⌦Max SNR hyperparameter.

When ⌦Max SNR is set to a value close to zero it closely re-
sembles training with a KL divergence regularization term,
as only a distribution with µi = 0 has zero SNR. When the
value is set to a large value, it resembles training an unregu-
lated network. In Figure 5 we show the relative performance
of varying the ⌦Max SNR hyperparameter in all environments.
More complex and unstable environments require a larger
⌦Max SNR so that a stable solution is found. Walker is the
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Figure 5. Relative performance (RP) for all environments over
⌦Max SNR. RP is the relative improvement of the ATP at ⌦Max SNR =
1, which is equivalent to the unconstrained PUN.

most complex and least stable environment, as such it is
most sensitive to changes in ⌦Max SNR while Acrobot is the
simplest and thus the least sensitive.

Furthermore, the sharpness of the curves shows each en-
vironment relationship between parameter noise and regu-
larization requirements. In Acrobot heavy regularization is
key, in Quadruped minimizing parameter noise to facilitate
training is essential, and in Cartpole and Walker finding a
balance between the two leads to optimal performance.

6.4. Transferability to Robotic Platform
To evaluate the transferability of our models to a real-world
platform, we conducted tests on a physical Cartpole. De-
tailed information about the equipment used can be found
here. We estimated several key parameters for the physi-
cal Cartpole: the friction coefficient, pendulum mass and
length, maximum force output, sensor noise (including an-
gle, angular velocity, track position, and track velocity), and
track length. These parameters were mirrored in the train-
ing phase. The physical system operates at 100 Hz, and
simulations were conducted at the same frequency. We as-
sessed the MLP, MLP + Entropy, VIB, PUN, and SNR PUN
models across 30 trials, each lasting 10 seconds (to match
the 1000 timesteps during training). For stochastic models
the mean is used. We evaluate all models on two metrics:
reward (which is comparable to results in Table 1) and suc-
cessful swingup percentage (i.e. a measure on if the pole is
balanced).

The results are shown in Figure 6. Both PUN and SNR
PUN models outperform in the relative reward scores as
shown in Table 1, showing the success of parameter uncer-
tainty in facilitating sim-to-real transfer. Our findings in-
dicate that while all models could learn during the training
phase, only the SNR PUN model successfully transferred to
the physical Cartpole, even for the base task. This suggests

Figure 6. Comparing the percentage of successful balances and re-
ward on physical Cartpole. Although the average reward improve-
ment between SNR PUN and state-of-the-art is small, its effect on
successful swingup percentage is 43% higher.

that a model demonstrating generalizability in simulated en-
vironments can be transferred effectively to a real-world en-
vironment.

7. Conclusion and Future Work
In this paper, we introduced SNR PUN, a novel SNR-based
regularization method for improving the generalization of
parameter uncertainty models in RL. Our approach outper-
forms traditional regularization methods like dropout and
entropy maximization by effectively managing the SNR of
model parameters. We found that setting the maximum
SNR to a low value emulates training with a KL divergence
regularization term, while a higher value resembles training
in an unregulated network.

The SNR PUN model consistently demonstrated supe-
rior or comparable performance in various mutated environ-
ments, spanning both discrete and multiple continuous con-
trol tasks. Its effectiveness was further underscored when
evaluated against all baselines, showing robustness and po-
tential for real-world application.

Our results pave the way for future explorations into the
transferability of SNR PUN to real-world scenarios. We
aim to extend this research to continual learning in super-
vised tasks and exploration strategies in RL, leveraging the
distinct advantages of SNR regularization. This will help in
understanding the full scope of its applicability and effec-
tiveness in broader contexts.
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