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Abstract

Point cloud registration is still a challenging and open
problem. For example, when the overlap between two point
clouds is extremely low, geo-only features may be not suf-
ficient. Therefore, it is important to further explore how to
utilize color data in this task. Under such circumstances,
we propose ColorPCR for color point cloud registration
with multi-stage geometric-color fusion. We design a Hier-
archical Color Enhanced Feature Extraction module to ex-
tract multi-level geometric-color features, and a GeoColor
Superpoint Matching Module to encode transformation-
invariant geo-color global context for robust patch corre-
spondences. In this way, both geometric and color data
can be used, thus leading to robust performance even un-
der extremely challenging scenarios, such as low overlap
between two point clouds. To evaluate the performance
of our method, we colorize 3DMatch/3DLoMatch datasets
as Color3DMatch/Color3DLoMatch and evaluations on
these datasets demonstrate the effectiveness of our proposed
method. Our method achieves state-of-the-art registration
recall of 97.5%/88.9% on them.

1. Introduction
Rigid point cloud registration is a cornerstone in 3D vi-

sion and robotics [12, 21], which is fundamental to a series
of downstream applications, including 3D semantic seg-
mentation [19, 20] and 3D reconstruction [17]. The ob-
jective of registration is to estimate a rigid transformation
aligning two overlapping 3D point clouds.

Recently, keypoint-based and correspondence-based
methods [3, 6, 10] have shown promising results, which
leverage a neural network to estimate the correspondences
of the input point clouds and employ a robust estimator,
such as random sample consensus (RANSAC [9]), to derive
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(a) GeoTransformer, Patch Correspondences (b) GeoTransformer, Point Correspondences

(c) ColorPCR, Patch Correspondences (d) ColorPCR, Point Correspondences

Figure 1. In challenging scenarios with extremely low overlap and
geometric distinctiveness, geo-only method fails, while ColorPCR
successfully identifies the blue chair.

the transformation. Recent methods in the image matching
domain have underscored the importance of local neigh-
borhood information [23, 40], inspiring approaches in point
cloud registration [21, 34]. These methods perform down-
sampling to achieve hierarchical points. Then they utilize a
transformer to augment the superpoint features, thereby es-
tablishing the superpoint correspondences, which can guide
the registration of up-sampled points.

Although point cloud registration has been investigated
for decades, it is still a challenging and open problem deal-
ing with open scenario tasks. When the overlap between two
point clouds is extremely low, the registration process may
fail in many cases. Geometric features have been deeply
explored to deal with this scenario, while the performance
is still limited. Therefore, it is important to further explore
new representations for robust point cloud registration.

Thanks to recent progress on acquiring color point
clouds, it is possible to further investigate how to better ex-
plore such color information for registration. Fig. 1 shows
examples of how color information is important for regis-
tration. As the geometric information is not discriminative,
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geo-only method cannot find the correct correspondences
successfully. However, when color information is available
in subfigures (c) and (d), the blue chair in two point clouds
is detected. Therefore, it’s important to further investigate
how to utilize such color data together with geometric in-
formation for robust point cloud registration.

To tackle the challenging task of point cloud under a
low overlap, we propose ColorPCR for color point cloud
registration with multi-stage geometric-color fusion. We
design a Hierarchical Color Enhanced Feature Extraction
(CEFE) module to extract multi-level features from both ge-
ometric and color data, and a GeoColor Superpoint Match-
ing Module to encode transformation-invariant geo-color
global context for robust patch correspondences. In this
way, both geometric and color data can be used for registra-
tion and thus lead to robust performance even when dealing
with extremely challenging scenarios, such as low overlap
between two point clouds.

We also notice that because there are no publicly avail-
able color point cloud datasets, we colorize the widely
used 3DMatch/3DLoMatch [12, 37] datasets and gener-
ate Color3DMatch/Color3DLoMatch. Evaluations of these
datasets demonstrate that our proposed ColorPCR can
achieve state-of-the-art performances under all settings.
ColorPCR can achieve many gains in performance under
low overlap, which demonstrates its effectiveness under
extremely challenging scenarios. Moreover, ColorPCR is
prior-free and RANSAC-free, so the registration is fast.

The main contributions of this paper are three-fold:
• We propose to jointly use color information and ge-

ometric information together for point cloud registra-
tion. More specifically, we introduce a feature extrac-
tion backbone, named Hierarchical Color Enhanced
Feature Extraction (CEFE), which can simultaneously
capture both geometric and color information from
point clouds.

• We propose a GeoColor SuperPoint Matching Mod-
ule to encode geometric-color transformation-invariant
representations of point clouds. This module achieves
further fusion of geometry and color data, leading to
accurate superpoint correspondences.

• We generate color point cloud datasets Color3DMatch
and Color3DLoMatch. Evaluations have shown supe-
rior performance of our proposed method under ex-
tremely low overlap settings.

2. Related Work

2.1. Point Cloud Feature Extraction

Inspired by 2D image processing, advancements have
been made in 3D point cloud feature extraction. PointNet
[19] and PointNet++ [20] pioneered the field of point cloud
deep learning. After that, graph convolution [29, 30] and

point convolutional kernels [2, 25, 32] are developed. Our
CEFE, by integrating color information and KPConv [25],
precisely extracts the features.

2.2. Correspondence-based Registration Methods

Recently, Correspondence-based methods [3, 6, 10, 12]
have shown promising results in the field of point cloud reg-
istration. These methods typically begin with a feature ex-
traction backbone, such as KPConv-FPN [15, 25]. Based on
the extracted features, point clouds’ correspondences are in-
ferred. Then, a transformation can be estimated with a spe-
cific estimator, such as RANSAC or deep robust estimators
[4, 7]. Recently, some RANSAC-free methods [21, 34, 35]
have adopted a coarse-to-fine approach, achieving state-of-
the-art performance. In this work, we follow this approach
and enhance it with our powerful CEFE and GeoColor Su-
perpoint Matching Module.

2.3. Local Registration with Color

The Iterative Closest Point (ICP) algorithm [5] and its
variants [22] have consistently been pivotal in the field of
local point cloud registration. Some variants [13, 14, 16]
extend this approach by leveraging color information to en-
hance accuracy. They elevate the registration to a higher-
dimensional space, e.g., (x,y,z,r,g,b), to estimate the trans-
formation. Other methods [18] utilize color to optimize
the geometric transformation. Inspired by these methods,
we leverage color in global registration domain and follow
4DICP [16] to employ the HSV system. Through the Geo-
Color Fusion Network, we can accomplish efficient regis-
tration without disrupting the spatial structure.

2.4. Color-Related Registration Methods

Some methods have implicitly harnessed the informa-
tion provided by color. They utilize color to detect key-
points [24] or to support 2D-3D multi-modal learning
[8, 31, 35, 36, 39]. PEAL [35], for instance, uses color
through RGB images, leveraging existing 2D image tech-
niques to detect overlapping regions from images, which
are then transferred to a 3D registration network as priors.
However, such utilization of color information can lead to
information loss due to indirectness. In contrast, ColorPCR
directly incorporates color into the multi-stage registration
process, resulting in highly specific point-wise features.

3. Method
Given two color point clouds P = {pi ∈ R3|i =

1, ..., N} with Pc = {pci ∈ [0, 1]3|i = 1, ..., N} and
Q = {qi ∈ R3|i = 1, ...,M} with Qc = {qci ∈ [0, 1]3|i =
1, ...,M}, in which Pc and Qc denote the color of P and Q
respectively, our objective is to estimate a rigid transforma-
tion T = {R, t}, where R ∈ SO(3) and t ∈ R3. With the

21062



Figure 2. We separate the geometric component from the color point cloud and input it into CEFE, which down-samples these compo-
nents and leverages the color information to extract geometry-based point features. The GeoColor Superpoint Matching Module encodes
superpoints’ angles, hue, and distances, and feeds them, along with corresponding points and features, into the GeoTransformer structure.
Finally, a Fine Registration process is employed to estimate the most precise transformation.

estimated transformation, we can align the two point clouds.
To achieve the most precise alignment, we need to solve the
following optimization problem:

min
R,t

∑
(p∗

i ,q
∗
i )∈C∗

∥R · p∗
i + t− q∗

i ∥
2
2. (1)

In the aforementioned formula, C∗ is the ground-truth
correspondence set between the target and source point
clouds, representing the overlapping region of the two point
clouds. To identify this region, we down-sample the dense
points meanwhile performing a geo-color fusion process to
generate hierarchical points with highly distinctive features.
Based on the patch correspondences derived from these fea-
tures, the overlapping region can be estimated. We can then
proceed to perform a fine registration of the up-sampled
points within this region.

3.1. Overview

Our pipeline is illustrated in Fig. 2. We denote the dense
points as P ∈ R|P|×3 with Pc ∈ [0, 1]|P|×3, the first level
down-sampled points as P̃ ∈ R|P̃|×3 with P̃c ∈ [0, 1]|P̃|×3,
and the superpoints (i.e. the last level down-sampled points)
as P̂ ∈ R|P̂|×3 with P̂c ∈ [0, 1]|P̂|×3, in which |P̂| <
|P̃| < |P|. The corresponding notations for Q are simi-
lar. Then, we employ the Color Enhanced Feature Extrac-
tion (CEFE) module (Sec. 3.2) to extract point-wise fea-
tures from both the dense points and down-sampled points.
Throughout this process, color information is harnessed to
guide the extraction of features based on the local geometric
structure. Specifically, we utilize color information to en-
hance feature discriminability without disrupting the spatial
structural information of the point cloud.

While the CEFE module effectively extracts the features
of hierarchical points, it is not enough to encode the color
and geometric structure of the global context. To address
this, we propose GeoColor Superpoint Matching Module
(Sec. 3.3). It procures geo-color global information and fur-
ther enhances the superpoint features, thereby accomplish-
ing precise superpoint registration.

Following these steps, we follow GeoTransformer [21]
to perform fine matching, and ultimately select and refine
the estimated transformation to get the final one.

3.2. Color Enhanced Feature Extraction

Hierarchical Feature Extraction. Our Color Enhanced
Feature Extraction Module (CEFE) employs the strategy
proposed by FPN [15] to carry out hierarchical feature ex-
traction. The point cloud is down-sampled to Ns levels
(in accordance with previous works [12, 21, 34], we set
Ns = 4). The primary registration process does not in-
volve the original dense point cloud for two main reasons:
(1) the dense points are excessively clustered, thereby fail-
ing to provide refined information, and (2) dense points in-
evitably contain color noise, which significantly impacts the
registration process.

The first three feature extraction levels involve the de-
liberate injection of color information to enhance the fea-
tures. We abstain from color enhancement during the fourth
level, aiming to ensure stability during the superpoint fea-
ture extraction. The subsequent two levels merely involve
the concatenation of features [15]. The hierarchical feature
extraction process is illustrated in Fig. 3.
Color Enhanced Point Convolution. We have designed a
color-enhanced point convolution process for hierarchical
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Figure 3. The initial three levels of the CEFE module take the
points and corresponding features as input, enhancing the features
based on the color information of the point cloud. With the intro-
duction of color, the geo-color feature is progressively enhanced
at each level and is propagated to P̃ , which are subsequently used
to estimate correspondences.

feature extraction. For any given level-n point x ∈ Xn, its
color-enhanced feature fe can be computed with the follow-
ing recursive formula:

fe = G1(C
n,Xn,Fr, g)(x), (2)

where Xn ∈ RNn×3 with Cn ∈ [0, 1]Nn×3 represents the
color point set of level n, G1 is a convolution function to be
described later, g is the kernel function and Fr ∈ RNn×dr

is the rough feature set of Xn, extracted from the points of
the previous level. Fr can be computed as:

Fn
r = {G2(X

n−1,Fn−1, g)(xn
i )|xn

i ∈ Xn}. (3)

Here, Xn−1 ∈ RNn−1×3 and Fn−1 ∈ RNn−1×dn−1 are the
point set and feature set of level n − 1. G2 is also a con-
volution function, with the only difference between G1 and
G2 being that G1 incorporates a color enhancement pro-
cess. By combining Eq. (2) and Eq. (3), we have success-
fully introduced color into the point features. In summary,
from the previous level point features, we employ the G2

convolution to obtain coarse point features. Afterward, we
introduce color using the color-enhanced G1 convolution,
adjusting the blended features based on the point’s geomet-
ric information. To achieve a comprehensive geo-color fu-
sion, we further perform G2 convolution again, resulting in
highly distinctive point features. Fig. 4 illustrates the de-
tailed execution process of the convolution. Note that in the
first level of feature extraction, due to the absence of the
previous level, the extraction process commences directly
with the G1 convolution.

The specific calculations of the convolution are as fol-
lows. Given a point set X with its color set C and its feature

Figure 4. The joint execution of G1 and G2 convolutions is carried
out for feature extraction. Here, Xn and Cn represent the color
points of level n, and Xn−1 and Fn−1 represents the points and
features of the previous level respectively. The first G2 aims to
obtain rough features from the previous-level points. This is fol-
lowed by the execution of G1 to enhance the geometric features
with color information. Finally, G2 is executed again to facilitate
further integration of color and geometric information.

set F, we have:

G1(C,X,F, g)(x) =
∑

xi∈Nx⊂X

g(xi − x)f c
i (4)

and

G2(X,F, g)(x) =
∑

xi∈Nx⊂X

g(xi − x)fi. (5)

Here, g is the kernel function, fi is the feature of xi, and
f c
i is the feature incorporated with color, which we will de-

scribe later. We follow the approach of [11, 25] to use a ra-
dius neighborhood Nx = {xi ∈ X| ∥xi − x∥ ≤ r, r ∈ R}
to perform convolution, which ensures robustness in cases
with varying densities. For the sake of a more concise form,
we use yi to represent xi−x. Those patterns closely resem-
ble the general point convolution, except for f c

i , which is
calculated by:

f c
i = concat([fi, ci/σc]). (6)

Here, ci = {hi, si, vi} is the color of point xi in the HSV
color space, and σc is a hyperparameter which controls the
strength of incorporating color (typically, we set σc = 1.0).
Then, we follow [25] to perform the subsequent calculation.
Function g operates within the ball B3

r = {y ∈ R3 | ∥y∥ ≤
r} with a radius r. We implement it with weight matrices
and kernel points that can fill the neighborhood. We denote
the kernel points as {x̃k | k < K} ⊂ B3

r and use {Wk | k <
K} ⊂ RDin×Dout to represent the corresponding weight
matrix, where K is the number of kernel points, Din and
Dout are the input and output feature dimensions. Then, for
any yi = xi − x ∈ B3

r , we have:

g(yi) =
∑
k<K

h(yi, x̃k)Wk, (7)
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where h measures the proximity between yi and the x̃k,
which should have a larger value when they are closer. It
can be computed as:

h(yi, x̃k) = max(0, 1− ∥yi − x̃k∥
σ

). (8)

Here, σ is exactly the hyperparameter described in KPConv
[25] which should be adjusted according to input density.

3.3. GeoColor Superpoint Matching

In the CEFE module, we generate hierarchical points
with distinctive features. These features significantly im-
prove registration performance. However, the intra-point-
cloud geometric structure has not been fully integrated into
the registration network. Previous works [12, 21, 34] have
leveraged transformers to encode global contextual infor-
mation, which has proven critical. However, these methods
do not encompass the information pertaining to color, lead-
ing to the loss of structural information. To address these
issues and achieve deep geometric-color fusion, we pro-
pose a novel GeoColor Superpoint Matching Module that
can encode transformation-invariant structure. In this mod-
ule, we implement GeoColor Positional Embedding to ac-
quire geo-color fusion encoding, followed by the utilization
of GeoTransformer [21] to extract color-guided superpoint
features in accordance with the structure of the point cloud.

Due to uncertainties such as camera shooting angles and
lighting conditions, color sampling often contains noise. To
mitigate the interference of noise in the depiction of the
global context, it is imperative to segregate the components
that are easily influenced by noise to the greatest extent fea-
sible. Therefore, we use the HSV color space, allowing the
separation of the most stable hue (for relevant experiments,
please refer to Sec. 4.8), which participates in the embed-
ding process to achieve robust structural encoding.

Given two superpoints p, q ∈ P̂ with their hues hp, hq ,
our embedding process can be computed by the following
two parts.

(1) Pair-wise Hue-Distance(HD) Embedding. We denote
the hue difference between p and q as ∆Ĥ = ∥hp − hq∥2
and the three-dimensional Euclidean distance as d = ∥p −
q∥2. The Pair-wise HD Embedding is calculated with:

rHD = Fs(
∆Ĥ · d
σHD

)WHD. (9)

Here, Fs is a sinusoidal function proposed by [27] and σHD

is a hyperparameter that can tune the sensitivity of HD vari-
ations. WHD ∈ Rdt×dt is the projection matrices for HD
embedding, where dt is the output dim of Fs.

(2) Triplet-wise Angular Embedding. We follow [21] to
compute angular embedding with triplets of superpoints.
First, assuming p is the selected embedding point, we de-
note the set of its k (typically k = 3) nearest neighbor points

as K. For ki ∈ K, we calculate the angle ak = ∠kpq. By
denoting the angular embedding rA, we have:

rA = max
ki∈K

Fs(
ak
σA

)×WA (10)

Here, σA is a hyperparameter that can tune the sensitivity
of angular variations, and WA ∈ Rdt×dt is the projection
matrices for angular embedding.

To combine the two types of embeddings, the final struc-
ture embedding r can be obtained by simply adding rHD

and rA. Along with the embeddings, superpoints carry-
ing distinctive features are introduced into GeoTransformer
[21] for color-guided global contextual information extrac-
tion. Then, the final superpoint features are used to calculate
the Gaussian Correlation Matrix and the top k items are the
ultimately selected superpoint correspondences.

4. Experiments
In this section, we evaluate ColorPCR on our indoor

datasets Color3DMatch and Color3DLoMatch, in which
each point is equipped with an RGB value.

4.1. Color3DMatch & Color3DLoMatch

Color3DMatch (C3DM) and Color3DLoMatch
(C3DLM) are derived from 3DMatch [37]. 3DMatch
is composed of 62 scenes, among which 46 are used for
training, 8 for validation, and 8 for testing. Most of the
scenes have their corresponding RGB-D data, but a small
fraction only have depth data. We follow previous work’s
data splits [12] for effective performance evaluation while
only removing the depth-only scene [26]. Specifically,
only a small set of training data is removed and all the
validate and test data are kept the same. The point cloud
pairs in C3DM have an overlap of more than 0.3, while
those in C3DLM have a lower overlap of 0.1-0.3. To
validate the performance of the registration model in cases
of extremely low overlap and geometric distinctiveness,
we provide additional data divisions, dividing the overlap
into the ranges of 0.1-0.15, 0.15-0.2, 0.2-0.25, and 0.25-0.3
respectively.

4.2. Metrics

We primarily evaluate ColorPCR’s performance with
three metrics as used in prior works [3, 12, 21]: (1) In-
lier Ratio (IR), which is the fraction of putative corre-
spondences whose residuals are below a certain threshold
(0.1m) under the ground-truth transformation, (2) Feature
Matching Recall (FMR), the fraction of point cloud pairs
whose inlier ratio is above a certain threshold (5%), and
(3) Registration Recall (RR), the fraction of point cloud
pairs whose transformation error is smaller than a certain
threshold (RMSE< 0.2m). To make our experiments more
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#Samples Color3DMatch Color3DLoMatch
5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%)↑

PerfectMatch [10] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [6] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [3] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [1] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [12] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [28] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [34] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer [21] 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3
PEAL [35] 99.0 99.0 99.1 99.1 98.8 91.7 92.4 92.5 92.9 92.7
ColorPCR (ours) 99.5 99.5 99.5 99.5 99.5 96.5 96.5 97.0 97.0 96.7

Inlier Ratio (%)↑

PerfectMatch [10] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [6] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [3] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [1] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [12] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [28] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [34] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer [21] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
PEAL [35] 72.4 79.1 84.1 86.1 87.3 45.0 50.9 57.4 60.3 62.2
ColorPCR (ours) 75.0 80.5 84.7 86.5 87.8 51.2 56.6 63.1 66.0 68.0

Registration Recall (%)↑

PerfectMatch [10] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [6] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [3] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [1] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [12] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [28] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [34] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer [21] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
PEAL [35] 94.6 93.7 93.7 93.9 93.4 81.7 81.2 80.8 80.4 80.1
GeoTransformer+MAC [38] 95.7 95.7 95.2 95.3 94.6 78.9 78.7 78.2 77.7 76.6
ColorPCR (ours) 96.7 96.5 97.0 96.4 96.5 88.9 88.5 88.1 86.5 85.0

Table 1. Evaluation results on Color3DMatch and
Color3DLoMatch. #Samples in the table represents the number of
correspondences selected by RANSAC.

comprehensive, we also evaluate the Relative Rotation Er-
ror (RRE) and Relative Translation Error (RTE).

4.3. RANSAC Estimator Results

We collect the recent state-of-the-art methods: Perfect-
Match [10], FCGF [6], D3feat [3], SpinNet [1], YOHO [28],
CofiNet [34], GeoTransformer [21], PEAL [35], and MAC
[38] to compare our performance with them. Most of them
use RANSAC as an estimator, so we follow them and re-
port the results with different numbers of sampled corre-
spondences in Tab. 1. For Feature Matching Recall (FMR),
our method improves to 99.5% on C3DM and 96.5%-97.0%
on C3DLM. For Inlier Ratio (IR), ColorPCR improves to
87.8% on C3DM and 68.0% on C3DLM at most. For Reg-
istration Recall (RR), ColorPCR improves to 97.0% on
C3DM and 88.9% on C3DLM at most.

4.4. ColorPCR with Different Overlaps

Most previous methods solely focused on the geomet-
ric structure of point clouds, which resulted in the loss
of color information in point cloud registration. In simple
cases with high point cloud overlap and geometric distinc-
tiveness, they can perform relatively well. However, in chal-
lenging scenarios with extremely low overlap and low ge-
ometric distinctiveness, these methods struggle to achieve
accurate registration. While guided by color, ColorPCR fa-
cilitates the registration process under challenging condi-

Figure 5. Comparing ColorPCR and some geometric-only meth-
ods with different overlaps.

tions. Fig. 5 illustrates the performance of ColorPCR and
some geometric-only comparison methods under different
overlaps. With the decrease in overlap, the disparity be-
tween ColorPCR and geo-only methods becomes more pro-
nounced. At an overlap of 10%-15%, ColorPCR shows an
improvement of approximately 40% compared to Predator,
around 30% compared to Cofinet, and roughly 25% com-
pared to GeoTransformer.

4.5. RANSAC-free Estimator Results

We list the recent RANSAC-free methods’ registration
results in Tab. 2, as well as compare them with their
RANSAC version. In the table, the parentheses after Color-
PCR denote the phases of color enhancement being adopted
(see Sec. 4.8). On Color3DMatch, ColorPCR (1) with
RANSAC as an estimator achieves the highest RR, fol-
lowed by it with LGR. Due to the high discriminability of
point features, we can use LGR to achieve the second-best
results on Color3DMatch. On Color3DLoMatch, our Col-
orPCR (1,2,3) with RANSAC performs best, followed by
it with LGR. The results demonstrate that our ColorPCR
achieves more accurate registration than comparison meth-
ods without the time-consuming RANSAC estimator.
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Model Estimator Samples RR (%)
C3DM C3DLM

CoFiNet [34] RANSAC-50k 5000 89.3 67.5
GeoTransformer [21] RANSAC-50k 5000 92.0 75.0
ColorPCR (1,2,3) RANSAC-50k 5000 96.7 88.9
ColorPCR (1) RANSAC-50k 5000 97.5 88.2

CoFiNet [34] LGR all 87.6 64.8
GeoTransformer [21] LGR all 91.5 74.0
ColorPCR (1,2,3) LGR all 96.5 88.3
ColorPCR (1) LGR all 97.3 87.1

Table 2. Registration results with RANSAC and LGR on C3DM
and C3DLM. The parentheses after ColorPCR denote the phases
of color enhancement being adopted.

Estimator C3DM C3DLM
RRE (°) RTE (m) RRE (°) RTE (m)

Predator [12] RANSAC-50k 2.029 0.064 3.048 0.093
CoFiNet [34] RANSAC-50k 2.002 0.064 3.271 0.090
GeoTransformer [21] RANSAC-free 1.772 0.061 2.849 0.088
REGTR [33] RANSAC-free 1.567 0.049 2.827 0.077
PEAL [35] RANSAC-free 1.748 0.062 2.788 0.087
ColorPCR (ours) RANSAC-free 1.492 0.048 2.581 0.075

Table 3. Relative Rotation Errors (RRE) and Relative Translation
Errors (RTE) on C3DM and C3DLM benchmarks.

4.6. RRE and RTE

We compare RRE and RTE with the recent RANSAC
and RANSAC-free state of the arts [12, 21, 33–35] in Tab. 3.
On both Color3DMatch and Color3DLoMatch, our Color-
PCR achieves the best performance.

4.7. CEFE Is Agnostic to Different Methods

To prove the universality and effectiveness of Hier-
archical Color Enhanced Feature Extraction (CEFE, see
Sec. 3.2), we replaced the backbone network of some meth-
ods with CEFE. As illustrated in Tab. 4, applying CEFE
to these network structures significantly improves registra-
tion performance. Specifically, we evaluate CEFE on three
methods [12, 21, 34]. With Predator, RR is improved by
4.9% on C3DM and 13.9% on C3DLM at most. With
CoFiNet, the improvement is 7.1% on C3DM and 13.0%
on C3DLM at most. GeoTransformer with CEFE achieves
the best RR, with an improvement of 4.9% on C3DM and
12.3% on C3DLM at most. These experiments demon-
strate the strong universality of CEFE, as it can effectively
extract precise point-wise geometric-color fusion features
from color point clouds.

4.8. Ablation Studies

In this section, we conduct ablation studies on the dif-
ferent components of our ColorPCR to confirm the effec-
tiveness of each component individually. All our ablation
experiments are conducted with the LGR estimator.

Tab. 5 lists five pertinent experiments. The term Enhance

#Samples Color3DMatch Color3DLoMatch
5000 2500 1000 500 250 5000 2500 1000 500 250

Predator [12] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet [34] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer [21] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5

Predator (CEFE) 92.0 93.8 92.2 93.3 91.5 71.6 75.1 73.0 72.8 70.2
3.0↑ 3.9↑ 1.6↑ 4.8↑ 4.9↑ 11.8↑ 13.9↑ 10.6↑ 12.0↑ 12.1↑

CoFiNet (CEFE) 93.0 94.0 94.3 94.5 92.9 76.6 77.1 76.4 75.2 74.0
3.7↑ 5.1↑ 5.9↑ 7.1↑ 5.9↑ 9.1↑ 10.9↑ 12.2↑ 12.1↑ 13.0↑

GeoTransformer (CEFE) 95.1 95.3 96.7 95.9 95.6 87.3 87.0 86.4 85.7 83.9
3.1↑ 3.5↑ 4.9↑ 4.5↑ 4.4↑ 12.3↑ 12.2↑ 12.2↑ 11.6↑ 10.4↑

Table 4. Evaluating the universality of CEFE. The value in the
table is Registration Recall (RR).

Experiments Enhance levels Positional embedding RR (%)
C3DM C3DLM

(a) (1) geo-only 96.2 87.1
(b) (1) geo-color (hsv) 96.3 86.2
(c) (1)(2) geo-color (hsv) 96.6 86.9
(d) (1)(2)(3) geo-color (hsv) 96.5 86.9
(e) (1) geo-color (h) 97.3 87.1
(f) (1)(2) geo-color (h) 97.1 86.5
(g) (1)(2)(3) geo-color (h) 96.5 88.3

Table 5. Performance differences in network structures with vari-
ous methods of color introduction and positional embedding

Dataset C3DM C3DLM 0.1-0.15 0.15-0.2 0.2-0.25 0.25-0.3

GeoTransformer [21] 86.1 53.6 36.8 53.9 62.0 70.6

ColorPCR (geo-only) 88.2 62.0 45.3 59.6 67.6 74.2

ColorPCR 89.2 62.7 45.8 60.9 68.4 75.3
1.0↑ 0.7↑ 0.5↑ 1.3↑ 1.2↑ 1.1↑

Table 6. Registration results for ColorPCR and GeoTransformer.
The data in the table is the Patch Inlier Ratio (PIR).

levels denotes the phases in which CEFE performs color
enhancement, while Positional embedding outlines the em-
bedding techniques employed in the experiment.

We first ablate the GeoColor Superpoint Matching. As
inferred from experiments (a)(b)(e), under equivalent CEFE
(1) condition, geo-color embedding with hue results in a
registration recall of (97.3%, 87.1%). The performance of
embedding without color introduction on C3DM dimin-
ished by 1.1%, while incorporating all components of HSV
into the embedding process precipitated a substantial de-
cline in registration recall, which demonstrates the instabil-
ity of saturation and value parts due to factors such as noise.
Consequently, utilizing hue in geo-color positional embed-
ding is the most stable. We conduct further investigation
with the Patch Inlier Ratio (PIR) under different overlaps
(Tab. 6). The universal improvement of PIR compared with
geometric-only superpoint matching demonstrates its sig-
nificant role. Owing to the precision of superpoint features,
ColorPCR can accomplish more robust superpoint corre-
spondences for fine matching process.

Then we ablate the levels in CEFE that perform color
enhancement. Experiments (e)(f)(g) respectively evaluated
the situations of color enhancement during the first level,
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(a) ground truth without color (b) ground truth with color (c) GeoTransformer pose (d) ColorPCR pose (e) GeoTransformer point correspon-
dences (f) ColorPCR point correspondences

Figure 6. Registration performance with ColorPCR and GeoTransformer. Each row visualizes a challenging registration case with extremely
low overlap and geometric distinctiveness where GeoTransformer is entirely ineffective. ColorPCR identifies the color differences of the
floor (Row one), the white chair (Row two), and the subtle color differences in the wall (Row three). By fully leveraging color information,
ColorPCR achieves robust and effective registration, even in challenging scenarios.

Overlap 0.1-0.15 0.15-0.2 0.2-0.25 0.25-0.3

Patch Inlier Ratio (%)↑

ColorPCR (1) 45.8 60.9 68.4 75.3
ColorPCR (1,2,3) 47.6 62.7 71.7 78.9

Feature Matching Recall (%)↑

ColorPCR (1) 92.7 96.8 99.4 97.5
ColorPCR (1,2,3) 93.5 96.5 98.6 98.9

Inlier Ratio (%)↑

ColorPCR (1) 38.7 49.5 54.5 59.8
ColorPCR (1,2,3) 40.0 50.8 56.8 62.4

Registration Recall (%)↑

ColorPCR (1) 76.4 86.0 94.5 94.9
ColorPCR (1,2,3) 79.4 87.9 94.5 96.3

Table 7. The registration results of CEFE (1) and CEFE (1,2,3)
under different low overlaps.

the first two levels, and first three levels. The experimental
outcomes indicate that CEFE (1) exhibits superior perfor-
mance under conditions of high overlap. However, under
challenging scenarios characterized by low overlap, CEFE
(1,2,3) demonstrates better results, suggesting a greater ne-
cessity for color information guidance in such situations.

A more detailed investigation was conducted into the
performance of ColorPCR (1) and ColorPCR (1,2,3) un-
der different overlaps (Tab. 7). ColorPCR (1,2,3) signifi-
cantly outperforms ColorPCR (1), with nearly all metrics
being considerably higher. The difference in PIR ranges
from 1.8% to 3.6%, indicating a substantial disparity even

at the superpoint matching phase. In contrast to high over-
lap registration scenarios where geometric features require
more attention, in challenging cases, the registration neces-
sitates a greater emphasis on color guidance.

4.9. Qualitative Results

Fig. 6 visualizes the performance gap in registration be-
tween ColorPCR and GeoTransformer in scenarios with ex-
tremely low overlap and geometric distinctiveness. Geo-
Transformer produces highly scattered correspondence es-
timates. However, guided by color information, ColorPCR
successfully extracts consistent correspondences, achieving
accurate registration with a higher inlier ratio.

5. Conclusion

We propose ColorPCR for color point cloud registration.
Through Color Enhanced Feature Extraction, we obtain pre-
cise multi-level point features. With the GeoColor Super-
point Matching Module, we encode geo-color global con-
text, enabling accurate superpoint registration. ColorPCR
achieves robust registration even in challenging scenarios
with extremely low overlap. We also generate two color
point cloud datasets, i.e., Color3DMatch/Color3DLoMatch.
Evaluations on them have demonstrated the effectiveness of
our proposed method.
Acknowledgements This work was supported by Na-
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