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Figure 1. Our CONVOFUSION approach generates body and hand gestures in monadic and dyadic settings, while also offering
advanced control over textual and auditory modalities in speech. Lastly, we introduce the DND GROUP GESTURE dataset, show-
casing rich interactions with co-speech gestures between five participants. Motions rendered using ASH [51].

Abstract

Gestures play a key role in human communication. Re-
cent methods for co-speech gesture generation, while man-
aging to generate beat-aligned motions, struggle generat-
ing gestures that are semantically aligned with the utter-
ance. Compared to beat gestures that align naturally to
the audio signal, semantically coherent gestures require
modeling the complex interactions between the language
and human motion, and can be controlled by focusing on
certain words. Therefore, we present CONVOFUSION , a
diffusion-based approach for multi-modal gesture synthesis,
which can not only generate gestures based on multi-modal
speech inputs, but can also facilitate controllability in ges-
ture synthesis. Our method proposes two guidance objec-
tives that allow the users to modulate the impact of different
conditioning modalities (e.g. audio vs text) as well as to
choose certain words to be emphasized during gesturing.

Our method is versatile in that it can be trained either for
generating monologue gestures or even the conversational
gestures. To further advance the research on multi-party
interactive gestures, the DND GROUP GESTURE dataset
is released, which contains 6 hours of gesture data show-
ing 5 people interacting with one another. We compare our
method with several recent works and demonstrate effec-
tiveness of our method on a variety of tasks. We urge the
reader to watch our supplementary video at our webpage.

1. Introduction
Gestures are one of the fundamental ways of expression and
can significantly enhance the interpretation of the verbally
communicated utterance [29]. As our society integrates
multi-billion parameter large-language-model (LLMs) [62,
74] into our workflows and daily lives, it is only natural to
consider ways to augment the LLM based on spoken lan-
guage alone with non-verbal information essential to in-
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terpreting such language. Towards this goal, speech and
text-based gesture generation approaches have come a long
way from symbolically representing gestures [8, 9] in a
rule-based generation framework [32] to the state-of-the-art
methods trained on human motion capture data [4, 73, 75].

Yet, while the majority of methods successfully capture
beat gestures that are prosodically aligned with speech, they
lack language-based control over the gesture generation and
therefore, struggle to generate precise semantic gestures
that contribute to the overall meaning of an utterance. This
can be attributed to the fact that the motion of beat gestures
is temporally well-aligned with the speech signals and gen-
erally follows a similar spatial pattern for all speakers and
content, therefore, it is easier to model using learning tech-
niques. On the other hand, semantic coherence has a more
complex temporal interplay with the words, their meaning
and who the individual speaker is.

In this work, we propose CONVOFUSION – a novel con-
trollable gesture synthesis method to generate not only co-
speech gestures, but also reactive (and passive) gestures.
We follow a latent diffusion approach [13, 55], which has
the benefit of learning a jitter-free motion representation.
Unlike existing latent diffusion methods [13], we design our
motion latents to be time-aware, thus allowing us to learn
temporal correlations between motion and speech along
with the ability to perform perpetual gesture synthesis.

Our synthesis model supports a variety of input signals
(text and audio of the speakers in the conversation) and pro-
vides a framework to control them. To enable controllable
multi-modal inference of our model, we introduce a novel
classifier-free guidance training strategy. More specifically,
instead of dropping the entire multi-modal conditioning sig-
nal, we show that selectively replacing the modalities with
null-vectors facilitates test-time control over each modal-
ity. Finally, CONVOFUSION also allows us to enhance the
micro-gestures associated with a particular word, thanks
to the fine-grained textual guidance. Having the test-time
modality control and word-level textual guidance provides
us the unique ability to have coarse and fine control of the
generated motions; a feature missing in existing gesture
synthesis works [4, 24, 67].

One of the goals of our framework is to model the ges-
tures exhibited in a conversational setting. Unfortunately,
most existing datasets only contain monologues, as in the
TED [69] and SHOW [67] datasets. Even the datasets
recorded in conversational setting [43] provide annotations
only for one person. To address this, we introduce the
DND GROUP GESTURE dataset. It involves five partici-
pants playing multiple sessions of Dungeons and Dragons
– a popular role-playing game. The dataset comes with
high quality full-body motion capture of all the participants,
along with multi-channel audio recordings and text tran-
scriptions. Thanks to around 6 hours of capture, the DND
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Figure 2. Overview of the proposed approach. We generate
gestures conditioned on multiple conditioning signals such as text,
audio, speaker style, etc. using a latent diffusion approach. During
inference, we introduce modality guidance and word-excitation
guidance to control the properties of the generated gestures.

GROUP GESTURE dataset allows us to propose a novel ap-
proach to generate gestures in a dyadic setting.

In summary, our technical contributions are as follows:
• We propose CONVOFUSION – a diffusion-based ap-

proach for monadic and dyadic gesture synthesis. We do
so not only in the co-speech setting but can also generate
passive/reactive gestures.

• Thanks to the proposed coarse and fine-grained guidance,
our work investigates ways to incorporate a variety of
multi-modal signals and provides a framework to control
their influence in the generated gestures.

• We demonstrate how generating gestures in the proposed
latent mitigates the jittering artifacts prevalent in the
hand-articulations of existing datasets. Unlike existing
motion latent diffusion works [13], the proposed time-
aware latent representation allows us to perform perpetual
gesture synthesis with high synthesis quality.

• This work also introduces the DND GROUP GESTURE
dataset, thereby facilitating future research on dyadic and
group gesture synthesis.

2. Related Works
As our work draws inspiration from the extensive literature
on gesture synthesis and recent works on diffusion-based
generative models, we discuss relevant literature from these
two perspectives in this section.

2.1. Co-Speech Gesture Synthesis

Co-speech gestures are a unique form of gesture, in which
hand and arm movements used to communicate information
are temporally synchronized and semantically integrated
with speech [47]. While such gestures are thought to con-
tribute to meaning and discourse in the same way as lexical
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items and intonation patterns, their multi-functional nature
makes automatic generation challenging. Non-referential
beat gestures align with prosodically stressed words and
contribute less to overall semantic meaning [29, 48]; such
gestures have proved easier to generate [41]. Semantic ges-
tures categorized as iconic, metaphoric, or deictic visually
illustrate some aspect of the spoken utterance yet are less
patterned between speakers and content; these gestures are
more challenging to effectively reproduce [34].

Early works in the field of co-speech gesture synthe-
sis can be divided into rule-based and data-driven tech-
niques. Rule-based methods [10, 11], which usually uti-
lize heuristics, generate gesture combinations with high se-
mantic alignment to speech. [65] provides a comprehen-
sive overview of these methods. However, they produce un-
natural and less diverse gesture outputs. To mitigate this
problem, early statistical approaches [38, 39] try to model
the underlying gesture distribution using data and then pre-
dict gestures that are most appropriate for given speech in-
put. However, both rule-based systems and early statisti-
cal approaches predict gesture sequence in terms of known
gesticulation units, which makes the final output look un-
natural and choppy. Therefore, recent data-driven learning-
based methods [4–6, 24, 33] employ neural networks to map
speech input to a gesture sequence, which allows for per-
frame gesture prediction, providing an end-to-end solution
for speech-to-gesture synthesis. [50] provides an in-depth
overview of classical and recent data-driven methods.

Earlier deep-learning-based methods which used
CNN [24], RNNs [45, 68, 70] and transformers [6] em-
ployed deterministic approaches to predict gestures for the
speech input. On the other hand, generative methods offer
a better alternative since they can introduce stochasticity in
the generation process which leads to diverse outputs. Gen-
erative modeling approaches [2, 19, 25, 40, 44, 67] have
been used for synthesis resulting in human-like gestures.
But, they also suffer from low semantic relation with the
speech input because there exists many-to-many relations
between speech and gestures and it becomes hard for the
generative approaches to realize which gesture is more
semantically accurate corresponding to the speech. There-
fore, recent approaches [3, 4, 35, 41, 42] try to improve
intent’s alignment with gesture prediction. Gesture styles
are also incorporated in the gesture generation pipeline for
personalized gesture synthesis [19, 66].

2.2. Speech Gesture Datasets

As the performance of learning-based methods relies on the
quality of its training data, a number of gesture synthe-
sis datasets have been proposed by the community. How-
ever, high-quality speech-driven gesture synthesis datasets
are typically expensive and tedious to collect as they require
hours of speech gesture motion capture (mocap) recordings

in a studio setting. Because of these limitations, early works
typically involve a single speaker [17, 18]. To collect a large
number of training samples, several works have proposed to
leverage monocular 3D estimation approaches to obtain the
3D body, face, and hand keypoints [1, 20, 23, 24, 67, 69].
Unfortunately, such monocular estimation results are sub-
par compared to the standard multi-view mocap approaches
and are unsuitable for multi-speaker settings.

To address the lack of large-high-quality data, [43] pro-
posed BEAT, a 76-hour mocap-based speech gesture dataset
recorded from 30 different subjects. Unlike BEAT which
focused on a single speaker, [37] introduced a high-quality
speech gesture dataset that involved multiple speakers, but
was limited to two-person conversations. In contrast to
previous works, we propose a high-quality speech-gesture
dataset involving 5 subjects within a conversation. In
addition, different from most mocap-based datasets that
use marker-based mocap technologies, we employ a state-
of-the-art markerless mocap system to accurately capture
the 3D body and hands of multiple speakers without be-
ing restricted by body mocap suits. Tab. 1 provides a
brief overview of some notable datasets and their qualities.
Moreover, we also compare them with the DND GROUP
GESTURE dataset we present in this work.

2.3. Diffusion-based Generative Modelling

Diffusion models [27, 59] have demonstrated remarkable
potential in the field of generative modeling, consistently
delivering impressive results in various synthesis applica-
tions [14, 31, 53, 56, 60, 63, 71]. New paradigms like guid-
ance mechanisms [15, 26] and latent diffusion models [54]
have been introduced to enhance quality and alignment of
diffusion-based synthesis w.r.t given conditionings.

This approach has been extensively applied for condi-
tional human motion synthesis [13, 14, 61, 63]. Simi-
larly, co-speech gesture generation has also greatly bene-
fited from this generative modeling technique. DiffGes-
ture [75] uses a transformer-based diffusion pipeline with
an annealed noise sampling strategy for temporally con-
sistent gesture generation. GestureDiffuCLIP [4] employs
latent-diffusion models [54] and CLIP [52] based condition-
ing to improve control over co-speech gesture generation.
[60] presents a model to predict the movement of multi-
ple speakers in a social setting. However, contrary to other
diffusion-based gesture synthesis approaches, their model
focuses on predicting the correctness of the 3D body key-
point trajectory for a few seconds in the future instead of
improving the speech-gesture alignment. Instead of sim-
ply predicting the motion trajectory, our method proposes a
multi-person speech-driven 3D gesture synthesis approach
that can be used to predict the 3D reactive body and hand
motion between various speakers and listeners within a con-
versation.
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Figure 3. The model schema. Given a training motion x ∈ RN×J×3, we first extract its latent encoding ẑ(0) (Sec. 3.1), which is then
denoised by a network that incorporates the various modalities in the denoising process. At inference time, the denoised latents are decoded
to produce the final generation, x̂ (Sec. 3.2). During this process, our method allows to control the generation through coarse-grained
modality guidance or fine-grained word-excitation guidance (Sec. 3.3). Dotted lines represent components used only during inference.

3. Approach

The goal of our method is to generate co-speech gesture se-
quences for monadic and dyadic settings in correspondence
with input speech. A gesture sequence x ∈ RN×J×3 con-
sists of N frames of human motion with J articulating 3D
joints. The generated gesture motion ought to be consistent
with the multi-modal conditioning signal, C, representing
the speech and identity-related attributes of the persons in
conversation (discussed later in Sec. 3.2).

We design our gesture synthesis method around a latent
denoising diffusion probabilistic model (DDPM) frame-
work [55]. The proposed diffusion model is trained to de-
noise the latent representation of the gesture motions (re-
fer to Sec. 3.1). The generated motion latents can later
be decoded using a motion decoder. Unlike existing mo-
tion latent diffusion methods [13], we design our latent
space in a time-decomposable manner, thereby allowing us
to learn fine-grained interplay between motion and speech.
Crucially, our method also allows the end-user to control
the attributes of the generated gestures at inference time
(see Sec. 3.3). We now discuss each component in detail.
Refer to the supplemental document for a glossary of major
notations used in the method explanation.

3.1. Scale-aware Temporal Latent Representation

Instead of directly denoising the raw motion x, our diffusion
model operates in the latent space of human motion. Thus,
we propose to learn such a latent space with two character-
istics: 1) We disentangle the finger motions from the rest of
body motions by encoding them into a latent space through

separate encoders. 2) Instead of projecting the entire mo-
tion into one single latent vector, we encode motion into
chunked latents that can be decoded jointly by a decoder.
Decoupled Latent Representations. The articulation of
the finger joints is critical to the quality of gesture synthe-
sis. However, the fingers articulate in a significantly dif-
ferent space and scale compared to the rest of the body and
naı̈vely encoding the full-body gestures results in inaccurate
reconstruction of hands. We therefore follow prior works
that decouple the two sets of joints [21, 22] and represent
the motion x as a latent vector z = {zb, zh}, where zb ∈ Rd

and zh ∈ Rd are separate encodings of the body and hand
motion.

The latent vectors are learned using a VAE framework.
The hand and body motions, xh and xb, are encoded using
transformer encoders: zb = ξb(xb), zh = ξh(xh). The la-
tent vectors represent the mean of the distribution, which
can be sampled using the reparameterization trick [30]
and fed into a decoder to reconstruct the motion x′

b =
Db(zb),x

′
h = Dh(zh). We train the VAE with the stan-

dard reconstruction loss, L2, Bone-length regularization
loss Lbone [14] and the KL-Divergence of the latents, LKL.
Additionally, we reduce the jitter in reconstruction propos-
ing a Laplacian regularization term:

Llap = ∥L {x̂} −L {x}∥2 (1)

where L {·} is the Laplace transform operator along N
frames. Refer to Sec. 5.4 and supplemental for analysis.
Time-Aware Latent Representation. The motion latents
learned by the VAE represent a large motion sequence
(>100 frames) with a single d-dimensional vector. This,
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rather coarse, granularity prohibits applications such as per-
petual rollout where the motion can be autoregressively de-
coded with an overlapping window. To enable such appli-
cations, we propose to encode shorter motion chunks in the
latent z but decode multiple such chunked latents, {ẑi}Mi=1

together with a single decoder, as shown in Fig. 4.
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Figure 4. Chunked latent encoding-decoding. We encode a mo-
tion of N frames into a sequence of M latent vectors, which are
jointly decoded by the decoder D. Encoding into chunked latents
allows for perpetual rollout and decoding jointly induces temporal
consistency while converting the latents back into motion.

Given a gesture sequence x, we first split the se-
quence into M equally sized chunks {x′

i}Mi=1, where x′
i ∈

RN/M×J×3. Next, each of the chunks x′
i is encoded in iso-

lation using ẑi = ξb(x
′
i). However, while decoding, the

decoder collectively decodes a sequence of chunked latents,
ẑ = {ẑi}Mi=1, following: x̂′ = D(ẑ). In summary, our latent
encodings transform a motion sequence x ∈ RN×J×3 into
latent representations ẑ ∈ RM×2×d. This can enable per-
petual gesture generation using diffusion inpainting tech-
nique [46] as we discuss and analyze in Sec. 5.4.

3.2. Modality-Conditional Gesture Generation

Having obtained ẑ as the time-aware latent representation of
gesture motions, we formulate the gesture synthesis task as
that of conditional latent diffusion [55]. The forward diffu-
sion process, successively corrupts the latent sequence ẑ(0)

by adding Gaussian noise ϵ for T timesteps with the as-
sumption that ẑ(T ) ∼ N (0, I). For generation, the reverse
diffusion process is performed on ẑ(T ) by iteratively denois-
ing ẑ(T ) ∼ N (0, I) to generate a latent sequence ẑ(0), and
can be formulated as

pθ
(
ẑ(0:T )

)
= p

(
ẑ(T )

) T∏
t=1

pθ
(
ẑ(t−1)|ẑ(t)

)
, (2)

where pθ(ẑ
(t−1)|ẑ(t)) is approximated using a neural

network parameterized by weights θ. This neural network
fθ is trained to predict noise ϵθ(ẑ

(t), t) [27], which can be
used in the training objective Ld = ||ϵ− ϵθ(ẑ

(t), t)||2.
The motion generation framework discussed above is so

far unconditional. Our gesture synthesis approach can be

conditioned in primarily two settings: monadic and dyadic.
The monadic setting refers to the co-speech gesture gener-
ation based solely on the speaker’s own utterance and typi-
cally occurs in monologue scenarios. For this, we represent
the conditioning signal as C = {a, τ , s}, consisting of the
audio signal a ∈ RNa×d and the text tokens τ ∈ RNτ×d,
as well as s ∈ R1×d representing the speaker identity to-
ken. Generally, Na corresponds to the number of audio
frames, Nτ corresponds to the number of text tokens in the
utterance. Speaker identity s can enable applications like
stylized gesture synthesis which can generalize to different
gesture styles. For the dyadic setting—which takes place in
conversation scenarios—the generated gestures must be in
accordance with the co-participant’s utterance as well. In
this case, we have C = {a, τ , τ ′, s,m}, where τ ′ refers
to the co-participant’s speech content i.e. their text. Here,
we can also choose their audio instead of their text as well.
Finally, m ∈ {0, 1}M indicates whether the speaker is ac-
tively responding with speech, or passively back-channeling
e.g. by laughing or nodding (see also supplemental video).

We use a transformer decoder network [64] with multi-
head attention to approximate the denoising function pro-
ducing ϵθ(ẑ

(t), t,C). This allows us to elegantly inte-
grate multiple modalities in C with separate cross-attention
heads, as shown in Fig. 2. Let us consider the case of the
audio signal, a. The cross-attention features, ϕa, are com-
puted using the attention matrix Attn(ẑ,a) ∈ RNa×M as:

Attn(ẑ,a) = σ(
QzKa√

d
), ϕa = Va ·Attn(ẑ,a) (3)

where σ is the softmax operator, Qz,Ka, Va are the query,
key and value vectors recovered form the motion latent fea-
tures ẑ and the audio features a. We similarly recover text
features, ϕτ = Attn(ẑ, τ ), also for the text.

3.3. Towards Controllable Gesture Generation

In addition to multi-modal gesture synthesis, our method
is designed to allow coarse and fine-grained control. For
coarse control, one can adjust the impact of a specific
modality on the generated motion by utilizing our modality-
level guidance strategy. For fine control, the user can
choose specific words to enhance the gestures for the words
using the proposed word-excitation guidance (WEG) objec-
tive.
Modality-Guidance. Classifier-free guidance [26] has
been used to improve the generation quality of various
diffusion-based motion and gesture generation methods [4,
13, 36, 61]. Typically, this is done by randomly replacing
the conditioning vectors with a null-embedding C← ∅. At
inference, the noise predictions are blended at each diffu-
sion timestamp t to get the noise prediction ϵ

(t)
θ :

ϵ
(t)
θ = ϵθ(ẑ

(t), t, ∅) + λ(ϵθ(ẑ
(t), t,C)− ϵθ(ẑ

(t), t, ∅)) (4)
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where, λ represents the guidance scale. Once estimated,
ϵ
(t)
θ can be used to sample ẑ(t−1) for the next iteration using

Eq. 11 of [27]. However, recall that our conditioning set
C = {a, τ , τ ′, s,m} consists of several modality-specific
conditions. Naı̈vely setting all the elements to ∅ for random
iterations prohibits separately learning the effect of each in-
dividual modality within C on the conditional distribution.
Instead, we train our model with random modality dropouts
(with null-embedding replacement) with 10% drop proba-
bility. This encourages the model to learn several combina-
tions of marginalized conditional probability distributions.

At inference, we sample with modality-guidance:

ϵ
(t)
θ = ϵ∅θ + λm

∑
c∈C

wc

(
ϵcθ(ẑ

(t), t, c)− ϵθ(ẑ
(t), t, ∅)

)
(5)

where the scale parameters, wc ≥ 0, determine the contri-
bution of each modality towards the generated gesture and
λm is the global guidance scale. Adjusting the modality
scale, wc allows us to coarsely control the gesture quality
and also analyze the sensitivity of the generation process to
specific modalities. Note, that this is an optional sampling
strategy required only for modality-level control.
Word-Excitation Guidance. Inspired by the controllable
image generation methods [12, 16], we propose a word-
level guidance mechanism that allows us to finely control
the gesture generation based on a user-defined set of words
during the sampling process.

Let Attn(ẑ(t), t, τ ) ∈ RNτ×M be the text attention ma-
trix at the tth iteration of the denoising process. For a set of
text tokens {τ i}Si=1, selected by a user with the intention of
gesture enhancement, we focus on the corresponding col-
umn, Ai ∈ RM in the text attention matrix. Now, with the
assumption that the element with maximum attention in Ai

aligns with the motion chunk associated with the text, we
introduce a guidance objective to further enhance (or, ex-
cite) the same attention:

Gexc =
1

S

S∑
i=1

(1−max(Ai)) (6)

Next, we use the gradient of Gexc w.r.t the latent ẑ(t) to
perform the word-excitation guidance:

z̃(t) ← ẑ(t) − α · ∇ẑ(t)Gexc, ϵ
(t)
θ = fθ(z̃

(t), t,C) (7)

where α is the guidance scale for the word excitation guid-
ance, which also serves as a step size for latent update.

4. Dataset
To enable a high-quality, speech-driven gesture synthe-
sis method involving multiple speakers, we introduce the
DND GROUP GESTURE dataset. Our dataset is designed to
also invoke a wide range of non-verbal gestures during the

Name # Identities Size Body Parts
Multi-party
Interaction

# Interacting
Speakers

IEMOCAP [7] 10 12h Face ! 2
Creative-IT [49] 16 2h Body † ! 2
CMU Haggling Dataset [28] 122 3h Face, Body, Hands ! 3
TED Dataset [69] 1295 52.7h Upper Body
Speech Gesture 3D [24] 10 144h Upper Body, Hands, Face
Talking with Hands [37] 50 50h Body, Hands ! 2
PATS [1] 25 250h Upper Body, Hands
SaGA++ [34] 25 4h Body hands
ZeroEGGS Dataset [20] 1 2h Body, Hands
BEAT [43] 30 76h Body, Hands, Face

DND GROUP GESTURE 5 6h Body, Hands ! 5

Table 1. Comparison of currently available datasets to our DND
GROUP GESTURE dataset. Body parts refer to the parts where
the 2D or 3D pose tracking is available. † indicates that the body
tracking is only available for one of one interacting actors.

speaker interactions. We based our dataset recordings on
D&D tabletop roleplaying game, where five different play-
ers are standing in a circle around a game map. Each par-
ticipant is equipped with a dedicated wireless microphone
to ensure a clean audio recording and audio source separa-
tion. The setup of the gameplay involves various types of
interaction between the actors that often require semanti-
cally meaningful gestures such as pointing to a certain loca-
tion on the map. In total, the dataset consists of 4 separate
recording sessions with a total duration of 6 hours.

Our proposed dataset is recorded using a state-of-the-art
multi-view markerless mocap to obtain accurate 3D body
and hand pose estimates of multiple subjects at a given time.
This allows our participants to move freely without being
obstructed by the tight mocap suit or gloves. In addition
to audio and the 3D pose annotations, we also provide text
and gesture annotations for each individual speaker that dis-
tinguishes different types of observable gestures, including
beats, iconic, deictic, and metaphoric. Our dataset will be
made publicly available to the community.

5. Experiments

Our method, in its vanilla form, is designed to generate hu-
man gestures from speech, yet it goes several steps beyond
this task. For instance, we adapt our method to perform
dyadic conversations. More importantly, we show how dif-
ferent modalities contribute to the generation and perform
fine-grained text-based control. Naturally, it is difficult to
find suitable baselines to compare with. To perform fair
evaluations, we, therefore, compare with methods that can
be trivially adapted to our setting. Specifically, we com-
pare with MLD [13] (a generic latent diffusion method),
CaMN [43], Multi-Context [70], DiffGesture [75] (specif-
ically monadic gesture baselines) and DiffuGesture [72]
(two-person motion synthesis works). Notably, CaMN [43],
DiffGesture [75] and DiffuGesture [72] require a seed mo-
tion sequence to build the gesture generation on. This is
different from our setting and provides vital clues about the
gesture style. We provide the seed motions for the two
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FID ↓ BeatAlign→ Diversity→ L1 Div→ SRGR ↑
GT - 0.89 13.21 13.12 -

Multi-Context [70] ≥ 103 0.8 26.71 43.31 0.140
DiffGesture [75] ≥ 103 0.96 176 17.8 0.003

CaMN [43] 142 0.74 9.66 5.85 0.443

MLD [13] 475 0.76 16.98 5.42 0.214

Ours 271 0.82 9.82 6.24 0.365

Table 2. Comparison on the BEAT [43]. Two methods [70, 75]
produce extremely jittery motions. We demonstrate superior beat
alignment and diversity scores among the remaining methods.

methods, but do not use the seed motions to generate our
results. The methods are compared using the established
motion synthesis metrics as well as a user-study.
Evaluation Datasets. We evaluate our performance in
monadic gesture generation on the recently introduced
BEAT dataset [43]. The test set includes 2492 5-sec mo-
tion sequences and includes a set of 5 unseen speakers. For
evaluating the motion in dyadic setting, we use the test set
of the proposed DND GROUP GESTURE dataset. The test
set contains 3932 sequences of 5-second conversations.
Metrics. Evaluating synthesized motions is challenging
due to the subjective nature of perceiving good gestures.
Yet, we evaluate our method on the established metrics
like Beat-Alignment [58], FID, Semantic Relevance Ges-
ture Recall (SRGR) [43] that evaluate different aspects of
the motion. We also use Diversity and L1 Divergence to
evaluate the ability of models to span the space of gesture
motions with enough coverage.

5.1. Monadic Co-speech Gesture Synthesis

We tabulate our results on the BEAT test set for monadic
co-speech gesture synthesis in Tab. 2. We observe that Dif-
fGesture [75] and Multi-ContextNet [70] struggle with the
FID which, upon visualization, can be attributed to the ex-
tremely jittery nature of the generated motions. Interest-
ingly, this also leads to Multi-ContextNet [70] to perform
the best in the Beat Alignment metric as for every beat in the
audio, there is always a jittery motion to align with. Among
other methods, we observe better performance in terms of
diversity and beat alignment. It is interesting to note that
MLD, which is trained on a non-temporal latent representa-
tion, achieves a reasonable beat alignment but worse seman-
tic recall. We hypothesize that the semantic alignment ben-
efits from a finely discretized motion representation. Our
method lies in the middle of the discretization spectrum,
where CaMN operates on raw motion frames while MLD
collapses the temporal axis within a single latent.

5.2. Dyadic Co-speech Gesture Synthesis

We adapted two baselines to the dyadic setting for com-
parison. MLD’s architecture was extended by adding ad-
ditional conditioning blocks of the co-participant’s speech.
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Figure 5. Results of the user study. We compare with CaMN [43]
and MLD [13], and achieve an overall favourable preference
scores for monadic and dyadic settings. We also evaluate the ef-
fectiveness of the word-excitation guidance (WEG).

BeatAlign→ Diversity→ L1 Div→
GT 0.90 17.7 5.12

MLD 0.96 20 0.31
DiffGesture 0.97 2176 1308

Ours 0.90 6.38 1.19

Table 3. Qualitative comparison of
dyadic motion synthesis on the DND
GROUP GESTURE dataset.

Likewise,
DiffuGesture
was adapted to
our setting as de-
tailed in [72]. We
observe similar
patterns of jittery
motion with

DiffuGesture, whereas MLD produced suboptimal results
in terms of beat alignment. In contrast, we achieve similar
beat alignment as the ground-truth while also producing
higher L1 Diversity, thus indicating non-static motions.

5.3. User Study

As noted above, evaluating motion synthesis models on a
set of numerical metrics hides several aspects of the gesture
synthesis. Prior works [14, 63] report mismatch between
metrics and the subjective evaluations by the users. Hence,
we perform a perceptual user study to evaluate the quality
of our synthesis results w.r.t state-of-the-art methods. For
evaluating the monadic results, we aim to evaluate the gen-
eral plausibility of the motions and probe the coherence of
the gestures with the utterance. Likewise for dyadic syn-
thesis, the goal is to measure if participant’s generated ges-
tures align well with their speech as well as co-participant’s
speech content. To evaluate the word-excitation guidance,
we ask the users to evaluate if the generated gestures have
distinct gesticulation at the focus words.
Results. We plot the results of our user study in Fig. 5.
For the monadic setting, the participants preferred our mo-
tions over those of CaMN and MLD for both questions. At
the same time, we were marginally below the ground-truth
preference. The inference remains similar for the dyadic
evaluations as well, although with significantly lower mar-
gins. Finally, the user study demonstrates better semantic
alignment with the generated motions with the use of WEG.

5.4. Ablative Analysis

Latent Representation. Our chunked, scale-aware latent
representation is motivated by various factors, such as per-
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Reconstruction Loss ↓ Smoothness Error [57] ↓
MLD [13] 10× 10−3 4.4× 10−3

Our VAE 5× 10−3 3.5× 10−3

w/o Llap 3× 10−4 3.7× 10−3

w/o Time Aware 9× 10−3 4× 10−3

w/o Scale Aware 5.5× 10−3 3.7× 10−3

Table 4. Ablation study on the VAE design. Llap ensures the
motions retain the velocity of ground truth, even though removing
it leads to lower reconstruction loss. While training without time-
aware representation gives slight increase in reconstruction loss, it
cannot support unbounded generation.
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Figure 6. (a) Given a text prompt with focus words, “french” and
“now”, we observe that WEG significantly increases the joint ve-
locities for the two words compared to the non-guided case. In (b)
we show the contributions of each modality as diffusion denoising
progresses. Audio tends to dominate the generation process.

petual motion synthesis, better temporal alignment with the
conditioning modalities, and the scale difference between
the hands and the fingers. We tabulate the influence of the
three main design choices in Tab. 4. We also show that on
the VAE reconstruction task alone, our latent representation
outperforms MLD’s latent representation.
Influence of Modalities. With a variety of conditioning
modalities within our framework, it is natural to question
which modalities bear a greater effect on the final genera-
tion. We analyze this by plotting the norm of the contribu-
tions of each modality in Eq. (5) (computed before scaling
with wc). As Fig. 6b demonstrates, the audio modality bears
the largest influence on the gesture generation process. In-
terestingly, we notice an overall trend of increasing contri-
butions until they drop down significantly towards the fi-

nal stages of denoising, indicating that the diffusion process
makes smaller edits in the final stages and takes heavier up-
dates during the middle phases of denoising. In Fig. 6a, one
can observe a significant bump in the joint velocities (indi-
cating more animated behaviour) at the precise moment of
the excitation word. These observations highlight the over-
all effectiveness of our two-level guidance objectives. We
refer the reader to the supplemental for more results.
On Semantic Consistency: Thanks to the proposed Word
Excitation Guidance (WEG), our method samples gestures
that produce more pronounced attention features for the
user-selected words We demonstrate this by training a ges-
ture type classifier to recognize beat and semantic gestures.
For synthesized gestures without WEG, we observe that the
recall for semantic labels is 0.34. However, this recall in-
creased to 0.40 when WEG was employed, indicating that
the use of WEG enhances semantic coherence in generated
gestures. Refer to supplemental for implementation details.
Attention Maps. We visualize the attention maps for anal-
ysis (see supplemental) to interpret what spatio-temporal
properties are highlighted in the model training. The first
property is a clear separation between the hand and body
latents, shown by the striped patterns of the attention maps.
Secondly, WEG boosts the attention weights for the high-
lighted words. Refer to supplemental for detailed analysis.
Perpetual Rollout. In addition to allowing for temporal
alignment with several modalities, our chunked latent rep-
resentation also benefits us by allowing perpetual rollout.
To do so, one can simply follow the auto-regressive de-
noising process followed by the existing motion diffusion
methods [14, 61, 63] with the difference that instead of in-
painting the actual motion, we inpaint the latents. Refer to
supplementary material for implementation details.

6. Conclusion

In this work, we proposed a novel approach towards con-
trollable co-speech gesture synthesis. With the aim of
generating long term, jitter-free gestures, we proposed a
time-aware latent representation that can be denoised us-
ing a diffusion model. To control the effects of individual
modalities, we proposed a variant of classifier-free guid-
ance. We also proposed WEG to enhance the gestures for
a user-selected set of words in the text, thus facilitating text
level fine-grained control. Our analysis shows that word-
excitation induces more animated behaviour for the selected
words. Finally, with the introduction of the DND GROUP
GESTURE dataset we hope the field will further propel the
research on multi-party gesture synthesis.
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Bickmore. Beat: The behavior expression animation toolkit.
In SIGGRAPH Conference Proceedings, 2001. 3

[12] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. ACM
TOG, 42(4), 2023. 6

[13] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao
Chen, and Gang Yu. Executing your commands via motion
diffusion in latent space. In CVPR, 2023. 2, 3, 4, 5, 6, 7, 8

[14] Rishabh Dabral, Muhammad Hamza Mughal, Vladislav
Golyanik, and Christian Theobalt. Mofusion: A framework
for denoising-diffusion-based motion synthesis. In CVPR,
2023. 3, 4, 7, 8

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 3

[16] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation, 2023. 6

[17] Ylva Ferstl and Rachel McDonnell. Investigating the use of
recurrent motion modelling for speech gesture generation. In
Proceedings of the 18th International Conference on Intelli-
gent Virtual Agents, 2018. 3

[18] Ylva Ferstl, Michael Neff, and Rachel McDonnell. Adver-
sarial gesture generation with realistic gesture phasing. Com-
puters & Graphics, 89:117–130, 2020. 3

[19] Saeed Ghorbani, Ylva Ferstl, Daniel Holden, Nikolaus F.
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