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Figure 1. Generative Proxemics. We propose a diffusion model that learns a 3D generative model of two people in close social interaction.
We show how the model can be used to generated samples or as a social prior in the downstream task of reconstructing two people in close
proximity from images without any user annotation at test time. Shown here are input test images (left) and our predicted 3D bodies (right).

Abstract

Social interaction is a fundamental aspect of human
behavior and communication. The way individuals posi-
tion themselves in relation to others, also known as prox-
emics, conveys social cues and affects the dynamics of so-
cial interaction. Reconstructing such interaction from im-
ages presents challenges because of mutual occlusion and
the limited availability of large training datasets. To ad-
dress this, we present a novel approach that learns a prior
over the 3D proxemics two people in close social interac-
tion and demonstrate its use for single-view 3D reconstruc-
tion. We start by creating 3D training data of interacting
people using image datasets with contact annotations. We
then model the proxemics using a novel denoising diffusion
model called BUDDI that learns the joint distribution over
the poses of two people in close social interaction. Sam-
pling from our generative proxemics model produces realis-
tic 3D human interactions, which we validate through a per-
ceptual study. We use BUDDI in reconstructing two people
in close proximity from an image without any contact anno-
tation via an optimization approach that uses the diffusion
model as a prior. Our approach recovers accurate 3D so-

cial interactions from noisy initial estimates, outperforming
state-of-the-art methods. Our code, data, and model are
available at: muelea.github.io/buddi.

1. Introduction
Humans are social creatures, and physical interaction plays
a crucial role in our daily lives, shaping our relationships.
For example, research in behavioral science has shown that
a slight touch between two people can cause a more friendly
behaviour towards the touch-giver and lead to increased tips
in restaurants [5]. Capturing and modeling scenarios of
physical social interaction through computer vision will en-
able advancements in augmented and virtual reality and im-
pact other fields like robotics and behavioral science. The
recent progress in single-person mesh estimation is unfor-
tunately not sufficient to model close interaction, as these
methods are not trained to reason about the relative depth
of people and the intricate interplay between two people’s
body poses, shapes, and proximity.

4Portions of this work were done while LM was at MPI-IS, Tübingen.
5This work was done while GP was at UC Berkeley.
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In this work, we present the first approach that learns a
generative model for 3D social proxemics and demonstrate
its use as data-driven prior during an optimization routine.
The diffusion model is trained using 3D human poses and
shapes reconstructed from a large-scale image collection [8]
using contact annotation, as well as using motion-capture
(MoCap) data [8, 54]. The resulting model is able to gener-
ate the 3D pose and shape parameters of pairs of interacting
people. When trained on bodies recovered from images,
the model learns interactions depicted in photographs, such
as people standing close together, playing sports, hugging,
etc., see Figure 1. We further demonstrate the effectiveness
of the learned prior by applying it to the challenging task
of 3D human pose and shape reconstruction from a single
image containing people engaged in social interaction.

Specifically, we propose BUDDI: a “BUDdies DIffu-
sion Model”. Diffusion models are established methods
for image generation and are often used to model 3D hu-
man motion. In this work we use them to model 3D social
proxemics. The majority of state-of-the-art diffusion-based
methods for 3D human mesh generation operate on 3D joint
locations [45]. This representation lacks information about
the human body surface, which, intuitively, is important
for reasoning about interpersonal contact. Our approach,
in contrast, operates on the parameters of two parametric
human body models, which represent the surfaces of two
people closely interacting. After training, our model is able
to generate samples of plausible pairs of 3D bodies in social
interaction from pure noise. The model can also be condi-
tioned in the output of a human pose and shape regressor. In
this conditional case, the model takes the noisy output and
generates similar poses but with realistic social interaction.

We then demonstrate how exploit BUDDI’s knowledge
of human proxemics to guide 3D mesh reconstruction of
people in a close social interaction from a single image. To
this end, we introduce a novel optimization-based approach,
which uses BUDDI as a data-driven prior. We initialize our
optimization routine with samples from BUDDI, condi-
tioned to the output of a state-of-the-art multi-person human
mesh regressor [42]. We then optimize over SMPL-X pose,
shape, and translation parameters to match detected 2D
joint locations. We incorporate guidance from the diffusion
model using a loss inspired by the Score-Distillation
loss from the 3D object creation literature [35]: In each
optimization step, BUDDI refines the current estimate
towards a more plausible social interaction conditioned
on the initial predictions. The refined pose, shape and
translation serve as prior in the overall objective function.

Our contributions include (1) presenting the first gener-
ative model of a pair of 3D people in close social interac-
tion and (2) a novel approach for reconstructing 3D human
meshes from images without relying on ground-truth con-
tact annotations. We perform extensive experiments with

BUDDI to evaluate its performance on the FlickrCI3D Sig-
natures dataset [8] as well as CHI3D, and the recent Hi4D
dataset [54] and find that it outperforms the state of the art
as well as strong baselines. We also evaluate the uncon-
ditional samples from the diffusion model in a perceptual
study, where people find our samples more realistic 44.4%
when compared over real samples, where 50% is the up-
perbound where they do not see any difference. Impor-
tantly, we find that our optimization approach significantly
improves the results of [42] both quantitatively and quali-
tatively. This work opens up a new avenue of research on
digital human synthesis, laying the foundation for a deeper
understaning of human social behavior derived from image
data. Our data, code, and model will be available for re-
search.

2. Related Work
Generating 3D humans. There has been recent inter-
est in generating 3D humans, in different contexts. Sev-
eral methods automatically populate static 3D scenes with
3D humans [14, 60, 61], while more recent methods gen-
erate both body and hand poses to interact with 3D ob-
jects [43, 44, 49]. Other work generates human motions
conditioned on different inputs such as audio [26, 47] or
text [33, 34, 45]. Concurrent work proposes text-to-3D
diffusion-based approaches to generate motion of two inter-
acting humans [27, 40]. Neither method predicts the full
body surface, but rather they synthesizes either 3D joint
locations or SMPL pose parameters for the average body.
These methods are not used as priors for reconstructing in-
teracting people from images.

To model 3D human proxemics probabilistically, we em-
ploy diffusion models, which achieve impressive perfor-
mance on image generation tasks [7, 15, 38, 39]. They have
recently been adopted in 3D human motion generation sce-
narios: MDM [45] generates plausible motions conditioned
on text input; PhysDiff [55] incorporates physical con-
straints in the diffusion process to generate physically plau-
sible motions; and EDGE [47] uses a transformer-based dif-
fusion model for dance generation. Related work [4, 6, 28]
has investigated different modalities for the conditioning,
e.g., audio, text, or action classes. EgoEgo [25] generates
plausible full-body motions conditioned on the head mo-
tion. SceneDiffuser [16] focuses on the scene-conditioned
setting. We also rely on techniques from the diffusion liter-
ature, but consider the unique setting where two people are
in close interaction and leverage this for single-image 3D
reconstruction.

Multi-person 3D human mesh estimation. An ex-
tensive line of work focuses on reconstructing the 3D hu-
man pose and shape of a single person from images using
optimization [2, 11, 24, 32, 37, 46, 50] or regression ap-
proaches [1, 12, 19, 20, 22, 29, 31, 51, 58, 59]. Capitalizing
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Figure 2. BUDDI: BUddies DIffusion model. On the left, we illustrate the architecture of BUDDI, our diffusion model for modeling
3D social proxemics between two people in close interaction. The diffusion process is applied directly on SMPL-X body parameters. To
condition BUDDI on estimated body model parameters, cH, we concatenate the parameters along the token dimension. On the right, we
illustrate the optimization method with BUDDI as prior. Our optimization takes detected keypoints [3, 52] and an initial regressor estimate
[42] as input. Given the regressor estimate, we sample from BUDDI to obtain x̃ which we use to initialize the optimization routine. In
each optimization iteration, we take a single diffuse-denoise step on the current estimate using the learned denoiser model D. Our losses
encourage the current estimate to be close to the refined meshes (Ldiffusion) and to the initial estimate and detected keypoints (Lfitting).

on these techniques, recent approaches focus explicitly on
reconstructing multiple people jointly from a single image.
Zanfir et al. [56] propose an optimization solution, while
Jiang et al. [18] and Sun et al. [41] rely on deep networks
to regress the pose and shape for all people in the image.
BEV [42] extends ROMP [41] to reason about the depth of
people while taking age/height into account.

The above methods do not address contact between peo-
ple. To do so, Fieraru et al. [8] introduce the first datasets
with ground-truth labels for the body regions in contact be-
tween humans. Labels are collected using MoCap (CHI3D)
or human annotators (FlickrCI3D Signatures). They pro-
pose an optimization approach that requires the ground-
truth contact map to reconstruct people in close proxim-
ity at test time. More recently, REMIPS [9] introduces
a transformer-based method that regresses the 3D pose
of multiple people. REMIPS is trained using the above
datasets while taking into account contact and interpene-
tration. In this work, we take a very different approach
by learning and exploiting a 3D generative proxemics prior.
We use the ground-truth contact maps to generate pseudo-
ground truth 3D human fits from which we learn the dif-
fusion model; once this is learned, we show that it can be
used as a prior to recover plausible bodies in close proximity
from images without explicit knowledge of contact maps.

Data-driven priors in optimization. Optimization-
based methods for 3D human pose and shape estimation,
like SMPLify [2], are versatile and allow different data-
driven prior terms to be incorporated in the objective func-
tion. Different methods have been used to learn pose pri-
ors including GMMs [2], VAEs [32], neural distance fields
[46], and normalizing flows [57]. ProHMR [23] learns a
pose prior conditioned on image pixels. HuMoR [37] incor-

porates a data-driven motion prior in the iterative optimiza-
tion. POSA [14] learns a prior for human-scene interaction
from PROX data [13] and uses it in their optimization. In
contrast to these methods, we use a diffusion model to cap-
ture the joint distribution over SMPL-X parameters for two
people interacting and show that we can both sample from
the model and use during optimization to improve the pose
estimates of interacting people.

3. Method

We introduce BUDDI, a generative model of two people
in close social interaction. Because of the complexity and
multimodality of the data, we turn to denoising diffusion
probabilistic models [15] to address this task. In Sec. 3.1,
we describe the basics of diffusion, and the parameteriza-
tion we employ to model people in contact. In addition to
sampling new body meshes from our model, our generative
model can serve as a prior for reconstructing 3D humans
from images. In Sec. 3.2, we describe an optimization pro-
cedure that incorporates BUDDI as a prior to recover two
SMPL-X meshes from observed 2D keypoints.

For all of the following, we use the SMPL-X [32] body
model to represent the human bodies. SMPL-X is a differ-
entiable function that maps pose, θ ∈ R21×3, shape, β ∈
R10, and expression, ψ ∈ R10 parameters to a mesh con-
sisting of Nv = 10, 475 vertices V ∈ RNv×3. We place the
generated meshes in the world by rotating and translating
them by ϕ ∈ R3 andγ ∈ R3. We denote person a’s param-
eters as Xa = [ϕa,θa,βa,γa] and Xb = [ϕb,θb,βb,γb].
For simplicity, we refer to both people when no index is
specified, e.g., X refers Xa and Xb
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3.1. Diffusion Model for 3D Proxemics

Denoising diffusion models are latent variable generative
models that learn to transform random noise into the de-
sired data distribution pdata through a forward and reverse
process. The forward inference process is a Markov chain
over T steps given by transitions q(xt+1|xt), which gradu-
ally adds Gaussian noise to clean samples x0 from the data
distribution according to a fixed variance schedule σt.

The reverse process q(xt−1|xt) then gradually denoises
noisy samples back into the data distribution. The reverse
process transitions follow a Gaussian distribution when
conditioned on x0, but must be inferred during the gener-
ative process. Following Ramesh et al. [36], we train a neu-
ral network D that predicts a sample x̂0 = D(xt; t) from
a noisy sample xt given the noise level t.For the task of
reconstructing humans from images, when we have initial
estimates of the SMPL-X parameters of two humans, we
condition the denoising network D on cH , the predicted
SMPL-X parameters of the two humans by a regressor.

We refer to the process of adding noise as diffusion
and the process of removing the noise via D as denois-
ing. Specifically, we diffuse a ground-truth sample x0 by
uniformly sampling a noise level t with ϵt ∼ N (0, I) to
obtain the noisy sample xt =

√
σ′
tx0 +

√
1− σ′

tϵt with
σ′
t =

∏t
i=1(1− σt).

We then train D to minimize

Ex0∼pdataEt∼U{0,T},xt∼q(·|x0)||D(xt; t, cH)− x0||, (1)

where we set cH = ∅ for 20% of conditional model train-
ing, and all of unconditional model training.

Architecture. Because we aim to model close contact be-
tween people, we choose a model state space that can ex-
press the full surface of the human body. Specifically, in
contrast to prior work in human motion diffusion that oper-
ate only on joint angles and locations [45, 55], we directly
operate on the full SMPL-X parameters of the two people.
A sample x thus corresponds to the concatenation of two
bodies:

x = [Xa, Xb] = [ϕa,θa,βa,γa,ϕb,θb,βb,γb].

We denoise a sample xt with a transformer encoder
block on tokenized parameters. Specifically, each param-
eter of each person is tokenized into 152-dimensional latent
vectors with per-parameter and per-person embedding lay-
ers. We tokenize the noise level t similarly with a noise
embedding. When conditioning is available, i.e. SMPL-
X estimates for person a and b, we similarly tokenize the
parameters to be used as additional tokens. We pass the
available tokens into the transformer encoder, and similarly
decode the output tokens with per-token embeddings. We
illustrate the denoiser architecture in Figure 2.

Losses. We employ standard human pose and shape reg-
ularization losses. We write our training objective as

LD = Lθ + Lβ + Lγ + Lv2v , (2)

where Lθ, Lβ , Lγ denote squared L2-losses on respective
body model parameters, and Lv2v denotes a squared L2 loss
on model vertices. We use 6D rotation representations [62]
for global orientation and pose, and model the relative trans-
lation between a and b. We show generated samples from
our unconditional model in Fig. 3.

3.2. Optimization with the Proxemics Prior

Reconstructing 3D human meshes from a single image is an
extremely under-constrained problem, and priors over hu-
man pose and shape are crucial in an optimization based
framework for recovering plausible meshes [2, 32, 56]. Our
problem involves people in close contact, which requires
correctly placing the meshes in context with each other,
which has only been done when given ground truth con-
tact annotations at test time [8]. We remove the need for
ground-truth contact maps by using our generative model
as a prior during reconstruction with a score distillation ap-
proach [35, 48].

During inference, we observe detected 2D keypoints J̃2D
and initial body model parameter estimates cH from a re-
gressor [42]. We then optimize the body parameters of two
people to minimize

LOptimization w. BUDDI = Lfitting + Ldiffusion. (3)

Lfitting ensures that the solution stays close to the image ev-
idence, while Ldiffusion is a data-driven prior using our con-
ditional diffusion model. We treat this prior as similar to
those used for 3D pose in previous works such as GMM [2]
and V-Poser [32], but for 3D proxemics. We illustrate the
optimization procedure in Fig. 2 right.

We initialize our optimization by generating a sample x̃
from the conditional model. We sample with DDIM sam-
pling with 100 evenly spaced steps. We then use the data
fitting loss:

Lfitting =λJLJ + λθ̃Lθ̃ + λPLP , (4)

where LJ denotes 2D re-projection error between the repro-
jected 3D joints of the current estimate and the detected 2D
keypoints, and Lθ̃ is a prior for the solution to be close to
the denoised initialization.

LP denotes an interpenetration loss between two peo-
ple that pushes inside vertices to the surface, which we use
winding numbers [17] to find intersecting vertices between
low-resolution SMPL-X meshes of the current estimates:

LP =
∑
v∈V a

I

min
u∈V b

∥v − u∥2 +
∑
v∈V b

I

min
u∈V a

∥v − u∥2 , (5)
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Figure 3. Generative Proxemics: Samples from BUDDI. All samples are unconditionally generated from pure noise using the trained
diffusion model. We select several representative examples and show two views per sample. These samples reveal that BUDDI has learned
the distribution of people in close contact including embracing each other, playing sports, sitting side by side, and taking photographs.

where V a
I denotes vertices of Ma intersecting the low-

resolution mesh of M b; and vice versa for V b
I .

To use the prior on human interaction into account, we
use the learned denoising model D from BUDDI and per-
form a single diffuse-denoise step, with a noise level at
t = 10, on the current estimate. The denoised estimate,
x̂0 = D(xt; t, cH), regularizes the current estimate via

Ldiffusion = ||D(xt; t, cH)− x||, (6)

where xt =
√

σ′
txno-grad +

√
1− σ′

tϵt denotes the dif-
fused body model parameters of the current estimate, and
xno-grad denotes the current estimate with detached gradi-
ents. x̂0, and encourages x to be close to x̂0. In practice,
we penalize the decoded parameters of x and x̂0 directly as

Ldiffusion =λϕ̂||ϕ̂0 − ϕ||+ λθ̂||θ̂0 − θ||

+ λβ̂||β̂0 − β||+ λγ̂ ||γ̂0 − γ||.
(7)

Intuitively, this loss uses the learned denoiser D to take a
step from the current estimate towards the data distribution
of two people in close proximity, conditioned on the regres-
sor prediction.

4. Implementation Details
Training Data. There are few datasets containing 3D
ground truth of humans in close social interaction [8, 54].
Such datasets are usually captured in lab environments,
consequently they are small and do not contain the va-
riety of interactions between humans “in the wild,” e.g.
when playing sports or taking social pictures. To address
this lack of data, we create Flickr Fits, i.e. SMPL-X fits

for Flickr images portraying humans in contact scenarios.
For this, we use FlickrCI3D Signatures [8], a dataset of
images showing interacting humans collected from Flickr
with discrete human-human contact annotations. Specifi-
cally, the SMPL-X body surface is divided into R = 75
regions such that each region, r, roughly covers a similar
area. For a given photo, the human annotators assign a bi-
nary label indicating contact between a region on one per-
son and a region on the other. For two meshes, Ma and M b,
the annotation can be represented as a binary contact map
CD ∈ {0, 1}R×R, where

CD
ij =

{
1, if ri of Ma is in contact with rj of M b

0, otherwise. (8)

We use these ground-truth contact maps in an optimiza-
tion routine for fitting two people to detected keypoints,
similar to Sec. 3.2 but replace the diffusion model prior
with standard image fitting priors. The dataset contains
10,631/1,139 train/test images, with one image containing
multiple contact annotations. Note that we use pairs of
people in contact as labeled in the FlickrCI3D Signatures
dataset [8] and only use images containing matching regres-
sor estimates, 2D keypoints, and contact labels. See Fig. 4
for qualitative examples and the Sup. Mat. for more details
about the selection process and an evaluation of the opti-
mization method with ground-truth contact labels.

We also augment our training data with available MoCap
data, which is considerably smaller than those obtained
from image fits: CHI3D [8] contains 3/2 pairs of train-
ing/test subjects performing 127 sequences of two-person
interactions like hugs or kicks with ground-truth SMPL-X
bodies. One frame per sequence has contact map annota-
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Input Image BEV Pseudo Ground Truth
Source View Left View Back View Top View Source View Left View Back View Top View

Input Image BEV Pseudo Ground Truth
Source View Left View Back View Top View Source View Left View Back View Top View

Figure 4. Flickr Fits. We visualize the output of the optimiza-
tion process that reconstructs two people in close proximity using
ground-truth contact maps, shown from four different views. We
use these 3D fits as training data for BUDDI.

tions. We use only the contact frame of the sequences from
two subject pairs, resulting in 247 mesh pairs for training,
and the third pair for evaluation. Hi4D [54] contains se-
quences of 20 pairs of people interacting with each other.
The interactions include actions like hugging, dancing, and
fighting. We randomly split the data into 14/3/3 pairs for
train/val/test and use every fifth frame of the subsequence
involving contact as labeled in Hi4D, resulting in about 1K
mesh pairs for training. The body representation format in
Hi4D is SMPL, which we transfer to SMPL-X using the
SMPL-X code repository [32]. Please see the Sup. Mat.
for more details of the datasets. Note that while we use
SMPL-X model, BUDDI is not trained on hands because
none of these datasets contain hand poses.

BUDDI Training. BUDDI is trained with meshes from
FlickrCI3D Signatures Fits, CHI3D, and Hi4D. We use
60% Flickr, 20% CHI3D, and 20% Hi4D data distribution
per batch with batch size 512. The transformer backbone
has six layers and eight heads; we use 10% dropout and
randomly shuffle the order of people during training. To
train BUDDI, we randomly sample noise levels t up to 1000
using a cosine noise schedule [30]. We use the Adam opti-
mizer [21] with learning rate 10−4. We train two separate
networks: an unconditional model for generation and the
conditional version for reconstruction. For the conditional
model, we use all camera views of the MoCap datasets, i.e.
4/8 cameras for CHI3D/Hi4D. The unconditional model is
trained on 3D MoCap fits in the world coordinate system.
To sample new poses, we use DDIM sampling starting at
noise levels t = 1000 in steps of 10.

Optimization Details. During optimization, we experi-
ment with different noise levels, between 10 and 100, and
find that t = 10 does not disturb the inputs too much, but
enough for D to generate new configurations. We use de-
tected 2D keypoints from OpenPose [3] and ViTPose [52]
and BEV [42] estimates as conditioning. Unlike single-
person mesh regressors, BEV is designed to predict multiple

people including their relative depth. Please see Sup. Mat.
for more details.

5. Experiments
Baselines. We compare our reconstruction method with
BEV [42], which is also used as an input to our conditional
model. Since there is no other available work that reasons
about people in close social interaction, we experiment with
simple but effective baselines. We train the transformer
model of BUDDI to directly predict SMPL-X parameters
of people in contact from BEV input, essentially a deter-
ministic, single-step ablation of BUDDI. We also evaluate
the direct conditional denoised output of BEV by BUDDI
without any optimization. As another baseline, we propose
an optimization routine that replaces Ldiffusion with a sim-
ple heuristic that takes the minimal distances between two
meshes predicted by BEV and minimizes their distance dur-
ing optimization along with the other energy terms. Finally,
to compare the generation ability we train a VAE which we
also use during the optimization routine in a similar manner
to VPoser [32] but for two people by optimizing the VAE la-
tent space instead of SMPL-X parameters. We refer to these
models as Transformer, BUDDI (gen.), Contact Heuristic,
and VAE, respectively. All baselines are trained on the same
datasets as BUDDI with the same sampling strategies. De-
tails about our baselines are provided in the Sup. Mat..
Metrics. We use standard evaluation metrics from the hu-
man pose and shape estimation literature. We also report the
joint PA-MPJPE computed by performing Procrustes align-
ment of both people together. In addition to per-person met-
rics, this captures the relative orientation and translation of
the two people. Since our method directly estimates 3D
humans we propose a new metric similar to PCK [53] from
the 2D pose literature called PCC, the percentage of correct
contact points with respect to a radius r. Specifically, given
two meshes, Ma/M b and a contact map CD we compute
the pairwise vertex-to-vertex Euclidean distances deucl(CD)
between annotated contact regions and consider the pair to
be correct when min(deucl(CD)) < r.

5.1. Unconditional Generation

We qualitatively evaluate BUDDI by showing samples gen-
erated from the model in Fig. 1 and 3. Our approach is able
to generate people in close proximity including embraces,
handshakes, having a conversation, sitting side by side, and,
in general, plausibly interacting with each other. Since it is
trained on Internet image collections, it also learns to gen-
erate people posing for photographs or playing sports.

We further run a perceptual study to evaluate the realism
of the generated social interactions against other methods.
In a forced choice study, we compare our generated sam-
ples with samples from the real data distribution accord-
ing to the 60/20/20 per-batch ratio for Flickr/CHI3D/Hi4D
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Figure 5. Automatic reconstruction of people in close social interaction. We show qualitative results from a) BEV, b) contact heuristics,
which takes the BEV output and encourages the closest parts to be in contact, and c) our method, which optimizes the BEV estimates
against the image evidence with the BUDDI prior. Our approach recovers a plausible reconstruction with subtle details.

JOINT ↓
PA-MPJPE

PCC at radius ↑
5 10 15 20 25

BEV 106 - - - - -
Transformer 86 14 40 60 73 82
BUDDI (gen.) 92 15 39 58 71 80

Heuristic 68 14 34 49 61 70
VAE 101 11 28 42 55 65
BUDDI 66 19 44 62 73 81

Table 1. 3D Pose Evaluation on FlickrCI3D Signatures. We
evaluate methods against the Flickr fits using their joint (two-
person) PA-MPJPE expressed in mm. We also evaluate the per-
centage of correct contact points (PCC) for radius r mm.

used during training. We also compare BUDDI against gen-
erations from the VAE and a non-parametric random base-
line that samples meshes from the pseudo-ground truth after
centering the two people. We do a forced choice compari-
son between BUDDI and these there other methods, asking
workers on Amazon Mechanical Turk to choose the sam-
ple that shows a more realistic close social interaction. We
use 256 samples per method. We collect ratings for 768

pairwise comparisons. In this study, BUDDI was chosen
over random in 71.23% of the comparisons, over the VAE
in 60.17%, and over the training data in 44.4%. Note that
50% is the upper bound for such forced choice comparisons,
in which participants cannot tell the difference between real
and generated samples.

For a quantitative evaluation, we compute the FID score
between samples from BUDDI and samples from the VAE
on concatenated SMPL-X parameters. We sample 8K ex-
amples per method and from our training data following the
dataset ratio per batch. BUDDI has a lower FID score (1.6)
compared to the VAE (3.3).

5.2. Fitting with BUDDI

We show qualitative results in Fig. 5 comparing BUDDI
against BEV and the Contact Heuristic. Our approach is
able to generate various types of human interactions with
plausible contact and depth placement. It is also able to
capture close interaction between a child and a parent. Al-
though the Contact Heuristic (center) is able to move two
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PER PERSON ↓ JOINT ↓ JOINT PA-MPJPE ↓
PA-MPJPE PA-MPJPE backhug basketball cheers dance fight highfive hug kiss pose sidehug talk

BEV 78 / 84 136 200 126 109 135 121 106 163 139 142 131 118
Heuristic 67 / 71 121 168 83 94 131 94 68 159 159 118 113 109
BUDDI (F, C) 70 / 77 115 200 94 92 128 108 100 133 114 104 107 91

Transformer 79 / 85 120 161 141 103 138 123 128 117 106 120 105 100
BUDDI (gen.) 82 / 90 117 152 139 120 137 130 96 101 97 115 102 101
VAE 80 / 82 138 175 133 114 141 119 87 176 162 135 140 113
BUDDI 70 / 76 98 127 95 92 113 109 72 105 85 88 96 81

Table 2. Evaluation of BUDDI on Hi4D. We compare the output of BUDDI to the proposed baseline methods on the Hi4D challenge. The
first block shows methods that do not use Hi4D data during training or are optimization based without access to priors trained on Hi4D.
BUDDI (F,C) in particular, is our model BUDDI trained on Flickr and CHI3D data only. All errors are reported in mm for 3D Joints.

PER PERSON ↓ JOINT ↓
PA-MPJPE PA-MPJPE

BEV 50 52 96
Transformer 54 56 105
BUDDI (gen.) 53 53 80

Heuristic 49 46 105
VAE 54 54 103
BUDDI 48 47 68

Table 3. Quantitative Evaluation on CHI3D. We compare the
output of our model to the baselines on CHI3D (pair s03). All
errors reported in mm for 3D Joints.

people closer together, which helps with image alignment,
upon close observation it is not able to capture the subtle
interaction between people that happens during intimate in-
teraction. BUDDI’s estimates are more realistic and better
capture the subtle details of interaction. We provide addi-
tional qualitative examples in the Sup. Mat.

We further report the percentage of correct contact
(PCC) with respect to the ground truth contact map on the
FlickrCI3D Signatures test set in Table 1. The table also
shows the pose reconstruction accuracy against our Flickr
Fits. All metrics show improvement over BEV, in particular
the joint PA-MPJPE. Non-optimization methods, i.e. Trans-
former and BUDDI (gen.), are able to predict plausible con-
tacts, with similar PCC accuracy to BUDDI, but struggle
to reconstruct the data with a worse joint PA-MPJPE. The
Heuristic, in contrast, achieves a lower reconstruction error,
but worse PCC. Our approach which leverages the learned
prior during optimization can recover both the relative po-
sitions and contacts between the two people. To provide
insights into the performance of single-person mesh regres-
sors when evaluated on the two-person reconstruction task,
we run 4D Humans [10] on Flickr Fits. The joint PA-
MPJPE is 344 mm which is high, as expected, since these
methods are not trained to reason about proximity.

We further evaluate our model against ground truth
MoCap data in Tables 2 and 3. Optimization with BUDDI
consistently improves the two-person reconstruction error
over BEV and other baselines. When evaluated per action,
the strongest improvements over BEV come from complex

close social interactions like hugging or kissing, at 58mm
and 54mm absolute improvement over BUDDI respectively.
The Heuristic baseline achieves a low PA-MPJPE recon-
struction error on all three datasets in particular for poses
with a few physical contact points, such as a handshake,
whereas more complex contact, such as a hug, requires
data-driven priors like BUDDI; we provide an analysis in
the Sup. Mat. to quantify this hypothesis. Transformer
and BUDDI (gen.) have lower joint PA-MPJPE errors than
BEV and the Heuristic, but worse per-person reconstruc-
tion errors. The VAE results suggest that directly operat-
ing in the latent space of a generative model is challenging
and not sufficient to accurately recover close social interac-
tions. BUDDI, in contrast, is able to model a wide variety
of poses, as supported by the numerical results.

6. Conclusion

We propose BUDDI, a diffusion model for close human-
human interaction. We train BUDDI from 3D fits obtained
from a large-scale dataset of images with ground truth con-
tact annotations as well as a small set of available mocap
data. BUDDI enables unconditional sampling of people in
close social interaction. More importantly, we also demon-
strate how BUDDI can be used as effective prior for single-
view 3D reconstruction of two people in close proximity.

Our core contribution of a generative proxemics prior
provides the foundation for future work on modeling and
capturing human interaction. For example, future work
could iteratively apply our method to reconstruct more than
two people in close proximity, explore other conditioning
modalities like pixel features, text, action labels, or, by tak-
ing the outputs of recent single-person mesh regressors into
account, address reconstructing fine-grained interaction in-
cluding finger pose and facial expressions.
Acknowledgements: We thank A. Holynski, E. Weber, F.
Warburg, B. Peebles, J. Rajasegaran, K. Mangalam and N.
Athanasiou for insightful discussions, and A. Cseke, T. Mc-
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