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Figure 1. Given a single input image, MultiDiff synthesizes consistent novel views following a desired camera trajectory. These syn-
thesized views harmonize well even in areas unseen from the reference view. Examples from RealEstate10K [81] (top two rows) and
ScanNet [9] (bottom row) test sets demonstrate that our model can handle large camera changes and challenging perspectives.

Abstract

We introduce MultiDiff, a novel approach for consistent
novel view synthesis of scenes from a single RGB image.
The task of synthesizing novel views from a single reference
image is highly ill-posed by nature, as there exist multiple,
plausible explanations for unobserved areas. To address
this issue, we incorporate strong priors in form of monoc-
ular depth predictors and video-diffusion models. Monoc-
ular depth enables us to condition our model on warped
reference images for the target views, increasing geomet-
ric stability. The video-diffusion prior provides a strong
proxy for 3D scenes, allowing the model to learn contin-
uous and pixel-accurate correspondences across generated
images. In contrast to approaches relying on autoregres-
sive image generation that are prone to drifts and error
accumulation, MultiDiff jointly synthesizes a sequence of
frames yielding high-quality and multi-view consistent re-

sults – even for long-term scene generation with large cam-
era movements, while reducing inference time by an order
of magnitude. For additional consistency and image quality
improvements, we introduce a novel, structured noise distri-
bution. Our experimental results demonstrate that MultiD-
iff outperforms state-of-the-art methods on the challenging,
real-world datasets RealEstate10K and ScanNet. Finally,
our model naturally supports multi-view consistent editing
without the need for further tuning.

1. Introduction

In this work, we address the challenging and highly ill-
posed task of view extrapolation from a single image. The
goal is to synthesize a set of multiple novel views that are
diverse and in themselves consistent. As input, our method
only requires a single input image and a user-defined free-
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form camera trajectory that may deviate substantially from
the reference view. Providing a solution to this problem un-
locks applications in virtual & augmented reality and 3D
content creation, where generating immersive and multi-
view coherent scenes is paramount.
Many existing, state-of-the-art approaches for novel view
synthesis are reconstruction-based (e.g., by optimizing a
Neural Radiance Field [36] from a fixed number of input
views), and are thus inherently limited in generating high-
quality novel views for areas without sufficient training cov-
erage. In contrast, we leverage diffusion-based, generative
approaches [21, 59, 61–63], that are capable of producing
high-quality, single images or individual, simple 3D ob-
jects, due to their ability of learning powerful (conditional)
image priors. Despite significant progress, these models
are still unable to synthesize several, multi-view consistent
views of large scenes. This is largely due to the lack of in-
herent 3D modeling capabilities, the absence of large-scale
3D ground truth datasets, but also the ill-posed nature of the
problem, requiring more sophisticated methodological ad-
vances. Ultimately, we are aiming for a solution that i) gen-
erates seamlessly aligned and multi-view consistent output
images w.r.t. a given input image, ii) maintains both high
variability and fidelity in occluded regions and previously
unseen areas, and iii) extends to camera trajectories well
beyond the provided input reference image viewpoint or a
simplistic 360◦ panoramic view.
Some recent works have approached consistent view ex-
trapolation by leveraging an autoregressive approach: Look
Outside the Room [47] is a transformer-based approach
combined with locality constraints w.r.t. the input cameras
for enforcing consistency among generated frames. Sim-
ilarly, Pose-Guided Diffusion Models [69] apply attention
along epipolar lines to condition a diffusion model. Pho-
toNVS [78] also proposes an autoregressive attempt where
the diffusion model is conditioned on a reference view and a
specialized representation for relative camera geometry. A
significant drawback of autoregressive models is their ten-
dency to error accumulation [31, 52]. Repeatedly condi-
tioning the model on its previously generated frames can
turn minor output deficiencies quickly into undesirable and
semantically meaningless results – particularly on longer-
term trajectories. In contrast, Diffusion with Forward Mod-
els [66] (DFM) trains a diffusion model to directly sample
from the distribution of 3D scenes, inherently improving
3D consistency. However, DFM is computationally expen-
sive, limited to low image resolutions, slow at inference,
and cannot directly integrate 2D diffusion priors. The goal
of our work is to overcome both the main limitations of au-
toregressive works and enabling fast and significantly more
stable, long-term generation of novel views.
To this end, we propose MultiDiff, a novel and improved,
latent diffusion model-based approach for novel view syn-

thesis, given a single reference image and a pre-defined tar-
get camera trajectory as input. We address the challenge of
generating pixel-aligned, multi-view consistent image se-
quences by incorporating strong and complementary priors,
significantly constraining the ill-posed nature of the task.
Geometric stability is improved by integrating a monocu-
lar depth prior, where we condition our model on warped
reference images for desired novel views, using off-the-
shelf but potentially noisy monocular depth estimators. We
also introduce a structured noise distribution for improving
multi-view consistency, applying the aforementioned warp-
ing procedure to the reference image noise and hence gen-
erating correlated 3D noise in all overlapping target views.
By integrating a video diffusion model prior, we are able
to compensate for missing and geometrically inconsistent
reference image warpings due to potential issues with the
monocular depth estimator. Video priors provide a strong
proxy for 3D scene understanding, enhancing temporal con-
sistency by largely reducing flickering artifacts – particu-
larly for long-trajectory view synthesis. However, their lack
of explicit camera control makes their integration nontrivial
for view extrapolation.
In order to avoid error propagation issues as observed with
autoregressive models, we synthesize entire sequences of
novel views in a concurrent and efficient way. Finally, due
to our conditioning, we can additionally edit our generated
scenes, allowing for direct and intuitive interaction with our
model. We summarize our main contributions as follows:
• We address the ill-posed view extrapolation problem by

integrating priors from monocular depth estimators and
video diffusion models for learning pixel-wise correspon-
dences using novel techniques for spatial-aware condi-
tioning across predicted sequences.

• We simultaneously predict multiple frames for a target
sequence, overcoming error accumulation of autoregres-
sive methods, while retaining higher resolution at reduced
computational costs compared to methods directly sam-
pling from the distribution of 3D scenes.

• By introducing a novel structured noise distribution, we
obtain more multi-view consistent sampling results.

2. Related Works
Image and Video Diffusion. Diffusion Models
(DMs) [21, 60, 64] are powerful generative models
that have achieved state-of-the-art results in uncondi-
tional as well as class- and text-guided image synthe-
sis [2, 11, 12, 16, 18, 23, 39, 40, 44, 46, 50, 53, 71].
Recently, DMs have been extended to the task of video
synthesis [8, 14, 22, 24, 34, 56]. While recent video DMs
can be conditioned on different modalities such as text or
images [8, 17, 73], they do not enable explicit control the
camera viewpoint in the generated videos. Nonetheless, the
temporal consistency learnt by these models is a powerful
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prior that we can leverage to tackle the task of novel view
synthesis in an underconstrained setting. Specifically, we
use the publicly available VideoCrafter1 [8] to initialize the
correspondence attention layers in our pipeline.

Regression-Based Models for Novel View Synthesis.
The goal of novel view synthesis (NVS) is to produce re-
alistic images of a given instance or scene from previously
unseen camera viewpoints. Earlier approaches require hun-
dreds of posed training images per instance and optimize
each instance individually [10, 33, 35–37, 57, 67]. By
learning priors across multiple training scenes, more recent
works enable NVS from only one or a few images at in-
ference [7, 13, 19, 29, 41, 42, 49, 54, 58, 68, 72, 77].
These methods optimize a regression objective, i.e. an L1
or L2 loss to reconstruct the training images. While this
allows for impressive results on interpolation near input
views, regression-based NVS approaches struggle with re-
construction ambiguity and longer-range extrapolations [6].
As our goal is to synthesize novel views far beyond ob-
served views, we instead train a generative model.

Generative Models for Novel View Synthesis. To better
model reconstruction ambiguity and long-range view ex-
trapolation, multiple recent works deploy generative mod-
els for NVS. Earlier works use GANs [27, 28, 30, 43, 75],
VAEs [31], or autoregressive models [47, 48, 51]. Interest-
ingly, GeoGPT [51] directly models long-range 3D corre-
spondences between source and target views with an autore-
gressive transformer, demonstrating that an intermediate 3D
representation may not be needed for NVS from a single im-
age. More recently, diffusion models have achieved impres-
sive results on object-centric data [1, 32, 38, 55, 74, 76, 82].
While these works focus on relatively constrained camera
motions around a single object, another line of work ad-
dresses scenes with arguably more complex camera trajec-
tories [3, 6, 15, 25, 26, 65, 66, 69, 78]. MVDiffusion [65]
performs image synthesis conditioned on depth maps of
a given mesh, jointly generating all images of the trajec-
tory. To increase consistency, cross-view interactions are
modelled by correspondence-aware attention layers that re-
quire given pixel-to-pixel correspondences using GT geom-
etry during training and inference. Our approach instead
aims at learning those multi-view correspondences, which
allows us to synthesize novel views along a trajectory given
just a single RGB image, without the need for any geo-
metric information about the target views. This renders
our method applicable to a wider range of scenarios, where
no prior 3D reconstruction is available. DFM [66] trains a
diffusion model to directly sample from the distribution of
3D scenes. Modeling the scene with a 3D representation
is inherently 3D-consistent, but is computationally expen-
sive and in practice limits DFM to lower image resolutions
and slow inference. Pose-Guided Diffusion [69] and Pho-

toNVS [78] train a pose-conditioned 2D diffusion model to
autoregressively generate frames along a given camera tra-
jectory. However, especially for long trajectories, autore-
gressive sampling is prone to error accumulation, leading to
common struggles with loop closure when taking a Markov
assumption and slow inference as it cannot be parallelized.
Hence, we do not use autoregressive sampling but generate
all images jointly, enabling the model to learn short- and
long-term correspondences between views. In stark contrast
to MVDiffusion that also performs joint frame synthesis, we
only use depth from an off-the-shelf monocular depth esti-
mator with no geometric cues about the target views. Multi-
Diff can therefore generate novel views from a single input
image only. The learnt correspondence attention enables
our model to achieve better consistency than state-of-the-
art autoregressive approaches while achieving higher image
quality than related works.

3. Method

Given a single reference image Iref, our goal is to generate
semantically plausible, consistent novel views along a cam-
era trajectory C := {cn}Nn=1, where each camera pose cn is
relative to the camera of the reference image. To this end,
we propose a pose-conditional 2D diffusion model with cor-
respondence attention, i.e., attention layers that jointly oper-
ate on all generated views of the trajectory. A key challenge
in novel-view synthesis for the highly under-constrained
single-image setting is to achieve consistency in the lack of
explicit correspondence supervision. We therefore leverage
strong priors that excel at related tasks. Most importantly,
we note that the task of video generation is closely related
to our problem setting, where temporal consistency is an
intrinsic objective.
In the following, we explain how we can integrate and ad-
just a video prior in conjunction with depth and image priors
to enable free viewpoint control. Next, we provide a de-
tailed explanation of our conditioning mechanism and the
correspondence attention which adds viewpoint control to
our pipeline. Lastly, we introduce structured noise, which
ports approximate correspondences between frames to ob-
tain more consistent synthesis results. Our pipeline is illus-
trated in Figure 2.

Video Prior We build our generative model on top of
VideoCrafter [8]. VideoCrafter trains a denoising 3D U-Net
in a fixed latent space, using a pretrained image encoder E
and a pretrained image decoder D to map to and from la-
tent space, respectively. At the core of VideoCrafter is a 3D
U-Net with alternating spatial layers and temporal attention.
The spatial layers process each frame in a batch individually
while the temporal attention operates on all frames jointly.
This pretrained 3D U-Net architecture is a well-suited ini-
tialization for the task of NVS as the temporal layers already
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Figure 2. MultiDiff is pose-conditional diffusion model for novel view synthesis from a single image. The diffusion model is trained in
the latent space of a fixed auto-encoder with encoder E and decoder D and is conditioned on a reference image Iref and a camera trajectory
{cn}. Specifically, we embed N posed target images {In}Nn=1 into latent space, apply forward diffusion according to a timestep t and
structured noise {ξn}, and train a 3D U-Net to predict {ξn} from the noisy inputs {znt }. For each sample n, the U-Net’s prediction ξ̂

n

t is
used to reconstruct the denoised sample ẑnt which can then be decoded into the predicted target image În. We condition the U-Net on the
reference image by warping Iref to the novel views using depth D̂ref from a pretrained estimator ϕ. The warps {Inref} are encoded into latent
representations {yn

tgt} and injected into the U-Net in a ControlNet inspired manner. We further condition the model directly on the camera
pose and an embedding of the reference image as part of the semantic condition {yn

sem}.

provide an inductive bias towards (temporal) consistency.
During training, we nevertheless finetune all layers of the
U-Net for the novel view synthesis task, where instead of
ensuring temporal consistency, the attention layers should
establish correspondences between multiple views. Hence,
we refer to this type of attention as correspondence atten-
tion.

Novel-view synthesis In order to generate novel views
that adhere to the given camera trajectory C, we need to con-
dition our pipeline on the target camera poses cn ∈ C. A
naı̈ve approach to integrating control over the camera view-
point is to directly condition the 3D U-Net on cn, e.g., via
cross-attention. In practice, we concatenate them to the se-
mantic condition of VideoCrafter that consists of an embed-
ding of the reference image and the framerate of the input
sequence yielding the semantic conditioning ysem.
However, this form of guidance alone is too weak to deliver
satisfactory novel-view synthesis results (see Sec. 4.2). We
therefore integrate a monocular depth prior in order to con-
strain the highly ill-posed nature of the task. In our experi-
ments, we use ZoeDepth [4] pretrained on ScanNet [9] and
refer to the supplementary material for ablations about al-
ternative monocular estimators. We use the depth Dref esti-
mated from the reference image Iref to implement a warping
function Ψn that enables warping images from the camera
of the reference image to any other camera cn ∈ C. We
denote by Inref := Ψn(Iref) the reference image warped to
camera cn and by Mn := Ψn(1) the mask indicating the
area of valid warped pixels in camera cn.
To facilitate learning the 3D correspondences across the
spatial features, for each view n, we encode Inref into latent
space via E and stack the mask Mn, suitably resized, along

the channel dimension. The resulting tensor is denoted ytgt.
Inspired by ControlNet [79], we create a copy of the down-
sampling layers of diffusion U-Net to extract features from
ytgt, but we prepend a convolutional layer to cope with the
additional mask channel.
The intermediate feature maps are then processed with zero-
initialized convolutions and added to the outputs of all spa-
tial layers of the 3D U-Net. Note that this differs from the
procedure proposed in ControlNet, which only inserts the
feature maps into the decoder. We further do not freeze
the layers of VideoCrafter to enable learning the correspon-
dence attention. In initial experiments we found that fine-
tuning all layers jointly results in better performance than
using a fixed video prior.
The warping operation is implemented by leveraging an off-
the-shelf monocular depth estimator and thus error-prone
and incomplete. By also passing the reference image and
camera poses to the network in the semantic conditioning
ysem, we enable our approach to follow the provided tra-
jectory even in absence of overlap with the reference image.
We refer to our ablation Sec. 4.2 for a discussion about the
importance of the individual design decisions. In the rest of
the section we summarize with y all quantities we condi-
tion our model on, namely reference image Iref, camera tra-
jectories C, and all derived ones (estimated depth, warped
reference images, corresponding masks).

Structured noise distribution N (y). Images of a 3D
scene captured from different point of views exhibit strong
correlations. Hence, it is beneficial to inject similar corre-
lations in the noise ϵ that is used by our diffusion model
to synthesize the different camera views, which would oth-
erwise be a standard normal multi-variate. This helps en-
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forcing more consistent outputs [45]. Since the correla-
tions are mainly driven by geometric constraints, we lever-
age the warping function Ψn introduced in the previous
paragraph to warp a standard normal multi-variate ϵ0 to
all other camera views in C, while filling the gaps with
independent Gaussian noise. This yields per-view noise
ξn := Mn ⊙Ψn(ϵ

0)+ (1−Mn)⊙ ϵn, where ϵn is a stan-
dard normal multi-variate and Mn is the suitably-resized
warp-validity mask. This process yields ξ := (ξ1, . . . , ξN ),
which is regarded as a sample of the structured noise distri-
bution we denoted by N (y).

Training Objective. Let V := {(I0, c0), . . . , (IN , cN )}
be a ground-truth, posed video sequence, where In and cn

are the nth image and camera pose in the sequence, re-
spectively. We assume I0 to be the reference image, i.e.
Iref := I0, and assume all cameras to be relative to c0.
We encode all target images of the sequence into a joint la-
tent representation z := (z1, . . . , zN ), where zn := E(In),
and y is the conditioning information encompassing the en-
coded reference image, camera poses and warped reference
images described earlier in the section. The denoising train-
ing objective takes the following form for the training exam-
ple V :

L(θ;V ) := E ξ∼N (y)
t∼U(1,T )

[
∥ξ − εθ(z⊕t ξ;y, t)∥2

]
, (1)

where t is sampled from a uniform distribution U(1, T ) and
ξ is noise sampled from the structured noise distribution
N (y). The term z ⊕t ξ :=

√
αtz +

√
1− αtξ perturbs z

with noise ξ according to a variance-preserving formulation
with parameters αt, from which εθ , i.e. our denoising 3D
U-Net with weights θ, is required to recover ξ.
Our model is optimized using Adam by minimizing the
training loss function averaged over random batches of
video sequences sampled from a given dataset.

Inference. At inference time, we assume to be given a
reference image Iref and a sequence of cameras C relative
to it, which we use to compute the conditions y. We gen-
erate a video sequence from our model by using the DDIM
schedule [61], i.e. starting from zT ∼ N (y) we iterate the
following equation

zt−1 :=
√
αt−1(zt ⊖t εθ(zt;y, t))

+
√
1− αt−1εθ(zt;y, t) ,

(2)

until we obtain z0 by setting α0 := 1. The term zt⊖tϵ :=
zt−

√
1−αtϵ√
αt

recovers z from zt assuming noise ϵ. The final
result z0 entails the synthesized views in latent space for all
cameras in C, from which we compute the counterparts in
pixel space by applying the decoder D. Note that MultiD-
iff can generate all images of the sequence simultaneously.
However, sometimes the novel view has little or no overlap

Method Short-term Long-term
PSNR ↑ LPIPS ↓ FID ↓ KID ↓ FID ↓ KID ↓ FVD ↓ mTSED ↑

12
8p

x

DFM [66] 18.10 0.299 36.37 0.010 31.20 0.007 120.2 0.972
Text2Room [27] 15.45 0.370 34.41 0.008 84.10 0.048 163.4 0.932
PhotoNVS [78] 15.66 0.376 26.39 0.006 42.99 0.016 117.5 0.907

MultiDiff (Ours) w/o SN 16.21 0.335 27.26 0.005 30.28 0.006 107.5 0.936
MultiDiff (Ours) 16.41 0.318 25.30 0.003 28.25 0.004 94.37 0.941

25
6p

x

Text2Room [27] 14.88 0.458 35.41 0.009 91.92 0.050 178.6 0.837
PhotoNVS [78] 15.01 0.452 26.75 0.005 45.08 0.017 130.4 0.801

MultiDiff (Ours) w/o SN 15.55 0.412 29.49 0.008 33.71 0.010 116.4 0.849
MultiDiff (Ours) 15.65 0.393 25.90 0.004 30.15 0.006 105.9 0.855

Table 1. Quantitative comparison on RealEstate10K [81] test se-
quences. Our model achieves higher image quality than state-of-
the-art baselines and comparable consistency compared to DFM.

with the reference image, making the warped reference im-
age, i.e. condition yn

tgt less informative. To further refine the
results, we can run the sampling again on the generated se-
quence, but now use the warp of the cloest generated image
in yn

tgt which in practice this slightly improves consistency.

4. Experiments

In this section, we evaluate the performance of our method
for the task of consistent novel view synthesis from a single
reference image.

Datasets We compare our methods against state-of-the-
art approaches on RealEstate10K [81] and ScanNet [9].
Both datasets provide video sequences together with reg-
istered camera parameters. RealEstate10K is a large dataset
of real estate recordings gathered from YouTube. The clips
typically feature smooth camera movement with little to no
camera roll or pitch. Most frames further show consider-
able coverage of the respective rooms. Following previ-
ous works [47, 78], we center-crop and downsample the
videos to 256px resolution. ScanNet consists of 1513 hand-
held captures of indoor environments. The camera trajecto-
ries follow a scan-pattern which can contain rapid changes
and variation of camera orientation. The resulting frames
encompass close-up object captures as well as wide room
recordings, leading to heavy occlusions and an overall di-
verse data distribution. The aforementioned features make
ScanNet extremely challenging for novel view synthesis
from a single image and our evaluations in Sec. 4 indicate
that additional priors are very beneficial in this setting. We
resize the images to 256×256 and remark that ScanNet con-
tains 3D meshes that we use for MVDiffusion as it requires
predefined correspondences between frames.

Evaluations We evaluate our approach in terms of image
fidelity and consistency of the generated outputs. Similar
to [47], we consider both short-term and long-term view
synthesis. Specifically, we randomly select 1k sequences
with 200 frames from the test set and evaluate the 50th gen-
erated frame for short-term and the 200th generated frame
for long-term view synthesis for RealEstate10K. Due to the
faster camera motion, on ScanNet instead we choose the
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Figure 3. Novel views following ground-truth trajectories (right) given a reference view (left) on RealEstate10K. Through our joint multi-
frame prediction combined with effective priors and conditioning, our sequence of novel views is highly realistic and view-consistent
compared to the baselines, which show severe degradation over time.

Method Short-term Long-term
PSNR ↑ LPIPS ↓ FID ↓ KID ↓ FID ↓ KID ↓ FVD ↓ mTSED ↑

12
8p

x

MVDiffusion [65] 13.14 0.439 43.28 0.013 43.58 0.013 186.6 0.506
DFM [66] 16.59 0.444 75.19 0.036 111.9 0.069 167.2 0.912

Text2Room [27] 15.01 0.452 39.87 0.008 82.44 0.0041 173.1 0.812
PhotoNVS [78] 15.23 0.440 49.19 0.019 75.23 0.038 89.04 0.479

MultiDiff (Ours) w/o SN 15.29 0.372 40.36 0.008 43.61 0.011 80.71 0.752
MultiDiff (Ours) 15.50 0.356 38.44 0.007 42.41 0.010 74.10 0.776

25
6p

x

MVDiffusion [65] 12.88 0.502 50.18 0.017 51.60 0.018 230.1 0.361
Text2Room [27] 14.32 0.514 46.69 0.014 93.09 0.058 201.1 0.631
PhotoNVS [78] 14.61 0.542 63.21 0.033 96.85 0.059 134.2 0.263

MultiDiff (Ours) w/o SN 14.80 0.445 47.10 0.013 50.84 0.016 119.3 0.529
MultiDiff (Ours) 15.00 0.431 43.84 0.010 47.11 0.013 114.9 0.576

Table 2. Quantitative comparison on ScanNet [9] test sequences.
Our approach outperform all baselines at 256px resolution and
shows significantly higher image fidelity compared to DFM.

25th frame for short-term and 100th for long-term evalua-
tion. In the short-term setting, we report Peak Signal-to-
Noise Ratio (PSNR) and perceptual similarity (LPIPS) [80]
as standard metrics for novel view synthesis. To evaluate
the extrapolation capacities in regard of image fidelity, we
evaluate Fréchet Inception Distance [20] (FID) and Kernel
Inception Distance [5] (KID) for long-term settings. To
measure the video-consistency of the generated trajectory
images, we compute Fréchet Video Distance (FVD) [70]
scores. Further, we follow [78] and report the symmet-
ric epipolar distance (SED) to quantify faithfulness with re-
spect to the provided camera trajectory, i.e., relative pose

accuracy. Here, we compute the mean thresholded sym-
metric epipolar distance (mTSED) over the pixel thresholds
[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0] and refer to the supplemen-
tary for detailed results.

Baselines We compare our approach against the state-
of-the-art approaches for scene synthesis from a single
reference image, including DFM [66], PhotoNVS [78],
Text2Room [25] and MVDiffusion [65]. As MVDiffusion
is purely text-conditional, we incorporate the reference im-
age during inference as follows. We use DDIM inversion to
obtain the noise corresponding to the reference image and
include it in the batch during sampling. Due to the global
awareness of MVDiffusion, information from the reference
image can propagate to all generated views. Please see sup-
plementary material for more details. DFM trains a diffu-
sion model to directly sample from the distribution of 3D
scenes. Unlike our approach, DFM cannot directly inte-
grate 2D diffusion priors and does not generalize well to
out-of-domain inputs as our experiments on ScanNet in-
dicate. PhotoNVS [78] trains a pose-conditioned 2D dif-
fusion model to iteratively predict the next frame for a
given camera trajectory. Text2Room [25] uses an auto-
regressive approach of predicting depth and leveraging a
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Figure 4. Generated views along ScanNet [9] test sequence (right) given a reference view (left). Our method simultaneously generates
sequences of novel views that are both more realistic and more view-consistent than the baselines, DFM and PhotoNVS, which suffer from
a considerable performance drop across large view point changes. Although MVDiffusion uses sensor depth input, the generated views are
much less consistent with the reference image (e.g., colors of the cushions), compared to our generations, which do not rely on sensor depth.

depth-conditional T2I model to generate new views that are
used to update a textured mesh. In contrast, MultiDiff gen-
erates multiple frames from the input image in parallel, re-
sulting in better long-term view synthesis and faster infer-
ence: To synthesize a 128× 128 frame, PhotoNVS requires
≈ 45s, DFM ≈ 17s while ours only takes ≈ 1s .

4.1. Consistent Novel View Synthesis

Comparison against state of the art We quantitatively
evaluate our approach on the task of consistent novel-view
synthesis from a single reference on RealEstate10K [81] in
Tab. 1 and ScanNet in Tab. 2. Since DFM does not sup-
port higher resolutions than 128px due to memory limita-
tions, whereas the other methods run at a default resolution
of 256px, we perform separate analyses at both resolutions.
On RealEstate10K, we observe that our method achieves
consistently better FID and KID scores on both short-term,
as well as long-term evaluations: The short-term FID com-
pared to DFM improves from 36.37 to 25.30 (at 128px),
while the long-term FID improves by 33% compared to

PhotoNVS. Moreover, our model outperforms all baselines
in terms of FVD and achieves comparable results on LPIPS
and mTSED with respect to DFM. We note that the Pix-
elNeRF [77] representation of DFM leads to highly con-
sistent results, therefore good scores on pixel-level metrics
like short-term PSNR, however, this comes at the cost of
sharpness (as reflected in FID/KID).
By leveraging strong image- and video-diffusion priors, our
method achieves clear improvements over the baselines on
ScanNet: As shown in Tab. 2, MultiDiff outperforms MVD-
iffusion on short- and long-term metrics, indicating our
model’s ability to learn long-term correspondences even
without relying on ground-truth geometry. In comparison
to DFM, Text2Room and PhotoNVS, we observe strong
photometric short- and long-term improvements over all
baselines. Figs. 3 and 4 show qualitative comparisons on
RealEstate10K and ScanNet, respectively. It stands out that
our method synthesises realistic and consistent novel views
even across large viewpoint changes, where the quality of
the baselines drops noticeable.
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Method Short-term Long-term
PSNR ↑ LPIPS ↓ FID ↓ FID ↓ FVD ↓ mTSED ↑

MultiDiff no prior 14.29 0.493 63.56 85.30 236.8 0.587
MultiDiff no vid. 14.68 0.552 37.05 38.43 214.9 0.728
MultiDiff no warp 13.65 0.557 47.42 58.30 181.1 0.484
MultiDiff no pose 15.53 0.417 27.84 32.25 120.26 0.624
MultiDiff (Ours) 15.65 0.393 25.90 30.15 105.9 0.855

Table 3. Ablation of individual components of our pipeline on
RealEstate10K [81] test sequences at 256px resolution.

4.2. Ablations

We show the contributions of individual components of our
approach in Tab. 3 and refer to the supplementary material
for more qualitative comparisons.

Importance of priors As described in Sec. 3, we initial-
ize our model with weights obtained by training on large-
scale image and video datasets. To study the importance of
those priors for the task of consistent novel-view synthesis
from a single image, we ablate them one by one: As shown
in Tab. 3, training from scratch (”MultiDiff no prior”) leads
to strong degradation of image quality, as well as overall
consistency. Removing the video diffusion prior (”Multi-
Diff no vid.”) has strong influence on the long-term con-
sistency (mTSED decreases by 12.7%), as well as the video
quality (FVD increases by more than 120%). We further ab-
late the monocular depth estimates on the reference image
as condition to our model in ”MultiDiff no warp” (Tab. 3).
The drop in mTSED from 85.5% to 48.4% indicates that
the model without reference warps is not able to closely ad-
here to the input trajectory. Besides the depth-warpings of
the reference image, our method uses relative camera poses
to synthesize images from the desired target poses. When
removing this modality (”MultiDiff no pose”), we notice ef-
fect on long-term generation becomes apparent, where there
is minimal to no warp-guidance to inform about the desired
camera poses, hence mTSED decreases from 0.85 to 0.62.

Importance of structured noise As described in Sec. 3,
we introduce structured noise by warping the initial noise
consistently between target views according the depth es-
timates of the reference image. We measure the effect of
noise warping in Tab. 1 and Tab. 2 (”MultiDiff w/o SN”) on
RealEstate10K and ScanNet trajectories. On both datasets,
we observe that the structured noise leads to significantly
more consistent and higher quality synthesis results. We
show the effect of noise-warping in Fig. 5.

4.3. Consistent Editing

In contrast to existing works such as DFM or PhotoNVS,
our approach directly supports consistent editing without
task-specific training. During training, our model is tasked
to synthesize consistent novel views even in absence of
meaningful reference warps. By masking an area in a refer-
ence image that should not be warped, our model naturally

Reference image Sampled views
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Figure 5. Without structured noise (”MultiDiff w/o SN”), the color
of the dining table is not maintained w.r.t. the reference image.

Reference image + mask Sampled views

Figure 6. Consistent masking-based editing results on ScanNet
test images.

performs consistent completion in those regions. We show
examples on ScanNet test images in Fig. 6 and refer to the
supplementary material for more qualitative results.

5. Conclusions
In this paper, we introduce MultiDiff, a novel approach for
view extrapolation from a single input image. We identify
video priors as a powerful proxy for this setting and demon-
strate how they can be incorporated and adapted by convert-
ing temporal attention to correspondence attention. With
monocular depth cues, we facilitate learning improved cor-
respondences by conditioning our model on reference views
warped w.r.t. the target camera trajectory. Our experiments
on RealEstate10k and ScanNet show significant improve-
ments over relevant baselines, with particular gains on long-
term sequence generation and overall inference speed.
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[3] Miguel Ángel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander T Toshev, Zhuoyuan Chen, Laurent
Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, Afshin
Dehghan, and Joshua M. Susskind. GAUDI: A neural ar-
chitect for immersive 3D scene generation. arXiv preprint
arXiv:2207.13751, 2022. 3

[4] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka,
and Matthias Müller. Zoedepth: Zero-shot transfer by com-
bining relative and metric depth, 2023. 4
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