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Abstract

Generalizable neural implicit surface reconstruction
aims to obtain an accurate underlying geometry given a
limited number of multi-view images from unseen scenes.
However, existing methods select only informative and rel-
evant views using predefined scores for training and test-
ing phases. This constraint makes the model impractical
because we cannot always ensure the availability of favor-
able combinations in real-world scenarios. We observe that
previous methods output degenerate solutions under arbi-
trary and unfavorable sets. Building upon this finding, we
propose UFORecon, a robust view-combination general-
izable surface reconstruction framework. To this end, we
apply cross-view matching transformers to model interac-
tions between source images and build correlation frustums
to capture global correlations. In addition, we explicitly
encode pairwise feature similarities as view-consistent pri-
ors. Our proposed framework largely outperforms previ-
ous methods not only in view-combination generalizabil-
ity but also in the existing generalizable protocol trained
with favorable view-combinations. The code is available at
https://github.com/Youngju-Na/UFORecon.

1. Introduction

Reconstructing 3D geometries from images of multiple
camera viewpoints is a fundamental problem in the com-
puter vision field, also applicable to robotics [6, 28, 49], au-
tonomous driving [13, 22], and AR/VR applications [7, 26].
Multi-view stereo (MVS) is a widely used technique for re-
constructing 3D geometry from multi-view images. Con-
ventional MVS methods [2, 10, 19, 34] find correspon-
dences across input images taken from different viewpoints.
With the recent advances in deep learning, learning-based
MVS methods [3, 8, 11, 44] leverage differentiable ho-
mography warping with 3D Convolutional Neural Network
(CNN) to effectively search correspondences in feature
space. Recent progress in 3D reconstruction [15, 30, 45]
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Figure 1. Reconstruction results from different view combina-
tions. Both are trained only with the best-selected training proto-
col and tested with favorable (Blue) and unfavorable sets (Red),
respectively. VolRecon [32] leads to a degenerate geometry in the
unfavorable set while achieving accurate geometry in the favorable
set. Our approach produces reasonable geometry on both sets.

increasingly emphasizes the use of implicit neural repre-
sentation [27]. This trend is notable in the field of neural
surface reconstruction [29, 38, 46, 48]. Unlike Neural Ra-
diance Fields (NeRF) [27], which employs a volume den-
sity to infer 3D geometry implicitly, the use of Signed Dis-
tance Function (SDF) field has proven to be effective for
learning surfaces because of their universal zero level-set
definition of surfaces. However, as these approaches opti-
mize on a single scene with dense camera viewpoints, there
is an increasing effort to learn a generalizable representa-
tion that can adaptively reconstruct geometry from unseen
scenes with sparse camera viewpoints [23, 25, 32, 43].

Despite the remarkable achievements, existing gener-
alizable implicit surface reconstruction methods use the
fixed, best combination for each camera based on the view-
selection scores [44]. This score is predefined for each
camera pair via a matching-based reconstruction, such as
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COLMAP [34]. These favorably selected views usually
share a significant amount of overlaps, which can help the
model easily capture the 3D geometry of the target scene.
We argue that this assumption limits the practicality of sur-
face reconstruction tasks in two key scenarios: (1) where
inferring from arbitrary combinations of camera views that
were not available during training and (2) where the combi-
nation of views share a limited amount of overlapping areas
with each other for reconstruction.

To verify this argument, we start by introducing the
view-combination score (VC Score) that measures the in-
formativeness of the input image set for reconstruction.
We demonstrate that conventional research gradually faces
higher difficulty as the VC score decreases. We then intro-
duce our proposed framework, UFORecon, a robust view-
combination generalizable surface reconstruction frame-
work. More specifically, we learn the matching features be-
tween source view images using an attention-based cross-
view transformer. Then, we build a cascaded correlation
frustum based on each source view, effectively combining
MVS with implicit surface reconstruction for robust recon-
struction from varied view combinations. Furthermore, we
encode the explicit similarity for all input pairs and inter-
mediate depths into sample points to predict a 3D represen-
tation. As a result, we achieve effective view-combination
generalizability without additional data or losses. Finally,
we introduce a random set training strategy for robustness
under arbitrary view combinations.

As shown in Figure 1, while existing methods suffer
from degraded performance under the unfavorable set, our
proposed method achieves a reasonable geometry. We at-
tribute this to our method’s capability to learn the correla-
tion among source view images.
In summary, our contributions are as follows:
• We propose a new concept of view-combination general-

izability, which represents an ability to reconstruct geom-
etry under arbitrary and unfavorable views, in generaliz-
able neural scene representation.

• We propose an effective model that integrates cross-view
features with correlation volumes and explicit feature
similarities to learn cross-view interaction and reconstruct
under arbitrary and unfavorable sets.

• We validate the efficacy of random set training as a ro-
bust strategy to stably enhance view-combination gener-
alizability.

2. Related Works

2.1. Depth Map-based Multi-view Stereo

Multi-view stereo (MVS) is a branch of the 3D recon-
struction task that estimates the underlying geometry of a
scene or an object given images captured from multiple
views. The common method for classical MVS is finding

correspondence or matching features of multi-view images
and projecting them into a certain 3D representation [36].
Among various representations (e.g., point clouds [9, 20],
voxel grids [14, 16], depths map [2, 10, 33]), depths map-
based MVS has shown to be effective in recent learning-
based MVS thanks to their robustness and flexibility. MVS-
Net [44] proposes to encode camera parameters and deep
image features with differentiable homography to build 3D
cost volume. CasMVSNet [11] further reduces the mem-
ory consumption of the cost volume by proposing a coarse-
to-fine multi-stage depth estimation framework. Trans-
MVSNet [8] proposes a feature-matching transformer to
extract cross-view correlation and robust global context
across multi-view images. Though these methods have
shown promising results, they show limited results in non-
Lambertian regions, and their estimation capability is lim-
ited to estimating the depths of known images, while vol-
ume rendering-based implicit methods could render color
or depth images of novel viewpoints.

2.2. Implicit Neural Scene Reconstruction

Implicit neural representations for 3D scenes have gained
significant attention since NeRF [27], which represents
the 3D scene as an implicit continuous signal, approxi-
mated with neural networks, e.g., multi-layer perceptrons
(MLPs). Especially in surface reconstruction, NeuS [38]
and VolSDF [46] exploit implicit neural representations
for signed distance fields (SDFs) in 3D scenes. Utiliz-
ing geometric cues [48] (e.g., depth, normal) or adding
constraints [35] has proven effective in sparse-view re-
construction. However, these approaches barely consider
the relationship among source views and involve inten-
sive test-time optimization. To address this, generalizable
neural scene representation methods construct feature vol-
umes [4, 47] or aggregate source views using transformer
attention modules [31, 39]. Particularly for surface recon-
struction, SparseNeuS [25] constructs hierarchical feature
volumes using deep image features to enable geometry-
aware reasoning. VolRecon [32] and ReTR [23] utilize
transformers to effectively fuse multi-view image features.
C2F2NeuS [43] effectively integrates MVS and implicit
surface reconstruction by building cascaded frustum to en-
code global geometry features. However, these methods’
performance is often bounded by camera sets with large
overlaps and exhibits sensitivity to viewpoint variations. In
our research, we model feature correlation among images
and employ view-consistent matching prior to effectively
handling arbitrary or unfavorable view sets.

2.3. Feature Matching Transformer

Transformers, which primarily utilize attention mecha-
nisms [37], have been increasingly employed in diverse
3D understanding applications. Notable among these are
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Figure 2. Comparison of Chamfer Distance (CD) by view-
combination (VC) scores for generalizable implicit surface re-
construction methods. We define the VC score to represent
the informativeness of view combinations in reconstruction. The
higher VC score represents a more favorable combination. Our
method shows better generalizability and accuracy over VolRe-
con [32] across all VC scores. Our random set training (Sec. 4.6)
further improves the view-combination generalizability.

transformer-based MVS methods introduced by STTR [21],
MVSTER [40], and TransMVSNet [8]. These methods
significantly improve feature matching by employing both
self- and cross-attention techniques to effectively train on
features from multiple viewpoints. Other than the MVS
methods, GMFlow [41] exploits a similar transformer-
based architecture to estimate optical flow by reformulat-
ing the estimation as a global image feature-matching prob-
lem between frames. More recently, MatchNeRF [5] in-
troduces cross-view feature matching from the pre-trained
transformer in GMFlow [41] as an explicit geometry guid-
ance for generalizable Novel View Synthesis (NVS). De-
spite these advancements, the exploration of cross-view fea-
ture matching in implicit 3D reconstruction remains under-
developed. Our approach effectively combines transformer-
based feature correlation with neural implicit surface meth-
ods, significantly enhancing view-combination generaliz-
ability and 3D reconstruction.

3. Motivation

The existing generalizable methods adhere to two critical
assumptions that limit their ability to effectively reconstruct
from varying view combinations. The assumptions are:
1) The network is trained on images with the best view-
selection scores for the specific target view. 2) The eval-
uation similarly assumes the favorable combination for re-
construction by selecting the source cameras with high view
selection scores or selecting the neighboring cameras to the
target camera. We define a property of a view-combination
that deviates from such assumptions as unfavorable. In con-
trast, favorable combinations tend to share a relatively large

overlap in their camera view frustum, and the respective
camera positions are likely to be cluttered ( i.e., small base-
line and rotation). We observe that a network trained only
with such combinations easily overfits, restricting general-
izability under arbitrary view-combination variations.

To measure the effectiveness of a view-combination
for the reconstruction, we define a new metric, view-
combination score (VC score), to evaluate the collective
informativeness of a viewpoints combination for 3D re-
construction. We derive the score from view selection
score [44], which represents the usefulness of an image pair
for reconstruction. The view selection score [44] s(i, j) be-
tween two cameras i and j are defined as follows:

s(i, j) =
∑

p

(G(θij(p)), (1)

where G is a piecewise Gaussian function that favors a cer-
tain baseline angle θij , which denotes the angle between the
two camera centers. p is a common track in both view i and
j obtained with COLMAP [34]. The complete derivation
process of the view-selection score and the hyperparame-
ters is thoroughly detailed in the Appendix. We extend it
to a set of multiple images by averaging all of the pairwise
scores between images in the set as follows:

VC =
1(
n
2

) n−1∑
i=1

n∑
j=i+1

s(i, j). (2)

To show the validity of the VC score and verify the con-
ventional approach suffers from the degradation of perfor-
mance under unfavorable combinations, we test the view-
generalizability of the previous approach in various VC
score levels. As depicted in Figure 2, Chamfer Distance
(CD) incrementally rises as the VC score reduces in the pre-
vious state-of-the-art (SoTA) reconstruction method [32].
Such result reflects the necessity of providing a prior on
the informativeness of image combination for robust recon-
struction. Inspired by these findings, our objective centers
on enhancing view-combination generalizability by provid-
ing cross-view correlation features as robust prior for the
image combination, boosting the quality of reconstructions
under arbitrary and unfavorable sets of images.

4. Methods
In this section, we first introduce the general formulations of
volume rendering-based generalizable surface reconstruc-
tion (Sec. 4.1). Then, we introduce the overall struc-
ture of our proposed UFORecon (Figure 3) which consists
of cross-view matching feature extraction (Sec. 4.2), cas-
caded correlation volume generation strategy (Sec. 4.3) that
encodes global geometry across input views, explicit 2D
geometry-aware matching priors (Sec. 4.4) that provides ro-
bust view-pair guidance, and view aggregation transformer
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Figure 3. Overall pipeline of UFORecon. Our cross-view matching transformer extracts cross-view matching features from multi-
level image features of the given image set (Sec. 4.2). Cross-view matching features are then represented as 3D volumes (i.e., cascaded
correlation frustums, (Sec. 4.3) and as the 2D features (i.e., geometry aware similarity encoding, (Sec. 4.4). Our reconstruction transformer
(Sec. 4.5) fuses various representations of matching features and geometry features (i.e., depth) for volume rendering and color blending.

(Sec. 4.5) to aggregate global volumes and 2D priors with
self-attention transformers. Finally, we introduce our train-
ing schemes (Sec. 4.6).

4.1. Preliminaries

The goal of generalizable neural surface reconstruction is to
reconstruct the underlying geometry of an arbitrary scene
with the posed images {Ii, Pi}Ni=1 where Ii ∈ RH×W×3

is the i-th view’s image and Pi ∈ R3×4 is the correspond-
ing camera parameters. A general framework extracts fea-
tures from 2D images and builds a global feature volume
[23, 25, 32, 43]. Then the NeRF-like MLP decoder lever-
ages these features with interpolation to guide 3D represen-
tations ( e.g., radiance, SDF). To generalize through scenes
and to enable sparse-view inference, a limited number of
source images (e.g., N = 3) are utilized to synthesize a tar-
get image during training. Along a ray emitted from a given
pixel coordinate in the target image, M 3D points are sam-
pled as {pm = r(tm) = o + tmv, m = 1, ...,M}, where o
and v denote the ray origin and direction respectively. To es-
timate the color and SDF value of 3D point pm, we acquire
the corresponding image features and volume features. We
project pm onto the source image Ii as πi(pm) and obtain
the corresponding image feature fimg

i with bilinear interpola-
tion. In addition, the volume features fvol are obtained with
trilinear interpolation at the normalized position. The color
of the 3D position cm is determined as a weighted sum of
image pixel colors Ii (pm), where the weights are estimated
by W (·).

cm =

N∑
i=1

W
(
f vol (pm) , {f img

i (πi (pm))}Ni=1

)
Ii (pm) .

(3)

The predicted 3D representations are aggregated into the 2D
domain with volume rendering as follows:

Ĉ(r) =

M∑
m=1

Tmαmcm, (4)

where Tm =
∏m−1

k=1 (1 − αk) denotes the accumulative
transmittance, and αm indicates discrete opacity values de-
fined as follows:

αm = 1− exp

(
−
∫ tm+1

tm

ρ(t)dt

)
, (5)

where tm ≤ tm+1. The derivation of ρ(t) commonly fol-
lows the original definition in NeuS [38] or VolSDF [46].

4.2. Cross-View Matching Transformer

When input views become sparse, where the 3D space is
under-constrained, it is important to identify correlations
between the input views [35]. Furthermore, as we assume
that a view combination can be different, uncovering the re-
lationships between input images and using them as recon-
struction priors becomes more crucial for view-combination
generalizability. While most existing neural surface recon-
struction methods extract image features independently, re-
cent works [8, 42] have shown significant results by explic-
itly extracting cross-view correlation features of an input
pair of images using transformer-based feature matching.

We initially extract multi-scale features ϕl
i indepen-

dently for each image Ii using a Feature Pyramid Network
(FPN) [24]. For each level l, the hierarchical features are
then processed through a cross-view matching transformer
TM in a pairwise manner F l

i =
∑

j ̸=i TM (ϕl
i,ϕ

l
j) for two
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purposes: 1) to construct correlation frustums that learn
global implicit correlations among multi-view source im-
ages (Sec. 4.3), and 2) to extract explicit feature similar-
ity scores (Sec. 4.4) for all source image pairs. Since both
branches learn the correlation between source images, the
framework seamlessly integrates the two parts with interde-
pendent objectives, effectively serving as a global matching
encoder.

4.3. Cascaded Cross-View Correlation Frustum

Motivated by recent MVS methods that have shown the
effectiveness of cost volume integration in generalizing
sparse-view inference from arbitrary unseen scenes, we
build a cascaded global volume with correlation features [8]
to provide cross-view information. Our model constructs
perspective frustums instead of regular Euclidean volumes
for each source view by setting each view as a reference fol-
lowing C2F2NeUS [43]. For each reference image Ii, we
align rest of the source images using differentiable warp-
ing to obtain total N pairwise correlation frustums Cl

i ∈
R1×d×h×w for all levels L as follows:

Cl
i =

N∑
j=1
j ̸=i

⟨F l
i , F̂

l
j→i⟩, l = 1, . . . , L (6)

where F l
i denotes reference-view feature and F̂ l

j→i denotes
cross-view feature F l

j warped to i-th view from our cross-
view matching transformer, and d, h, and w denote the res-
olution of the volume. We deliver the detailed aggregation
of correlation volumes in the Appendix. Multi-level cor-
relation frustums are processed with 3D CNNs and out-
put intermediate volumes V l

i ∈ Rc×d×h×w and depths
Dl

i ∈ R1×h×w. The intermediate volumes V l
i , initially

tailored for depth estimation, are transformed with addi-
tional 3D CNNs to generate V ′l

i. We output our global
feature volumes by adding V ′l

i from all source views as
V ′l =

∑N
i=1 V

′l
i, serving as a global correlation. Our cor-

relation frustum is different from C2F2NeUS [43] in that
we additionally utilize cross-view matching features from
transformers and single-channel correlation frustums with
much lower memory cost. Furthermore, we believe that
correlation volumes guide our model to leverage the inher-
ent geometrical relationships between different views ex-
tensively.

4.4. Geometry-aware Similarity Encoding

Recently, correspondence matching information on 2D has
shown to be useful for 3D understanding [5, 41]. To fur-
ther guide our network for view-combination generalizabil-
ity, we explicitly encode cosine similarity for all possible
source pairs. We use the extracted cross-view features for
all

(
N
2

)
pairs from the cross-view matching transformer. We

only use the coarsest feature for similarity encoding.

To obtain the 2D cross-view features for the sampled 3D
points pm, we project the 3D points onto the 2D cross-view
matching features F 0

i and F 0
j and acquire the corresponding

features fi = F 0
i (πi (pm)) and fj = F 0

j (πj (pm)). After
that, we calculate the cosine similarity of the two vectors
ŝ = cos(fi, fj) in a group-wise manner [12]. We average
the cosine similarities for all pairs and obtain encoded sim-
ilarity vector fs, allowing the dimension invariant to input
source images. Given an arbitrary view combination for
inference, the explicit similarity scores provide a robust ge-
ometry prior, regularizing the feature space for matching.

4.5. Reconstruction Transformers

View-aggregation Transformer. We combine global cor-
relation from our correlation frustums, cross-view matching
features, and similarity scores using our view-aggregation
transformer TA. We acquire 2D cross-view matching fea-
tures and similarity scores for all sampled points in the 3D
space by projecting the points onto each image view and ap-
plying bilinear interpolation. Additionally, we employ tri-
linear interpolation on the points to feature volumes V ′l to
obtain global correlation features. Finally, we add a learn-
able token feature f0 to capture global consistent rendering
features as in [23, 32]. All features above are aggregated
via linear self-attention transformers [17, 37]:

fp, {f′i}Ni=1 = TA(f0, {fi}Ni=1, fv, fs), (7)

where fp is a projection vector and {f′i}Ni=1 are aggregated
features further used for rendering and fv denotes the con-
catenated volume features sampled from V ′l for all levels.
Geometry-aware Ray Transformer. To estimate implicit
geometry representation ( e.g.,SDF) along the rays, we first
apply positional encoding to the points along the ray. This is
achieved by calculating the difference between the camera
coordinates of sampled points and the intermediate depth
obtained from the cascaded correlation frustum as in [44].
We then apply positional encoding [17] γ(·) to embed the
order of the ray and to extract geometry-aware features f′i
with the self-attention linear transformer TR as follows:

{f′i}Mi=1 = TR(fp, cat(γ(zi − zd))
M
i=1). (8)

where zi denotes depth values of a i-th sampled point in the
camera coordinate and zd denotes the intermediate depth
value of the ray. We utilize color blending to obtain color
value for each point following [32] and aggregate all points
along the ray with volume rendering as in Eq. 4. We adopt
the method of NeuS [38] to volume render SDF.

4.6. Training of UFORecon

Random Set Training. First, we follow the common proto-
col of training with a pre-determined best view combination
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based on the view-selection score [44] and expect gener-
alization to arbitrary or unfavorable camera configurations
not seen during training. Beyond the existing training strat-
egy, we suggest a random set training, which randomly se-
lects N source views in the training phase, expecting the
network to handle arbitrary view combinations. A detailed
explanation and evidence are presented in the Appendix.
Loss function. Our loss function is defined as a weighted
sum of two loss functions as:

L = Lcolor + αLdepth, (9)

where Lcolor is formulated to minimize the ground truth
colors and rendered color. Similarly, Ldepth is formulated
to minimize the ground truth depths and rendered depth,
following VolRecon [32].

5. Experiments
In this section, we first explain our experimental settings,
including datasets, baseline, and implementation details
(Sec. 5.1). Second, we qualitatively and quantitatively
evaluate our method on generalizable surface reconstruc-
tion mainly focusing on view-combination generalizability
(Sec. 5.2). Last, we analyze the effectiveness of our indi-
vidual elements (Sec. 5.3).

5.1. Experimental Settings

Datasets. We report our results on the DTU datasets [1], for
the challenging scenario of 3 input views in unseen scenes
following [23, 25, 32, 43]. The DTU dataset comprises
scenes captured from 49 distinct frontal viewpoints, each
accompanied by its respective camera matrix. We use 3
source views from each test scene to build a combination
and evaluate the generalization ability of our method. For
all possible view combinations, we calculate the VC scores
and rank them based on the scores in descending order. Sub-
sequently, we evenly divide these combinations into three
groups: favorable, normal, and unfavorable.
Baseline. To demonstrate the effectiveness of our method,
we mainly compare it with (1) SparseNeus [25], VolRecon
[32], ReTR [23], and C2F2NeuS [43] the state-of-the-art
generalizable neural implicit reconstruction method. For
evaluating scene and viewpoints generalizability, we addi-
tionally compare with (2) Generalizable neural rendering
methods [4, 39, 47], and (3) Neural implicit reconstruction
[38, 46] which require per-scene training. Additionally, we
include (4) traditional MVS methods [8, 34].
Implementation Details. In training, we take N = 4
source images and one target image with the resolution of
640 × 512. We train the network in an end-to-end man-
ner with Adam optimizer [18] on a single RTX 4090 GPU.
The learning rate is set to 1e-4. We use a hierarchical sam-
pling strategy in both training and testing with 64 points for

both coarse and fine sampling. For global feature volume,
we use L = 3 for cascaded strategy and follow the resolu-
tion of TransMVSNet [8] and set the number of depth hy-
potheses for each level to 48, 32, and 8 respectively. More
implementation details can be found in the Appendix.

5.2. Evaluation on Surface Reconstruction

Chamfer Distance (CD) is used as an evaluation metric in
all experiments. Note that for fair comparisons, our train-
ing adheres to the pre-determined best view combinations,
aligning with the existing protocols [23, 25, 32, 43] unless
otherwise specified.
Reconstruction on Favorable Sets. Following the existing
best-selected test protocol [23, 25, 32, 43], we evaluate with
the fixed favorable views for all test scenes. As shown in Ta-
ble 1, our approach outperforms the state-of-the-art models
even in the conventional setting. It implies that the superi-
ority of our model is also consistent in all VC score levels.
Reconstruction on Unfavorable Sets. To analyze the pro-
posed view-combination generalizability, we test with un-
favorable sets. To this end, we sample a view set consist-
ing of 3 images from the unfavorable view group and use
the same set for all 15 test scenes. As shown in Table 2,
our method consistently achieves significantly better per-
formance in all scenes. Our method achieves better view-
combination generalizability by capturing robust prior for
image combination. In addition, we qualitatively compare
our method in various VC score levels. As shown in Figure
4, ours shows much better reconstruction quality compared
to existing works, particularly showing huge advantages in
unfavorable sets. We further tested with unfavorable sets of
BlendedMVS dataset without fine-tuning as shown in Fig-
ure 5. It shows that our method is generalizable to unfavor-
able view-combinations of other datasets.

5.3. Analysis on UFORecon

Ablation Study. We first perform ablation experiments to
assess the impact of each component within our approach.
Table 3 shows the performance in an unfavorable scenario
as specific components are removed from the framework.
Each component contributes to the overall performance.
Each level of correlation frustum contributes to better per-
formance. Encoding similarity further improves the perfor-
mance even with a full level of correlation frustums. Also,
note that depth supervision plays an important role in our
framework similar to [23, 32].
Analysis on Correlation Frustums. A higher level of frus-
tum encodes relatively finer and local details while a lower
level encodes global geometry features. As shown in Ta-
ble 3, the performance degradation is more severe when ex-
cluding lower levels.
Analysis on Explicit Similarity Encoding. We conduct
a focused analysis on the impact of similarity encoding by
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Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean (CD) ↓
COLMAP [34] 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52
TransMVSNet [8] 1.07 3.14 2.39 1.30 1.35 1.61 0.73 1.60 1.15 0.94 1.34 0.46 0.60 1.20 1.46 1.35
VolSDF [46] 4.03 4.21 6.12 1.63 3.24 2.73 2.84 1.63 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
NeuS [38] 4.57 4.49 3.97 4.32 4.63 1.95 4.64 3.83 5.40 5.60 6.47 6.68 2.96 5.57 6.11 4.90
SparseNeuS-ft [25] 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27
PixelNeRF [47] 5.13 8.07 5.85 4.40 7.11 4.64 5.68 6.76 9.05 6.11 3.95 5.92 6.26 6.89 6.93 6.28
IBRNet [39] 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09 2.32
MVSNeRF [4] 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26 2.09
SparseNeuS [25] 1.68 3.06 2.25 1.10 2.37 2.18 1.28 1.47 1.80 1.23 1.19 1.17 0.75 1.56 1.55 1.64
VolRecon [32] 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38
ReTR [23] 1.05 2.31 1.44 0.98 1.18 1.52 0.88 1.35 1.30 0.87 1.07 0.77 0.59 1.05 1.12 1.17
C2F2NeuS [43] 1.12 2.42 1.40 0.75 1.41 1.77 0.85 1.16 1.26 0.76 0.91 0.60 0.46 0.88 0.92 1.11
Ours 0.76 2.05 1.31 0.82 1.12 1.18 0.74 1.17 1.11 0.71 0.88 0.58 0.54 0.86 0.99 0.99
Ours* 0.77 2.10 1.34 0.87 1.15 1.16 0.71 1.25 1.17 0.81 0.90 0.57 0.51 0.86 0.97 1.01

Table 1. A quantitative results on favorable sets. Our method outperforms traditional 3D reconstruction methods (first section), per-scene
surface reconstruction methods (second section), generalizable novel-view synthesis methods (third section), and generalizable surface
reconstruction methods (fourth section). The Bold numbers mean the best, and the underlined values indicate the second-best scores. (*)
denotes the use of a random set training strategy.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean (CD) ↓
TransMVSNet [8] 8.32 8.68 7.46 8.16 8.22 6.74 7.74 8.36 10.67 9.70 8.86 7.99 8.32 8.90 7.13 8.35
SparseNeuS [25] 5.24 5.00 5.76 4.95 3.80 4.12 3.87 3.44 3.48 3.23 4.61 4.24 2.13 4.04 4.46 4.16
VolRecon [32] 3.43 3.64 4.26 4.63 2.43 3.40 2.81 2.41 2.36 2.49 3.79 3.55 1.44 3.60 3.38 3.18
ReTR [23] 3.00 3.98 3.78 4.22 2.22 2.93 3.00 2.51 2.24 2.36 2.36 3.92 1.63 2.83 3.07 2.94
Ours 1.39 2.25 1.65 1.96 1.53 1.61 1.22 1.92 1.36 1.66 1.75 1.29 0.73 1.70 1.39 1.56
Ours* 1.31 2.00 1.41 1.36 1.24 1.58 1.06 1.44 1.37 0.99 1.45 0.96 0.58 1.34 1.09 1.28

Table 2. A quantitative results on unfavorable sets. (*) denotes the use of a random set training strategy.

Methods Unfavorable
w/o CF 3.19

CF (L = 1) 1.91
CF (L = 2) 1.71

w/o similarity encoding 1.62
w/o Ldepth 2.26
UFORecon 1.56

Table 3. Ablation study on each element in UFORecon. CF
denotes cross-view correlation frustum. All experiments are tested
with unfavorable sets.

Method Favorable Unfavorable #params
VolRecon [32] 1.38 3.18 0.88 M

VolRecon [32] + MatchNeRF [5] 1.26 2.47 4.97 M
Ours 0.99 1.56 1.5 M

Table 4. Effect of explicit similarity score. We combine two rep-
resentative baselines in generalizable surface reconstruction [32]
and correspondence matching-based NVS method [5]. This hy-
brid model shows 10% improvements in favorable sets and 22%
in unfavorable sets. Our method outperforms this hybrid model
with better efficiency.

contrasting our approach with a hybrid model. Specifically,
we integrate MatchNeRF [5], known for its utilization of
explicit similarity scores for generalizable rendering, with
VolRecon [32]. This combined model is then tested on both
favorable and unfavorable datasets. As indicated in Table
4, incorporating explicit feature similarity notably enhances
the quality of generalizable surface reconstructions espe-

cially in unfavorable conditions. This reflects that explicitly
feature similarity provides robust view-combination prior.
Nevertheless, our proposed approach outperforms in both
favorable and unfavorable conditions, effectively capturing
correlation features with much fewer parameters.
Analysis on Random Set Training. We analyze the ef-
fect of the random set training. We expect the network to
generalize better to various combinations without losing ac-
curacy. As shown in Figure 2, it consistently improves the
reconstruction quality at all VC score levels. In unfavorable
sets, random set training shows 17% of improvements as
shown in Table 2. Qualitatively, random set training consis-
tently achieves more complete reconstructions as shown in
Figure 6. However, we find that directly applying random
set training on the previous method [32] destabilizes train-
ing dynamics and leads to a suboptimal result. We conjec-
ture that utilizing cross-view correlation features guides the
network to stably improve the reconstruction performance.

6. Conclusion
In this paper, we have introduced a novel concept of view-
combination generalizability in the field of generalizable
implicit surface reconstruction. Our analysis showed that
existing methods tend to overfit to specific learned view
combinations, resulting in suboptimal performance with un-
favorable combinations. To address this challenge, we have
proposed a novel framework, UFORecon, that leverages
cross-view matching features to learn correlation among in-
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Figure 4. A qualitative results of Surface Reconstruction across various VC Levels. The numbers in parentheses denote the view-
combination score. Our method consistently outperforms previous methods at all levels and in different scenes. More qualitative results
can be found in the Appendix.

OursReference ReTRVolRecon

Figure 5. Unfavorable 4-views tests on BlendedMVS dataset.

put images. This is achieved by building correlation frus-
tums with cross-view features and encoding explicit 2D
matching similarities across all source image pairs. No-
tably, our method demonstrates superior performance over
previous surface reconstruction methods, not only in unfa-
vorable view combinations but also in favorable ones.
Limitations and future work. Although our method
achieves advancements in view-combination generalizabil-
ity for surface reconstruction, it is still challenging to recon-
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Figure 6. Effect of random set training on unfavorable sets.

struct scenes with much higher complexity. In addition, we
assume that the ground-truth camera poses are given, We
include a detailed discussion on this in the Appendix. We
hope that our contributions will inspire further research to
extend this to such directions.
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