
Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of
Instructional Videos

Kumaranage Ravindu Yasas Nagasinghe1 Honglu Zhou2 Malitha Gunawardhana1,3

Martin Renqiang Min2 Daniel Harari4 Muhammad Haris Khan1

1Mohamed bin Zayed University of Artificial Intelligence, 2NEC Laboratories, USA,
3 University of Auckland, 4Weizmann Institute of Science

ravindu.nagasinghe@mbzuai.ac.ae, muhammad.haris@mbzuai.ac.ae

Abstract

In this paper, we explore the capability of an agent to
construct a logical sequence of action steps, thereby as-
sembling a strategic procedural plan. This plan is cru-
cial for navigating from an initial visual observation to
a target visual outcome, as depicted in real-life instruc-
tional videos. Existing works have attained partial suc-
cess by extensively leveraging various sources of informa-
tion available in the datasets, such as heavy intermedi-
ate visual observations, procedural names, or natural lan-
guage step-by-step instructions, for features or supervi-
sion signals. However, the task remains formidable due to
the implicit causal constraints in the sequencing of steps
and the variability inherent in multiple feasible plans. To
tackle these intricacies that previous efforts have over-
looked, we propose to enhance the agent’s capabilities by
infusing it with procedural knowledge. This knowledge,
sourced from training procedure plans and structured as a
directed weighted graph, equips the agent to better nav-
igate the complexities of step sequencing and its poten-
tial variations. We coin our approach KEPP, a novel
Knowledge-Enhanced Procedure Planning system, which
harnesses a probabilistic procedural knowledge graph ex-
tracted from training data, effectively acting as a compre-
hensive textbook for the training domain. Experimental
evaluations across three widely-used datasets under set-
tings of varying complexity reveal that KEPP attains su-
perior, state-of-the-art results while requiring only mini-
mal supervision. Code and trained model are available at
https://github.com/Ravindu-Yasas-Nagasinghe/KEPP

1. Introduction

The evolution of the internet has precipitated an unprece-
dented influx of video content, serving as a vital educa-
tional resource for myriad learners. Individuals frequently

Figure 1. Expert trajectories [7] of the ‘Make Jello Shots’ task
from the CrossTask dataset [63]. Heavier color indicates more
frequently visited path. This depicts the complexities of the proce-
dure planning task, arising from the subtle causal links in step se-
quencing (e.g., steps like ‘stir mixture’ or ‘pour mixture’ typically
occur after adding individual ingredients), the varied probabilities
of transitioning between steps, and the diversity in plans viable
for a given starting point and an intended outcome. Motivated by
these nuanced challenges, we propose Knowledge-Enhanced Pro-
cedure Planning (KEPP) with the use of a probabilistic procedure
knowledge graph to capture and represent these intricacies

leverage platforms such as YouTube to acquire new skills,
ranging from culinary arts to automobile maintenance [34].
While these instructional videos benefit the development of
intelligent agents in mastering long-horizon tasks, the chal-
lenge extends beyond merely interpreting visuals. It re-
quires high-level reasoning and planning to effectively as-
sist in complex, real-life scenarios [13].

Procedure Planning in Instructional Videos demands an
agent to produce a sequence of actionable steps, thereby
crafting a procedure plan that facilitates the transition from
an initial visual observation of the physical world towards
achieving a desired goal state [7, 9, 50, 53, 54, 59]. The task
acts as a precursor to an envisioned future scenario in which
an agent like a robot provides on-the-spot support, such as
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assisting an individual in preparing a recipe [6].
Current methods in procedure planning in instructional

videos make extensive use of various annotations available
within the datasets to enrich input features or provide super-
visory signals (see Table 1). These include detailed, tem-
porally localized visual observations of intermediate action
steps throughout the procedure plan [7, 9, 50], high-level
procedural task labels [53, 54], and step-by-step instruc-
tions in natural language [53, 59]. Despite advancements,
significant challenges persist, including characterizing the
implicit causal constraints in step sequencing, the varied
probabilities of transitioning between steps, and the inher-
ent variability of multiple viable plans (see Fig. 1).

To address these intricacies that previous efforts have
overlooked, we propose to enhance the agent’s capabilities
in procedure planning by infusing it with comprehensive
procedural knowledge [62], derived from training proce-
dure plans and structured as a directed weighted graph. This
graph, as a Probabilistic Procedural Knowledge Graph [5]
where nodes denote steps from diverse tasks and edges rep-
resent step transition probabilities in the training domain,
empowers agents to more adeptly navigate the complexities
of step sequencing and its potential variations.

Our proposed approach, KEPP, is a novel Knowledge-
Enhanced Procedure Planning system (Fig. 2) that har-
nesses a probabilistic procedural knowledge graph (P2KG),
constructed from training procedure plans. This graph func-
tions like a detailed textbook, providing extensive knowl-
edge for the training domain, and thereby circumventing
the need for costly multiple annotations required by ex-
isting methods. Additionally, we decompose the instruc-
tional video procedure planning problem into two parts: one
driven by objectives specific to step perception and the other
by a procedural knowledge-informed modeling of proce-
dure planning. In this problem decomposition, the first and
last action steps are predicted based on the initial and goal
visual states. Following this, a procedure plan is crafted by
leveraging the procedure plan recommendations retrieved
from the P2KG. The recommendations correspond to the
most probable procedure plans frequently used in training,
conditioned on the predicted first and last action steps. In a
similar vein to the approach by Li et al. [29], our proposed
decomposition strategy reduces uncertainty by maximizing
the use of currently available information, namely the ini-
tial and goal visual states. This allows for the improve-
ment of procedure planning through more accurate predic-
tions of start and end actions. Plus, this decomposition ef-
fectively incorporates procedural knowledge into procedure
planning, thereby enhancing its effectiveness.

Our contributions are as follows:
• We propose KEPP, a Knowledge-Enhanced Procedure

Planning system for instructional videos that leverages
rich procedural knowledge from a probabilistic procedu-

ral knowledge graph (P2KG). This approach necessitates
only a minimal amount of annotations for supervision.

• We decompose the problem in procedure planning of in-
structional videos: predicting the initial and final steps
from the start and end visuals, and then creating a plan
using procedural knowledge retrieved based on these pre-
dicted steps. This approach prioritize the currently avail-
able information and effectively incorporates procedural
knowledge, enhancing strategic planning.

• Experimental evaluations on three widely-used datasets,
under settings of varying complexity, reveal that KEPP
attains state-of-the-art results in procedure planning.

2. Related Work
Instructional Videos, which demonstrate multi-step proce-
dures, have become a hotbed of research. The studies delve
into various aspects, including comprehending and extract-
ing intricate spatiotemporal content from video [12, 18, 19,
21, 23, 36, 43, 44, 48, 55, 57], interpreting the interrelation-
ships between various actions and procedural events [47,
63], and developing capabilities for forecasting [39, 42] and
strategic reasoning and planning [28] within the context of
these videos. Furthermore, by leveraging the multimodal-
ity of visual, auditory, and narrative elements within these
videos, research extends to areas like multimodal align-
ment [2, 58], grounding [10, 14, 25, 33, 51], representa-
tion learning [11, 35, 61], pre-training [15, 26, 62], and
more [17, 24, 37, 56]. This paper focuses on procedure
planning in instructional videos.
Procedure Planning is a vital skill for autonomous agents
tasked with handling complex activities in everyday set-
tings. Essentially, these agents must discern the appropri-
ate actions to reach a specific goal. This aspect of artificial
intelligence (AI) has been a prominent and integral subject
in fields like robotics [20, 28, 32, 45, 46]. Yet, the chal-
lenge of procedure planning in the context of instructional
videos is notably distinct, and potentially more complex,
than its counterparts in natural language processing [8, 30],
multimodal generative AI [13, 31], and simulated environ-
ments [27, 28, 45]. Its significance is underscored by the
need for planning that is grounded in real-world scenes.
This requires the development of AI agents capable of accu-
rately perceiving and understanding the current real-world
context, and then anticipating and mapping out a logical se-
quence of actions to fulfill a high-level goal effectively.
Procedure Planning in Instructional Videos has recently
garnered research attention. DDN [9] initiates this trend by
conceptualizing the problem as sequential latent space plan-
ning. Building on this, PlaTe [50] employs transformers
for both action and state models, integrating Beam Search
for enhanced performance. Meanwhile, Ext-GAIL [7] sug-
gests employing contextual modeling through variational
autoencoder and adversarial policy learning. This method
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considers contextual information as time-invariant knowl-
edge, crucial for distinguishing specific tasks and allowing
for multiple planning outcomes.

While these earlier approaches have viewed procedure
planning as an autoregressive sequence generation problem,
recent methods regard it as a distribution-fitting problem to
mitigate error propagation in sequential decisions. In this
vein, P3IV [59] replaces intermediate visual states with lin-
guistic representations for supervision, predicting all steps
simultaneously instead of using autoregressive methods. To
circumvent the complex learning strategies and high anno-
tation costs of previous work, PDPP [54] models the en-
tire intermediate action sequence distribution using a condi-
tioned projected diffusion model. This approach redefines
the planning problem as a sampling process from this dis-
tribution and simplifies supervision by using only instruc-
tional video task labels. E3P [53], also encoding task infor-
mation, adopts a mask-and-predict strategy for mining step
relationships in procedural tasks, integrating probabilistic
masking for regularization. In contrast, our approach does
not rely on annotations of intermediate states, natural lan-
guage step representations, or procedural task labels.

Recognizing the difficulties inherent in high dimensional
state supervision and the accumulation of errors in action
sequences, SkipPlan [29] was developed. It strategically
focuses on action predictions, breaking down longer se-
quences into shorter, more manageable sub-chains by skip-
ping over less reliable intermediate actions. Drawing inspi-
ration from SkipPlan, our approach decomposes the proce-
dure planning problem to prioritize the most reliable infor-
mation available (ref. § 3.1.2). However, we innovate fur-
ther by incorporating a Probabilistic Procedure Knowledge
Graph, significantly enriching the planning phase.

3. Methodology
We will first introduce the problem setup in § 3.1, and then
discuss our novel Knowledge-Enhanced Procedure Plan-
ning system (KEPP) in § 3.2. See Fig. 2 for KEPP overview.

3.1. Problem and Method Overview

3.1.1 Problem Formulation

We follow the problem definition for procedure planning
of instructional videos put forth by Chang et al. [9]: given
an observation of the initial state vstart and a goal state
vgoal, both are short video clips indicating different states of
the real-world environment extracted from an instructional
video, a model is required to plan a sequence of action steps
a1:T to reach the indicated goal. Here, T is the planning
horizon, inputting to the model, corresponding to the num-
ber of action steps in the sequence produced by the model so
that the environment state can be transformed from vstart to
vgoal. We use at to denote the action step at the timestamp

t, and in the following, vs and vg are short for vstart and
vgoal. Mathematically, the procedure planning problem is
defined as p (a1:T |vs, vg) that denotes the conditional prob-
ability distribution of the action sequence a1:T given the ini-
tial visual observation vstart and the goal visual state vgoal.

3.1.2 Problem Decomposition

Considering the initial and final visual states are input, pro-
viding the most reliable information, we hypothesize that
predicting the first and final action steps is more dependable
than interpolating the intermediate ones, and consequently,
an enhanced accuracy in predicting the first and final steps
can lead to more effective procedure planning. Inspired
by this hypothesis, we decompose the procedure planning
problem into two sub-problems, as shown in Eq. 1:

p (â1:T |vs, vg) = p (â2:T−1|â1, âT ) p (â1, âT |vs, vg) , (1)

where the first sub-problem is to identify the beginning step
a1 and the end step aT , and the second sub-problem is to
plan the intermediate action steps a2:T−1 given a1 and aT .
We use ât to denote predicted action step at timestamp t.

Our proposed problem decomposition in Eq. 1 bears re-
semblance with the problem formulation from Li et al. [29];
they decompose procedure planning into p (â1:T |vs, vg) =∏T−1

t=2 p (ât|â1, âT ) p (â1, âT |vs, vg). However, our formu-
lation differs in its approach to modeling the second sub-
problem. Specifically, we employ a conditioned projected
diffusion model (ref. § 3.2) to jointly predict a2:T−1 at
once, whereas Li et al. [29] rely on Transformer decoders
to predict each intermediate action independently. Further,
we integrate a Probabilistic Procedure Knowledge Graph
(ref. § 3.2.2) to address the second sub-problem.

Tackling the second sub-problem is nontrivial even when
armed with an oracle predictor for the first sub-problem.
Procedure planning in real-life scenarios remains daunting
because of the following challenges: (1) the presence of
implicit temporal and causal constraints in the sequencing
of steps, (2) the existence of numerous viable plans given
an initial state and a goal state, and (3) the need to incorpo-
rate the real-life everyday knowledge both in task-sharing
steps and in managing the inherent variability in transition
probabilities between steps. Previous studies tackled these
challenges by extensively harnessing detailed annotations in
the datasets to augment input features or offer supervision
signals (see Table 1). In contrast, we propose harnessing a
Probabilistic Procedural Knowledge Graph (P2KG) which
is extracted from the procedure plans in the training set.
With the P2KG at our hand, we further decompose the pro-
cedure planning problem to reduce its complexity and learn
fθ : (vs, vg, T ) → p (â1:T |vs, vg) as follows:
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Figure 2. Overview of our methodology. We introduce KEPP, a Knowledge-Enhanced Procedure Planning system for instructional
videos, leveraging a Probabilistic Procedural Knowledge Graph (P2KG). KEPP breaks down procedure planning into two parts: predicting
initial and final steps from visual states, and crafting a procedure plan based on the procedural knowledge retrieved from P2KG, conditioned
on the predicted first and last action steps. KEPP requires minimal annotations and enhances planning effectiveness

p (â1:T |vs, vg) =
p (â1:T |ã1:T , vs, vg) p (ã1:T |â1, âT ) p (â1, âT |vs, vg)

(2)
where fθ denotes the machine learning model, and ã1:T rep-
resents a graph path (i.e., a sequence of nodes) retrieved
from P2KG. This graph path provides a valuable proce-
dure plan recommendation aligned with the training do-
main, thus mitigating the complexity of procedure planning.
It is worth noting that the proposed approach to modeling
procedure planning using Eq. 2 demands only a minimal
level of supervision, merely relying on the ground truth
training procedure plan; Eq. 2 circumvents the need for
additional annotations. We describe details of our P2KG-
enhanced approach in the following subsection.

3.2. KEPP: Knowledge-Enhanced Procedure Plan-
ning

We propose KEPP (Fig. 2) utilizing a probabilistic proce-
dure knowledge graph extracted from the training set. We
firstly identify the beginning and conclusion steps according
to the input initial and goal states; and then, conditioned on
these steps and the planning horizon T , we query the graph
to retrieve relevant procedural knowledge for knowledge-
enhanced procedure planning of instructional videos.

3.2.1 Identify Beginning and Conclusion Steps

Given vstart and vgoal as input, we adapt a Conditioned
Projected Diffusion Model [54] (ref. supplementary mate-
rial) to identify the first action step and the final step; we
refer to this model as the ‘Step (Perception) Model’.
Standard Denoising Diffusion Probabilistic Model tack-
les data generation through a denoising Markov chain over
variables {xN . . . x0}, starting with xN as a Gaussian ran-
dom distribution [22]. In the forward diffusion phase, Gaus-
sian noise ϵ ∼ N (0, I) is progressively added to the ini-
tial, unaltered data x0, transforming it into a Gaussian ran-
dom distribution. Conversely, the reverse denoising process

transforms Gaussian noise back into a sample. Denoising
is parameterized by a learnable noise prediction model, and
the learning objective is to learn the noise added to x0 at
each diffusion step. After training, the diffusion model gen-
erates data akin to x0 by iteratively applying the denoising
process, starting from random Gaussian noise.
Adopting Conditioned Projected Diffusion Model as the
Step Model. For our step model, the distribution we aim to
fit is the two-action sequence [a1, aT ], based on the visual
initial and goal states, vstart and vgoal. These conditional
visual states are concatenated with the actions along the ac-
tion feature dimension, forming a multi-dimensional array:[

vs 0 . . . 0 vg
a1 0 . . . 0 aT

]
(3)

where the array is zero-padded to have a length corresponds
to the planning horizon T . During the denoising process,
these conditional visual states can change, potentially mis-
leading the learning process. To prevent this, a condi-
tion projection operation [54] is applied, ensuring the vi-
sual state and zero-padding dimensions remain unchanged
(shaded below). The projection operation is denoted as:[

v̂1 v̂2 . . . v̂T−1 v̂T
â1 â2 . . . âT−1 âT

]
Projection−−−−−→

[
vs 0 . . . 0 vg
â1 0 . . . 0 âT

]
(4)

where v̂t denotes the predicted visual state dimensions at
timestamp t within the planning horizon T .

3.2.2 Construct the Probabilistic Procedure Knowl-
edge Graph (P2KG)

The Probabilistic Procedure Knowledge Graph [5] P2KG =
(V,E,w) is a directed and weighted graph. In this struc-
ture, each step from the training set is represented as a node.
During the graph construction process, we iterate over the
training procedure plans, and for each direct step transition
present in a plan, we add an edge from at to at+1 if it does
not already exist in the graph; otherwise, we increase its
existing frequency count by one. Eventually, this process
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results in a frequency-based Procedural Knowledge Graph
(PKG) [62], which adeptly encapsulating the complexities
of step sequencing in procedures and its potential variations,
thereby addressing challenges (1) and (2) of procedure plan-
ning (ref. § 3.1.2). To further tackle challenge (3), this graph
undergoes a transformation into a probabilistic format. In
this transformed graph, the edges are not just connections
but also signify the likelihoods of transitioning from one
step to another. The weight of an edge from at to at+1 is the
count of transitions from action step at to at+1 normalized
by total count of at being executed [5]. The normalization
converts the frequency-based weight into probability distri-
bution and the sum of all out-going edges is one.

3.2.3 P2KG-Enhanced Procedure Planning

Retrieving Procedure Plan Recommendations from the
P2KG. Humans use both previously-acquired knowledge
and external knowledge when solving problems. The P2KG
provides extensive procedural knowledge, serving as a com-
prehensive textbook, particularly beneficial for the planning
model that requires advanced skills.

To utilize this procedural knowledge, queries are made to
the P2KG using the first (â1) and last (âT ) actions predicted
by the step model. The aim is to find graph paths no longer
than T steps, starting from â1 and ending at âT . This above
process often results in multiple possible paths. To evaluate
these paths, the probability of each is calculated by multi-
plying the probability weights of the edges along the path.
For instance, the probability of a path a1 → a2 → a3 is
determined by the product wa1→a2

× wa2→a3
. These paths

are then ranked according to their probabilities, and the top
R paths are selected as the recommended procedure plans
from the P2KG, where R is predefined. For paths shorter
than T , padding is applied at any point in the middle of the
sequence to explore all possible resultant paths. When R
is greater than one, the top R paths are aggregated through
linear weighting into a single path (See section A.2 of sup-
plementary material). This final path is then used as an ad-
ditional input for the procedure planning model, thereby en-
hancing its decision-making process.
Adopting Conditioned Projected Diffusion Model as the
Planning Model. For the planning model, the conditional
visual states and the procedure plan recommendation from
the P2KG are concatenated with the actions along the action
feature dimension, forming a multi-dimensional array: vs 0 . . . 0 vg

ã1 ã2 . . . ãT−1 ãT
a1 a2 . . . aT−1 aT

 (5)

The rest process is similar to the step model, except that
the project operation guarantees that three specific aspects
remain unaltered–the dimensions of the the visual state,
P2KG recommendation, and zero-padding.

Figure 3. Qualitative analysis of the ‘Make Jello Shots’ task

Figure 4. Qualitative analysis of the ‘Change a Tire’ task

4. Experiments

Datasets and implementation Details: In our evaluation,
we employed datasets from three sources: CrossTask [63],
COIN [52], and the Narrated Instructional Videos (NIV)
[4]. See section C.4 of supplementary material for details
on datasets. All ablation studies and analyses were con-
ducted on CrossTask. We use two Tesla A100 GPUs for
all the experiments. We chose horizon T ∈ {3, 4, 5, 6} and
P2KG (R=1) condition for implementation. In some cases,
we incorporate P2KG (R=2) and LLM conditions which are
indicated in the respective tables. Throughout this study,
the P2KG (R=1) is employed with a batch size of 256, un-
less explicitly stated otherwise. More implementation de-
tails are available in the section C.2 of the supplementary
material.
Evaluation Metrics and baselines: We use mean intersec-
tion over union (mIoU), mean accuracy (mAcc), and suc-
cess rate (SR) as evaluation metrics. SR is the most strin-
gent metric. See sec. C.4 of supplementary for more de-
tails. We compare our model with state-of-the-art methods:
WLTDO [16], UAAA [1], UPN [49], DDN [9], PlaTe [50],
Ext-GAIL [7], P3IV [59], PDPP [54], SkipPlan [29], and
E3P [53]. More details of these methods are available in
the section C.5 of supplementary material. Compared to
other models, PDPP uses a different experimental setting.
In PDPP, authors set the window after the start time of a1
and before the end time of aT , contrary to the standard prac-
tice of setting a 2-second window around the start and end
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Models Required Annotations T = 3 T = 4

step class visual states step text task class SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

Random ✓ < 0.01 0.94 1.66 < 0.01 0.83 1.66
Retrieval-Based ✓ 8.05 23.3 32.06 3.95 22.22 36.97
WLTDO [16] ✓ ✓ 1.87 21.64 31.70 0.77 17.92 26.43
UAAA [1] ✓ ✓ 2.15 20.21 30.87 0.98 19.86 27.09
UPN [49] ✓ ✓ 2.89 24.39 31.56 1.19 21.59 27.85
DDN [9] ✓ ✓ 12.18 31.29 47.48 5.97 27.10 48.46
PlaTe [50] ✓ ✓ 16.00 36.17 65.91 14.00 35.29 55.36
Ext-GAIL wo Aug. [7] ✓ ✓ 18.01 43.86 57.16 - - -
Ext-GAIL [7] ✓ ✓ 21.27 49.46 61.70 16.41 43.05 60.93
P3IV ♣ [59] ✓ ✓ 23.34 49.96 73.89 13.40 44.16 70.01
PDPP ♣ [54] ✓ ✓ 26.38 55.62 59.34 18.69 52.44 62.38
E3P ♣ [53] ✓ ✓ ✓ 26.40 53.02 74.05 16.49 48.00 70.16
SkipPlan [29] ♣ ✓ 28.85 61.18 74.98 15.56 55.64 70.30
Ours w/ P2KG (R=2) ✓ 22.60 48.76 53.57 13.90 45.79 55.00
Ours ♣ w/ P2KG (R=1) ✓ 33.34 61.36 64.14 20.38 55.54 64.03
Ours ♣ w/ P2KG (R=2) ✓ 33.38 60.79 63.89 21.02 56.08 64.15
PDPP ♣ † [54] ✓ ✓ 37.20 64.67 66.57 21.48 57.82 65.13
Ours ♣ † w/ P2KG (R=1) ✓ 38.12 64.74 67.15 24.15 59.05 66.64

Table 1. Performance of our method in comparison to existing baselines for CrossTask dataset. ♣ means that the input visual features are
from the S3D network [35] pretrained on HowTo100M [34]; otherwise, precomputed features provided in CrossTask are used. † indicates
the results are under the PDPP’s task setting, while others are under the conventional setting

Models T = 5 T = 6

DDN [9] 3.10 1.20
P3IV ♣ [59] 7.21 4.40
PDPP ♣ [54] 13.22 7.49
E3P ♣ [53] 8.96 5.76
SkipPlan ♣ [29] 8.55 5.12
Ours (R=2) 8.17 5.32
Ours ♣ (R=1) 13.25 8.09
Ours ♣ (R=2) 12.74 9.23
PDPP ♣ † [54] 13.45 8.41
Ours ♣ † (R=1) 14.20 9.27

Table 2. Success Rate (SR↑) comparison to existing baselines for
CrossTask dataset under longer horizons

time (ref. [9]). We conduct experiments on both PDPP’s
proposed setting and the conventional setting.
Inference: During the inference phase, the model receives
only the start observation vs and the goal observation vg .
To proceed, it utilizes a step model to predict the initial
action a1 and the end action aT for each data. Subse-
quently, leveraging the P2KG, highest probable procedure
knowledge graph plans connecting a1 and aT are obtained.
Then, a multi-dimensional array, is created as mentioned in
Eq. 5. Finally, the planning model is used to predict the
sequence of actions [a1, ..., aT ] by denoising the generated
multi-dimensional array as in § 3.2.3.

4.1. Comparison with the State of the Art (SOTA)

CrossTask (short horizon): We evaluate on CrossTask for
short horizons (T = 3 and T = 4). According to the results

shown in Table 1, our proposed method outperforms the
PDPP in PDPP’s setting in every evaluation metric. More
than 0.9% and 2% improvement in success rate in T = 3
and T = 4 respectively. In the conventional setting, our
method with both P2KG (R=1) and P2KG (R=2) conditions
outperform the success rate values by a significant margin
compared to other baselines. P2KG (R=2) slightly outper-
forms P2KG (R=1), indicating potential benefits of incor-
porating more procedural knowledge from the P2KG.
CrossTask (long horizon): We use long-horizon predic-
tions for T = 5 and T = 6 for further evaluating our model
as shown in Table 2. In PDPP’s setting (†), our method
improves the success rate in both T = 5 and T = 6. In
the conventional setting, our method utilizing P2KG (R=1)
demonstrates the highest SR value for T = 5, and for a
longer horizon at T = 6, our method delivers superior
performance for P2KG (R=2). Our method performs well
under the challenging scenario of a long planning horizon.
Our success rate (SR) diminishes from approximately 40%
to 10% when extending the planning horizon from T=3 to
T=6, primarily due to the heightened uncertainty surround-
ing the predicted plan between the initial and final steps.
This uncertainty stems from the increase in the number of
potential procedural plans within the P2KG.
NIV and COIN: Results are shown in Table 3 and Table
4. On NIV, ours achieves the best result under the mIoU
metric with T=3, and under both the SR and mIoU metrics
with T=4. The results on NIV (T=5, T=6) are available in
the supplementary material. For the COIN dataset we only
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report SR and mAcc due to space constraints; mIoU is re-
ported in the supplementary material. Our method does not
rank as the top performer on COIN when T=3 or T=4. The
likely reason is that the COIN dataset features just an aver-
age of 3.9 actions per video–a scenario that demands only
short-horizon planning and does not necessitate advanced
procedural knowledge (which encompasses long sequence-
level knowledge [62]). Furthermore, the dataset’s extensive
collection of over 11k videos provides a substantial resource
for baselines to learn basic procedural knowledge.

Models NIV (T=3) NIV (T=4)
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

Random 2.21 4.07 6.09 1.12 2.73 5.84
DDN [9] 18.41 32.54 56.56 15.97 27.09 53.84
Ext-GAIL [7] 22.11 42.20 65.93 19.91 36.31 53.84
P3IV [59] 24.68 49.01 74.29 20.14 38.36 67.29
E3P [53] 26.05 51.24 75.81 21.37 41.96 74.90
PDPP [54] 22.22 39.50 86.66 21.30 39.24 84.96
Ours 24.44 43.46 86.67 22.71 41.59 91.49

Table 3. Performance of baselines and ours for NIV dataset

Models COIN (T=3) COIN (T=4) COIN (T=5)
SR↑ mAcc↑ SR↑ mAcc↑ SR↑ mAcc↑

Random < 0.01 < 0.01 < 0.01 < 0.01 - -
Retrieval 4.38 17.40 2.71 14.29 - -
DDN [9] 13.90 20.19 11.13 17.71 - -
P3IV [59] 15.40 21.67 11.32 18.85 4.27 10.81
E3P [53] 19.57 31.42 13.59 26.72 - -
PDPP [54] 19.42 43.44 13.67 42.58 13.02 43.36
SkipPlan [29] 23.65 47.12 16.04 43.19 9.90 38.99
Ours (R=2) 20.25 39.87 15.63 39.53 16.06 40.72

Table 4. Performance of baselines and ours for COIN dataset

4.2. Ablation Studies and Analyses

Ablation on the probabilistic procedure knowledge
graph. We analyze the role of P2KG in improving the per-
formance of our proposed method. Table 5 shows the re-
sults which clearly demonstrate that using P2KG conditions
improves the performance significantly for every T value.
Especially when T = 4, success rate (SR) improves more
than 3% and mean IoU improves more than 2%.
Plan recommendations provided by probabilistic proce-
dure knowledge graph v.s. LLM. We recognize the re-
cent trend of utilizing LLMs to enhance action anticipa-
tion [60] or planning in other realms [3, 27, 28, 40, 46].
In Table 6, we compare the results between using P2KG v.s.
using LLM (‘llama-2-13b-chat’ and ‘llama-2-70b-chat’) to
generate the plan recommendations. When examining Ta-
ble 6, it becomes apparent that there are trade-offs between
using LLM-generated recommendations and P2KG recom-
mendations. For instance, P2KG recommendations are con-
strained by the data available in the training set, limiting
their applicability to unseen procedural activities. On the

other hand, LLMs tend to exhibit better generalization to
such unseen activities. However, considering that the train-
ing and testing are conducted on the aforementioned three
datasets with known activities, P2KG recommendations can
yield more accurate results compared to relying on LLM-
generated recommendations.
Probabilistic procedure knowledge graph (P2KG) v.s.
Frequency-based procedure knowledge graph (PKG).
The probabilistic procedure knowledge graph uses out-
edge normalization to encode step transition probabili-
ties (§ 3.2.2), while the frequency-based procedure knowl-
edge graph uses min-max normalization over the frequency
counts throughout the graph. In both cases, the planning
model only uses one procedure plan recommendation from
the graph as condition in our experimental analysis. By
looking at the results shown in Table 7, it is evident that
the probabilistic procedure knowledge graph outperforms
the frequency-based procedure knowledge graph.
Effect of utilizing predicted steps for input conditions to
train the procedure planing model. Our proposed prob-
lem decomposition allows training the planning model with
ground truth (GT) first and last steps. We experiment with
two ways to train the planning model. Method 1 uses the
predicted start and end steps (â1 and âT ) as input to gen-
erate P2KG conditions and use them to train the planning
model. Method 2 is where we augment the predicted start
and end steps using the GT start and end steps (a1 and aT )
by generating 3 more data samples as follows: [â1,aT ],
[a1,âT ], and [a1,aT ]. Then we generate P2KG conditions
for each data and train the model. From the results shown in
Table 8, the method without GT data augmentation shows
better results. This suggests that leveraging ground truth
data in training can lead to worse performance in testing.
Qualitative results. Figures 3 and 4 provide qualitative ex-
amples of our method. Intermediate steps are padded in the
step model because it only predicts the start and end ac-
tions. In the ‘make jello shot’ task (see Figure 3), the model
gives a wrong prediction in the intermediate steps when us-
ing P2KG (R=1) condition. However, it predicts correctly
when using P2KG (R=2) conditions. In the ‘change a tire’
task shown in Figure 4, the model is able to predict all the
intermediate steps in given conditions.
Visualizations of the probabilistic procedure knowledge
graph. We show a sub-graph from our probabilistic pro-
cedure knowledge graph (Figure 5). This graph is drawn
around the ‘jack up’ node up to the depth of 2 nodes.
Visualizations of the expert trajectories. Figure 6 illus-
trates the steps involved in completing the ‘make jello shots’
task, along with their transitions to other steps within the en-
tire training data. This figure demonstrates that our P2KG
encodes diverse sequencing possibilities for steps and also
captures task-sharing steps across the entire training do-
main. For instance, ‘pour water’ is a step in ‘make jello
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Model T=3 T=4 T=5 T=6
SR mAcc mIoU SR mAcc mIoU SR mAcc mIoU SR mAcc mIoU

w.o P2KG conditions † 35.69 63.91 66.04 20.52 57.47 64.39 12.8 53.44 64.01 8.15 50.45 64.13
Ours † 38.12 64.74 67.15 24.15 59.05 66.64 14.20 53.84 65.56 9.27 50.22 65.97
w.o P2KG conditions 31.35 59.51 63.11 18.92 56.20 62.47 12.71 51.29 63.56 8.16 47.63 63.39
Ours 33.38 60.79 63.89 21.02 56.08 64.15 12.74 51.23 63.16 9.23 50.78 65.56

Table 5. Performance of our method with and without P2KG conditions on CrossTask ♣ dataset

Model (T=6, CrossTask ♣) SR mAcc mIoU
Ours with P2KG (R=1)

PDPP setting 9.27 50.22 65.97
Conventional setting 8.09 50.80 65.39

One LLM plan recommendation
PDPP setting (13b) 7.74 50.28 64.05

Conventional setting (13b) 7.21 49.68 63.89
PDPP setting (70b) 8.62 50.31 64.34

Conventional setting (70b) 7.81 49.75 64.02
P2KG (R=1) and one LLM plan recommendation

PDPP setting (13b) 8.81 49.97 65.22
Conventional setting (13b) 8.20 51.46 64.30
PDPP setting (70b) 9.01 50.25 65.57

Conventional setting (70b) 8.34 51.53 64.96

Table 6. Performance of the plan recommendations provided by
the probabilistic procedure knowledge graph v.s. LLM.

Models SR mAcc mIoU
Frequency graph 7.66 48.61 64.21
Probabilistic graph 8.09 50.80 65.40

Table 7. Performance comparison between probabilistic proce-
dure knowledge graph v.s. frequency-based procedure knowledge
graph for T=6 on CrossTask ♣ dataset

Condition SR mAcc mIoU
without GT data aug. 38.12 64.74 67.15
with GT data aug. 32.45 62.42 62.80

Table 8. Effect of different input conditions for performance on
CrossTask ♣ dataset (T=3) in PDPP’s setting

Models T=3 T=4 T=5 T=6
â1 âT â1 âT â1 âT â1 âT

Ours 53.69 50.60 55.56 52.51 55.58 51.81 57.09 51.92
Ours ♣ 71.42 63.32 72.98 63.37 72.42 63.29 63.82 59.96

Table 9. The step model’s start and end step prediction accuracies
on the CrossTask dataset

shots’ task, but it can also be part of other tasks, leading to
a step transition from ‘pour water’ to ‘add fish.’ This struc-
ture allows models to leverage rich procedural knowledge.
Results for the step model. Table 9 reveals step model re-
sults, indicating potential enhancement areas to elevate the
planning performance.
Limitations & Failure cases. Our model exhibits three dis-
tinct failure case patterns. See section B.5 of the supple-
mentary material for detailed discussions.

Figure 5. Example of a sub-graph in our probabilistic procedure
knowledge graph (P2KG) for CrossTask dataset. This graph ef-
fectively encapsulates real-world knowledge of distinct transition
probabilities between steps, e.g., the probability of transitioning
from ‘start loose’ to ‘jack up’ is 0.65, in contrast to a mere 0.14
for the reverse transition–the P2KG reflects the common real-life
practice where loosening the lug nuts before jacking up the car
leads to a safer and more efficient tire change.

Figure 6. Expert trajectories of the ‘Make Jello Shots’ task, in-
volving task-sharing steps and thus out-of-task step transitions.
Thicker lines indicate paths that are more frequently visited

5. Conclusion
We focus on formulating procedural plans from an AI agent
in instructional videos. We propose KEPP which employs a
probabilistic procedural knowledge graph, sourced from the
training domain, effectively serving as a ‘textbook’ for pro-
cedure planning. Results show that KEPP delivers SOTA
performance with minimal supervision. Future work can fo-
cus on enhancing the accuracy of predictions for the initial
and final steps. Additionally, our approach can be modified
to aid in detecting erroneous steps and the misordering of
steps in instructional videos [38, 41].
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