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Abstract

This paper proposes Group Activity Feature (GAF)
learning in which features of multi-person activity are
learned as a compact latent vector. Unlike prior work
in which the manual annotation of group activities is re-
quired for supervised learning, our method learns the GAF
through person attribute prediction without group activity
annotations. By learning the whole network in an end-to-
end manner so that the GAF is required for predicting the
person attributes of people in a group, the GAF is trained
as the features of multi-person activity. As a person at-
tribute, we propose to use a person’s action class and ap-
pearance features because the former is easy to annotate
due to its simpleness, and the latter requires no manual an-
notation. In addition, we introduce a location-guided at-
tribute prediction to disentangle the complex GAF for ex-
tracting the features of each target person properly. Various
experimental results validate that our method outperforms
SOTA methods quantitatively and qualitatively on two pub-
lic datasets. Visualization of our GAF also demonstrates
that our method learns the GAF representing fined-grained
group activity classes. Code: https://github.com/
chihina/GAFL-CVPR2024.

1. Introduction

A group activity is defined as what multiple people jointly
engage in. Group activities are important targets in image
and video understanding, such as team plays in sports [36],
conversations in social scenes [3], and people flows in
surveillance cameras [28].

Group Activity Recognition (GAR), in which a frame or
video is classified into either of the predefined group ac-
tivity classes, has been widely investigated in recent years
[2, 3, 6, 9, 11, 14, 16, 19, 21, 25, 29, 37–40, 42, 45]. All of
these GAR methods are based on supervised learning that
requires the ground-truth group activities, as shown in Fig. 1
(a). In addition, it is known that person action recognition,
which is also achieved based on a supervised learning man-
ner, supports GAR [2, 3, 6, 9, 11, 14, 19, 21, 25, 29, 37, 38,
40, 45].
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Figure 1. Difference between annotations for GAR and our group
activity feature learning. (a) Supervised GAR employs group ac-
tivity annotations that are difficult due to various similar group
activities. (b-1) Our GAF learning employs person action annota-
tions that are easy due to their simplicity. (b-2) We further propose
annotation-free GAF learning with person appearance features.

Such supervised learning requires manually-annotated
training data. For GAR, group activity annotations are re-
quired. In addition to labor-intensive and erroneous anno-
tations, a difficulty peculiar to GAR is the complexity of
the group activities. For example, while only four elemen-
tal group activity classes are annotated in a widely-used
team-sport dataset [15], they may be insufficient for prac-
tical purposes such as tactical analysis (e.g., 200 or more
plays are defined in American Football [8]). That is, more
fine-grained activity classes are required for several appli-
cations of group activity analysis. It is, however, difficult
to correctly define and annotate such complex, fine-grained
activity classes, even manually, because of visually minor
but highly contextual differences among those classes.

Such difficulty in manual annotations of group activi-
ties motivates us to learn a Group Activity Feature (GAF)
in which features of multi-person activity are learned as a
compact latent vector without group activity annotations.
We note here that GAFs, which represent the complex fea-
tures of multi-person activity, may have enough information
to predict the attributes of each person in a group.
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With this regard, this paper proposes GAF learning us-
ing person attribute (e.g., action and appearance), which is
easier to provide compared with the complex group activity
annotation, as shown in Fig. 1 (b). With the person attribute
related to the group activity, the GAF can narrow down the
possible attribute of each person. For example, Fig. 2, in
which a spike is observed, shows that the possible person
action enclosed by the purple rectangle (i.e., digging) can
be narrowed down by the GAF representing the scene con-
text (i.e., spike group activity) with the person’s location.

As a person attribute for our GAF learning, person ac-
tion can be used as shown in Fig. 1 (b-1). This is because
person action is strongly related to the group activities and
is essential to support GAR as mentioned above. However,
manual annotations are still required to use person action.
While the annotations of person action are easier than the
one of group activities defined with complex people inter-
action, such action annotations are still labor-intensive.

To alleviate such difficulty in manual annotations, we
also propose to learn GAF through the task of appearance
feature prediction of each person in a group without man-
ual annotations, as shown in Fig. 1 (b-2). While the reduc-
tion of annotation cost have been studied widely, includ-
ing active learning [13, 26], few-shot learning [35, 44], and
self-supervised learning [4, 5, 7, 10, 18, 23, 24, 32, 33, 41,
43], we follows the framework of self-supervised learning,
where supervision signals are derived from the input data
and any manual annotations are unnecessary.

Our novel contributions are summarized as follows:

• GAF learning through person attribute prediction:
Unlike supervised GAR, we propose GAF learning
through person attribute prediction without group activ-
ity annotations. This paper proposes its two variants:
– GAF Learning with Person Action Classes (GAFL-

PAC): As a person attribute, we utilize person action
classes, which are more easily annotated than group ac-
tivities defined with complex inter-people interactions
(Fig. 1 (b-1)). In addition, for practical use of GAR
and other group-related applications, the annotations of
person actions are already given in general [3, 14].

– GAF Learning with Person Appearance Features
(GAFL-PAF): We also utilize person appearance fea-
tures that can be obtained by a pre-trained model (e.g.,
VGG) without manual annotation (Fig. 1 (b-2)). The
appearance features are suitable as a person attribute
due to the high relationship with multi-person activity.

• Fine granularity of our GAF: With the GAF learning
through person attribute prediction, our method can learn
fine-grained GAF that represents visual-subtle but impor-
tant differences that are not represented in a manually-
defined activity class, as shown in Fig. 6.

• Location-Guided Person Attribute Prediction Using
GAF: While predicting the person attribute using the
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Figure 2. Example of our group activity feature learning. In this
example, a group activity feature is learned to extract the scene
context (i.e., spike group activity) through prediction of person
attribute (e.g., digging). See Fig. 3 for the detailed architecture.

GAF is required in our method, extracting the features
of each target person from the GAF is difficult. This is
because the GAF represents complex features of multi-
person activity. This feature extraction is achieved by lo-
cation guidance in which each person’s location feature is
embedded into the GAF with positional encoding.

2. Related Work
2.1. Group Activity Recognition

Supervision by group activity labels. While we pro-
pose the GAF learning without group activity annotations
(Fig. 1 (b)), various GAR methods supervised by group
activity annotations (i.e., Fig. 1 (a)) have been proposed.
In [16, 40, 42], only the labels of group activity are required
for training. In [16], a group activity is recognized from a
whole image without any person features. Kim et al [42]
and Yan et al [40] employ the set of person features as input
for a Graph Neural Network (GNN) as with [6, 37].
Supervision by the labels of person action and group
activity. Different from the aforementioned methods only
with group activity supervision, the GAR network is jointly
trained with the person action recognition network in [2, 3,
6, 9, 11, 14, 19, 21, 25, 29, 37, 45] for augmenting GAR.
In [6, 37], GNN models the interactions between person
features. In [9, 11, 19, 29, 45], Transformer [31] improves
modeling the interactions between person features for GAR.

While all of the methods introduced in Sec. 2.1 employ
the annotation of group activities, our method learns GAF
without group activity labels. Following the success of in-
teraction modeling in [9, 11, 19, 29, 45], we also learn the
GAF with Transformer.

2.2. Self-supervised Representation Learning

Image-based pretext tasks. Most pretext tasks for self-
supervised image representation utilize the transformation
of original images. In Gidaris et al. [10], Zhang et al. [43],
and Larsson et al. [18], each original image is rotated,
affinely- and projectively-transformed, and grayscaled, re-
spectively. The image representation model is trained so
that the model undoes each image. While these meth-
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ods [10, 18, 43] employ a whole image, patches extracted
from the image are used in [4, 23, 24]. Doersch et al. [4]
predict the spatial configuration (i.e., relative positions) of
randomly-sampled patches. In Noroozi et al. [23], jigsaw
puzzles in which all patches of an image are shuffled are
solved. Pathak et al. [24] inpaint partially-erased images.
Video-based pretext tasks. While the image-based meth-
ods can be applied to a video, video-specific pretext tasks
are also proposed in [5, 7, 32, 33, 41]. In Yao et al. [41]
and Wang et al. [33], the paces of video clips are arbitrarily
changed (e.g., normal, half, and double speeds), and video
representation is learned by solving a pace prediction prob-
lem. In Fernando et al. [7], sequential video clips are ran-
domly reordered, and video representation is learned so that
these reordered and original clips can be classified. Wang et
al. [32] employ appearance cues as well as motion statistics
for spatial-temporal representation learning.

While all of the representation learning methods intro-
duced above extract low-level image features for various
downstream tasks such as general image/video classifica-
tion and prediction, our method focuses on features useful
for group-related tasks (e.g., group scene retrieval and clus-
tering). As with our method, Ibrahim et al. [14] aims to
extract multi-person scene features through GNN in an un-
supervised manner, while the relation of each person to a
group activity is not fully captured. Our method incorpo-
rates such intimate relations between individuals and group
activity (e.g., digging in a spike scene) using the task of
location-guided person attribute prediction from a GAF.

3. Proposed Method

Our GAF learning network consists of three stages, (a), (b),
and (c) (Fig. 3). In stage (a), the features of each person
are extracted (Sec. 3.1). In stage (b), the features of several
people are masked (i.e., removed) during training for GAF
enhancement (Sec. 3.2). Then, the masked person features
are fed into the transformer-based GAF learning network
(Sec. 3.3). In stage (c), the attribute of each person is pre-
dicted from the GAF with location guidance (Sec. 3.4).

3.1. Person Feature Extractor

Overview. As shown in Fig. 3 (a), the set of person fea-
tures Fset ∈ RT×N×C are extracted from images. Fset

is composed of the features of N people obtained from T
frames in a video. C is the dimension of person p’s fea-
ture vector, F p

ind ∈ RC , indicated by a blue cuboid in
Fig. 3 (a). F p

ind consists of appearance features (denoted by
F p
app ∈ RC) and location features (denoted by F p

loc ∈ RC)
in our implementation because their effectiveness is vali-
dated for GAR [9, 11, 19, 25, 45], while other features (e.g.,
body keypoints) can also be used.

Detail. F p
app is extracted by the following three steps, as

with [42]. First, a feature map is extracted from the whole
image by VGG [27]. Then, RoIAlign [12] is applied with
the bounding box of each person to obtain the feature map
for each person. Finally, the feature map of each person is
embedded into C-dimensional appearance features with a
linear transformation. From the F p

app of N people between
T frames, we construct Fapp ∈ RT×N×C . In addition to
Fapp, F p

loc is also essential to understand the spatial struc-
ture of a group, as F p

loc is used for GAR [9, 11, 25, 37, 45].
As with [11], the center point of each person bounding box,
(x, y), is embedded into F p

loc by a spatial positional encod-
ing so that Floc ∈ RT×N×C whose dimension is equal
to Fapp. Finally, Floc is elementwise added with Fapp to
obtain the set of person features, Fset. Here, we denote
person p’s features in T frames (i.e., a slice of Fset) as
F p
ind ∈ RT×C (p ∈ {1, · · · , N}) and, similarly, person

p’s location features in T frames (i.e., a slice of Floc) as
F p
loc ∈ RT×C (p ∈ {1, · · · , N}).

3.2. Masked Person Modeling (MPM)

Overview. In the set of person features Fset, the features
of randomly sampled people are masked (e.g., F 1

ind indi-
cated by a black cuboid in Fig. 3 (b)) during training. By
extracting such features with our Masked Person Modeling
(MPM), our network is expected to learn the features of the
interaction between unmasked people for predicting the at-
tribute of the masked person.

Detail. The binary mask for p-th person (denoted by
Mp ∈ RT×C) is initialized by filling 1 in all values. Then,
Nmask people to be masked are randomly sampled from all
N people in a scene. All values in Mp for the randomly
sampled people are updated with 0.

From the all Mp of N people, we construct M =
[M1, · · · ,MN ] ∈ RT×N×C . Then, M is elementwise
multiplied by Fset to obtain the masked person features
Fmask for our GAF training. Note that all values in M
are set to be 0 during inference to preserve features of all
people in a GAF.

3.3. Group Activity Feature Learning Network

Overview. The GAF G is extracted from the set of
masked person features Fmask obtained in Sec. 3.2. For this
GAF learning, we employ Transformer to model spatial-
and temporal-interactions between people in accordance
with [11, 19]. Our transformer-based GAF learning net-
work consists of two branches (i.e., TS and ST branches)
similar to [11]. As shown in Fig. 3, the Temporal Trans-
former encoder (TT ) and the Spatial Transformer encoder
(TS) are used in both branches, but they are placed in re-
verse order in the two branches. The combination of these
two branches can model the spatial-temporal interactions
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Figure 3. Overview of our GAF learning network. (a) Person feature extractor. The person feature is composed of appearance and location
features. (b) GAF learning network. The GAF is learned from extracted people features. (c) Location-guided attribute prediction network
with the GAF. The attribute of each person is predicted from the location feature of the person and the GAF extracted in (b).

between people, as proven in GAR [11, 19]. While the
transformer-based network is used in our method, the net-
work can be replaced with any SOTA network without dif-
ficulties because the stage (i.e., Fig. 3 (b)) is modularized.

Detail. Fmask is independently fed into the TS and ST
branches to acquire F TS

mask and F ST
mask, respectively:

F TS
mask = TS(Fmask +MLP (TT (Fmask))) (1)

F ST
mask = TT (Fmask +MLP (TS(Fmask))) (2)

where MLP denotes the multi-layer perceptron. GTS ∈
RC and GST ∈ RC are obtained from F TS

mask and F ST
mask,

respectively, by the Temporal Max Pooling (denoted by
PTM ) and the Spatial Max Pooling (denoted by PSM ), as
with previous methods [9, 37]:

GTS = PSM (PTM (F TS
mask)) (3)

GST = PSM (PTM (F ST
mask)) (4)

Finally, GTS and GST are concatenated to obtain the final
GAF G ∈ R2C as follows:

G = GTS ⊕GST (5)

During training, G is fed into the attribute prediction net-
work (denoted by APN ), as shown in Fig. 3 (c). By back-
propagating a loss used in this person attribute prediction
not only inside APN but also across the whole network
shown in Fig. 3, G can be trained as the GAF. The details
of person attribute prediction and the loss used in this pre-
diction are described in Sec. 3.4 and Sec.3.5, respectively.

After predicting G in inference, G can be used in vari-
ous ways such as a pretrained model for downstream super-
vised tasks and unsupervised learning tasks (e.g., retrieval
and clustering), as mentioned in Sec. 1. The effectiveness
of G in these tasks is validated in Sec. 4.

3.4. Attribute Prediction with GAF

Overview. Using G obtained in Sec. 3.3, the attribute of
each person is predicted by the APN (Fig. 3 (c)). To predict
the attribute of p-th person, we use their location features
(i.e., F p

loc) as guidance for attribute prediction from G.

Detail. G is fed into the attribute prediction network with
the location of each person as follows:

Ap
PRED = APN(G,F p

loc) (6)

where Ap
PRED ∈ RT×R denotes the predicted attribute of

each person obtained from G with their location. The di-
mension of R changes depending on the type of the pre-
dicted person attribute as follows:
(i) Person action: R is the number of action classes and the
Ap

PRED represents predicted action probabilities.
(ii) Person appearance features: R is the dimension of the
appearance features (i.e., C) extracted in Sec. 3.1.

3.5. Loss Function

The whole network is trained with a loss function (denoted
by L) for attribute prediction as a pretext task as follows:
(i) Person action: When the person attribute is the action, L
is the cross-entropy loss: L = LCE(A

p
PRED,Ap

GT ), where
Ap

GT denotes the ground-truth one-hot vector for action.
(ii) Person appearance features: For appearance fea-
tures, L is the mean squared loss function: L =
LMSE(A

p
PRED,Ap

GT ), where Ap
GT denotes the extracted

appearance features (i.e., Fapp) shown in Sec. 3.1.
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4. Experiments
4.1. Datasets

The Volleyball dataset, which contains highly correlated
players, is mainly used to validate the effectiveness of our
GAF learning. The Collective Activity dataset is also used
to validate the generality of our method in Sec. 4.4, while
people in this dataset are not highly related to each other
compared with the Volleyball dataset.
VolleyBall Dataset (VBD) [15] consists of 4,830 sequences
extracted from 55 games. Each sequence is annotated with
one of the predefined eight group activity classes, i.e., Left-
spike, Right-spike, Left-set, Right-set, Left-pass, Right-
pass, Left-winpoint, and Right-winpoint. While each se-
quence has 41 frames, its center 20 frames have annotations
with the full-body bounding boxes of all players and their
action classes, i.e., Waiting, Setting, Digging, Falling, Spik-
ing, Jumping, Moving, Blocking, and Standing.
Collective Activity Dataset (CAD) [3] contains 44 videos.
In each video, every ten frames are annotated with person
action classes, i.e., NA, Crossing, Waiting, Queuing, Walk-
ing, and Talking, and their bounding boxes. The group ac-
tivity class is determined by the largest number of person
actions in each frame, while the NA class is not included
as a group activity class. We follow the previous meth-
ods [34, 42] to merge the Crossing and Walking into Mov-
ing.

4.2. Evaluation Protocols

4.2.1 Evaluation Tasks

The quality of the estimated GAF is verified with the fol-
lowing two types of retrieval tasks.
Action set retrieval. We employ the same action set re-
trieval task as in [14]. Action IoU in [14] evaluates the
similarity of action structures between query and retrieved
images based on the overlap of action distributions. If the
IoU exceeds a predefined threshold (e.g., 0.5), the query
and retrieved images are regarded as matched. However, in
this action IoU, all action classes are counted equally with-
out weights, although the action class distribution is imbal-
anced (e.g., the percentage of “standing” people, who are
less informative for tactics, is over 68% in VBD).

To resolve this class imbalanced problem, we propose
Action Frequency-Inverse Scene Frequency (AF-ISF) in-
spired by Term Frequency-Inverse Document Frequency
(TF-IDF [1]) that evaluates the importance of a word in a
document. In AF-ISF, each scene is represented by a fea-
ture vector in which each value is computed from frequency
statics of action classes as follows:

FV i = [FV i
1 , FV i

m, · · · , FV i
M ] (7)

FV i
m = AF i

m · ISFm (8)

where i and M denote the image index and the number of
actions, respectively. AF i

m is the frequency of m-th action
class in each image. ISFM is the inverse frequency of each
action class in the dataset. In AF-ISF, the similarity between
FV j and FV k, where j and k denote the IDs of query and
retrieved images, evaluates the similarity of action structure
of the two images. If the cosine similarity exceeds a pre-
defined threshold (e.g., 0.5), the query and retrieved images
are regarded as matched as with the Action IoU.

While AF-ISF alleviates the action class imbalanced
problem, several action classes are distinctive for represent-
ing a group scene even if the action distribution is balanced
(e.g., “Spiking” is more important than “Falling” in VBD).
Due to this problem, AF-ISF is still improper for the con-
textual representation of group scenes.
Group activity retrieval. Based on the discussion above,
we propose to further evaluate whether or not the group ac-
tivity class of a query scene matches that of the retrieved
scene. Note that the group activity annotations are given to
the test data (i.e., all query and retrieved images) only for
this evaluation and are not used in our GAF learning.

4.2.2 Evaluation Metrics

With IoU and AF-ISF in the action set retrieval and group
activity matching in the group activity retrieval, we compute
the Hit@K used in [14]. In addition, the mean Average Pre-
cision (mAP) is used in the action set retrieval as with [14].
For mAP, the Euclidean distance of G between query and
retrieved images is used as the confidence indicator.

4.3. Training Details

Our network is optimized by Adam [17] with β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. The whole image is resized into
320x640 and 240x360 for VBD and CAD, respectively. We
employ the VGG-19 and Inception-v3 models as a person
feature extractor (Fig. 3 (a)) for VBD and CAD, respec-
tively. While the person feature extractor trained on per-
son action recognition is fine-tuned through our GAF learn-
ing in GAFL-PAC, we freeze the person feature extractor
trained on ImageNet in GAFL-PAF following the previous
method [14]. Our APN consists of three fully-connected
layers. As for the other details, we follow the widely used
setting [42]. See the details in the supplementary material.

4.4. Comparative Experiments

We compare our methods with other methods by the fol-
lowing three types of experimental results: (1) the results
of retrieval (Sec. 4.4.1), (2) the results of GAR (Sec. 4.4.2),
and (3) the visualized distributions of GAFs (Sec. 4.4.3).
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Table 1. Quantitative comparison of retrieval on the VolleyBall Dataset (VBD). The results obtained in two experimental settings (i.g.,
GAFL-PAC and GAFL-PAF) are separated by double lines. The best result in each column is colored in red. Results obtained by the
concatenation of output features (i.e., F TS

grp and F ST
grp) and G are denoted as “Ours-ind” and “Ours-grp”, respectively.

Retrieval type Action set (IoU [14]) Action set (AF-IDF) Group activity
Method Hit@1 Hit@2 Hit@3 mAP Hit@1 Hit@2 Hit@3 mAP Hit@1 Hit@2 Hit@3

GAFL-
PAC

HiGCIN [40] 74.3 84.9 89.5 55.7 59.8 73.6 80.3 30.5 50.0 66.3 74.5
DIN [42] 79.7 90.1 93.4 60.2 74.5 85.2 88.3 39.3 57.0 73.1 81.1
Dual-AI [11] 67.6 84.7 91.6 56.9 72.6 83.7 88.6 53.0 64.4 76.5 82.0
Ours-ind 82.7 91.6 95.0 59.1 79.0 86.8 89.8 45.6 82.7 88.8 91.3
Ours-grp 83.0 92.7 95.5 64.2 80.1 88.4 91.5 59.9 84.8 89.6 91.8

GAFL-
PAF

B1-Compact128 [14] 57.9 75.7 84.3 45.8 41.3 60.8 71.4 29.3 30.3 48.0 59.9
B2-VGG19 [14] 63.8 80.6 86.8 46.8 46.7 65.8 75.7 29.4 35.4 53.6 65.0
HRN [14] 60.9 78.6 86.0 46.9 40.8 60.9 72.9 28.7 31.2 47.0 57.6
Ours-ind 64.2 80.8 88.3 45.0 50.4 69.3 77.6 30.1 55.0 72.3 79.2
Ours-grp 64.8 82.7 90.3 46.4 52.3 71.4 81.0 31.4 61.1 75.1 82.4

Table 2. Quantitative comparison of retrieval on the Collective Activity Dataset (CAD).
Retrieval type Action set (IoU [14]) Action set (AF-IDF) Group activity
Method Hit@1 Hit@2 Hit@3 mAP Hit@1 Hit@2 Hit@3 mAP Hit@1 Hit@2 Hit@3

GAFL-
PAC

HiGCIN [40] 80.8 85.4 89.7 57.9 81.0 85.2 89.3 61.6 86.1 88.8 91.9
DIN [42] 71.4 74.1 74.9 51.5 90.1 92.7 94.0 52.8 90.8 92.5 93.2
Dual-AI [11] 61.0 72.5 76.7 61.5 85.5 86.9 88.1 82.7 82.1 84.1 84.7
Ours-ind 76.2 82.6 89.4 78.9 94.8 95.6 95.9 82.2 94.9 95.4 95.7
Ours-grp 81.8 90.7 93.5 69.9 96.1 96.5 96.6 93.9 94.9 95.6 96.3

GAFL-
PAF

B1-Compact128 [14] 48.8 60.3 68.2 38.0 81.8 88.2 89.7 52.6 82.4 88.4 90.1
B2-VGG19 [14] 53.6 61.6 66.1 35.3 71.1 80.3 83.8 46.7 72.2 80.8 84.2
HRN [14] 37.1 50.1 58.6 22.2 53.2 64.8 72.5 34.2 54.0 64.8 72.4
Ours-ind 67.6 81.3 85.9 53.3 83.7 88.9 90.2 57.5 88.5 91.2 91.9
Ours-grp 52.7 70.3 74.1 46.4 74.0 80.5 82.6 60.1 79.2 81.0 82.0

4.4.1 Retrieval

To validate the effectiveness of the GAF for group repre-
sentation, the set of person features (i.e., the concatenation
of F TS

grp and F ST
grp in Fig. 3 (b)) is also evaluated. Specifi-

cally, the output features of PTM in the TS and ST branches
(F TS

grp and F ST
grp in Fig. 3) are concatenated and also used

for retrieval in our method. Results obtained by the con-
catenation of output features (i.e., F TS

grp and F ST
grp) and G

are denoted as “Ours-ind” and “Ours-grp”, respectively.
Volleyball dataset (GAFL-PAC). Our method is compared
with the SOTA GAR methods [11, 40, 42] which are only
trained with person action labels as with our method. Ta-
ble 1 (top) shows that our method is best in action set and
group activity retrieval. The results validate that our method
learns features about the action structure and the group ac-
tivity of a scene into the compact latent vector (i.e., G) effi-
ciently. The large gain in the group activity retrieval shows
that the features of multi-person activity are learned in our
GAF in contrast to the SOTA GAR methods [11, 40, 42]
where the set of person features is used for the retrieval.
Volleyball dataset (GAFL-PAF). Our method is compared
with the SOTA method [14], the only existing GAF learn-
ing method using no person-action and group-activity an-

notations, and baseline methods as with [14]. From Table 1
(bottom), we see that our method performs best in all met-
rics except that “HRN” is better than our method in mAP
of Action set (IoU). However, the performance difference
is small (i.e., 46.9 and 46.4 in “HRN” and “Ours-grp,” re-
spectively). Furthermore, our method is better than “HRN”
in Action set (AF-IDF). From these results, we can say that
our GAF is better even in the action set retrieval. Regard-
ing group activity retrieval, our method significantly out-
performs the SOTA method. The results validate that our
method learns the contextual features of multi-person activ-
ity better than the SOTA method.
Collective activity dataset (GAFL-PAC). The results in
GAFL-PAC on CAD are shown in Table 2 (top). The results
validate that our method is better than Dual-AI [11] in all
metrics. While “Ours-grp” is better than “Ours-ind” in most
metrics, “Ours-ind” is better in mAP of Action set (IoU).
The action set (IoU) evaluates the similarity of the number
of people, so the results may come from that the change in
the number of people between scenes on this dataset is ad-
dressed well in “Ours-ind.” Specifically, we can consider
that such information about the number of people may be
preserved well in “Ours-ind.” where the set of person fea-
tures is used for retrieval.
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Figure 4. Confusion matrices of GAR by nearest neighbor retrieval
on VBD and CAD in GAFL-PAF. Each row and column show the
ground-truth and recognized group activity, respectively. Results
of the other methods are shown in the supplementary material.

Collective activity dataset (GAFL-PAF). Table 2 (bottom)
shows that our method is the best in all metrics among the
other methods. The results validate the wide applicability
of GAF learned even in general scenes included in CAD.
While “Ours-grp” is better than “Ours-ind” on VBD, “Ours-
ind” is better on CAD. These opposite results may come
from the difference between the number of people in each
image. While N = 12 people are observed in most im-
ages in VBD, around five people on average on CAD. As
the number of features in F TS

grp and F ST
grp increase in pro-

portion to the number of observed people, the difficulty in
learning F TS

grp and F ST
grp becomes higher. Since this learning

difficulty might occur on VBD, spatial max pooling used in
“Ours-grp” is effective for reducing the feature dimension
from NC of F TS

grp and F ST
grp to C of GTS and GST .

4.4.2 Group Activity Recognition

While no group annotation is used in our GAF learning,
the group activity class retrieved by Hit@1, which is equal
to 1-nearest neighbor classification, can be regarded as the
result of GAR, as done in [20]. While results only in GAFL-
PAF are shown in this section, results in GAFL-PAC are
available in the supplementary material.
Volleyball dataset (GAFL-PAF). As shown in Fig. 4,
our method outperforms “B2-VGG19” in all group activity
classes except for L-winpoint. While “B2-VGG19” is bet-
ter than “Ours” in L-winpoint shown at the bottom right of
each confusion matrix, “B2-VGG19” often misrecognizes
the R-winpoint scene as L-winpoint, as shown in the red
rectangle cells. Left-spike and Right-spike are especially
recognized better in our method than the others. This supe-
riority of our method can be interpreted as follows. In Left-
spike and Right-spike, spiking and blocking players who

Moving Waiting QueuingTalking

R-set R-spike R-winpoint L-set L-spike L-pass L-winpointR-passVBD

CAD

B1-Compact128 B2-VGG19 HRN Ours

Figure 5. Visualization of the learned GAF on VBD and CAD in
GAFL-PAF. The color of each sample shows the ground-truth of
the group activity label corresponding to each test sample.

Receiver Spiker

ServerReceiver

Figure 6. Visualization of the learned GAF on VBD in GAFL-
PAC. The magenta data points (i.e., “L-pass”) are divided into two
sub-categories based on the context (i.e., whether the receiving is
caused by the spiking or serving of the opposite player).

are distinctive both in appearance and location cues are al-
ways observed. Since these distinctive people are important
in predicting not only their attributes but also the attributes
of other people, the features of these distinctive people are
extracted well even in the compact latent vector (i.e., GAF).
Collective activity dataset (GAFL-PAF). The confusion
matrices are shown in Fig. 4. The results show that our
method is the best in all activity classes. In particular, while
VGG19 gets many false negatives in Moving, the number
of false negatives in Moving of our method is almost zero.

4.4.3 Visualization of Learned GAFs

The distribution of learned GAFs in all test images is visu-
alized in a 2D space by t-SNE [30]. The color of each point
shows its annotated group activity class. Figure 5 shows that
our method can learn the GAFs better than the other meth-
ods because (1) while the inner-class variance is small, the
inter-class variance is large, and (2) the data points of simi-
lar group activities (e.g., Left-pass and Left-set) are closer.
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Figure 7. Performance changes depending on the number of mask-
ing people on VBD.

Table 3. Effectivenss of our location-guidance on VBD. Results
obtained by “Ours-grp” are shown as “Ours.”

Retrieval type
Action set

(IoU)
Action set
(AF-IDF)

Group
activity

Method Hit@1 Hit@1 Hit@1
GAFL-

PAC
Ours w/o Floc 80.0 75.6 69.5
Ours 83.0 80.1 84.8

GAFL-
PAF

Ours w/o Floc 64.1 51.7 53.2
Ours 64.8 52.3 61.1

Our GAFs in GAL-PAC on VBD are also shown in
Fig. 6. This figure shows that data points with the same
group activity labels are divided into sub-activities. For ex-
ample, L-pass indicated by magenta data points are divided
into two clusters. While the cluster enclosed by the orange
rectangle represents L-pass where the person is receiving a
ball from the opposite spiker, the other cluster enclosed by
the light blue rectangle represents L-pass where the person
is receiving a ball from the opposite server. As shown in
this example, our GAFs are learned well enough to repre-
sent visually subtle but important differences that are not
represented in the manually defined activity classes.

4.5. Detailed analysis

Comparison of the number of masked persons. We ex-
plore the optimal number of masked people (i.e., Nmask)
for our MPM. For this comparison, we change Nmask from
0 to N − 1. Nmask = 0 means that Fset is directly fed into
the transformer encoder without the MPM.

Figure 7 shows that the performance changes depending
on Nmask on VBD. The best performance is obtained when
Nmask is the middle number (i.e., 5 and 6 in the GAFL-
PAC and GAFL-PAF, respectively), while the performance
gain from Nmask = 0 is insignificant. On the other hand,
we can also see that the performance with a large masking
ratio (i.e., Nmask ∈ {10, 11}) drops. These results reveal
that the extreme difficulty in the attribute prediction of the
masked person from a few non-masked people leads GAF
learning to failure.
Effect of location-guidance in GAF learning. We ablate
F p
loc which is used for guidance to extract the features of

Table 4. Comparison with supervised GAR. Double lines separate
the results obtained by VBD and CAD.

Dataset Method Accuracy

VBD Dual-AI [11] 92.1
Ours w/ group activity labels 92.4

CAD Dual-AI [11] 94.1
Ours w/ group activity labels 96.6

each person in the action prediction network in Fig. 3 (c)
(see also Sec. 3.4) on VBD.

In GAFL-PAC, “Ours” is better than “Ours w/o F p
loc” in

the all metrics. In particular, the performance gain in the
group activity retrieval is large. We can interpret the reason
as follows. In “Ours w/o F p

loc,” only G is used to predict the
attribute of each person in a scene. It makes the model pre-
dict not the attribute of each person but the attribute distri-
bution of people in a scene. Therefore, the GAF can be used
for action set retrieval to some extent because the similarity
of action distribution is evaluated in this retrieval. How-
ever, spatial interaction between people is not learned in the
GAF. It causes a significant performance drop in the group
activity retrieval. In GAFL-PAF, we can also see the high-
performance gain of “Ours” in the group activity retrieval.
From these results, we can conclude that our location guid-
ance is important for learning group activity.
Fine-tuning for Group Activity Recognition. Table 4
shows that the comparison of “Dual-AI” and “Ours” with
group activity labels on VBD and CAD. In “Dual-AI,” the
network is trained with group activity labels from scratch.
In “Ours,” after the pretraining by our GAF learning with-
out the group activity supervision, the network is fine-tuned
for GAR with group activity labels.

On both datasets, our method is better than “Dual-AI.”
In particular, on CAD, the GAR accuracy obtained by our
method is 2.5% better than the GAR accuracy obtained by
“Dual-AI.” The results demonstrate that our GAF learning
is effective as a pre-training for supervised GAR.

5. Concluding Remarks
Instead of group activity annotations which is difficult due
to a variety of similar group activities, our method learns
GAF through person attribute prediction without group ac-
tivity annotations. Quantitative comparisons and visualized
results show that our method can learn informative GAF
compared with other methods on the two public datasets.

While our method outperforms all the other meth-
ods in our experiments not only for GAF learning
but also for GAR, our method is understandably
inferior to GAR supervised by group activity anno-
tations. Exploring other pretext tasks such as pre-
dicting the joint attention of a group (e.g., [22]) is
important future work for further GAF enhancement.
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