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Abstract

Human-object contact serves as a strong cue to under-
stand how humans physically interact with objects. Nev-
ertheless, it is not widely explored to utilize human-object
contact information for the joint reconstruction of 3D
human and object from a single image. In this work,
we present a novel joint 3D human-object reconstruction
method (CONTHO) that effectively exploits contact infor-
mation between humans and objects. There are two core de-
signs in our system: 1) 3D-guided contact estimation and 2)
contact-based 3D human and object refinement. First, for
accurate human-object contact estimation, CONTHO ini-
tially reconstructs 3D humans and objects and utilizes them
as explicit 3D guidance for contact estimation. Second, to
refine the initial reconstructions of 3D human and object,
we propose a novel contact-based refinement Transformer
that effectively aggregates human features and object fea-
tures based on the estimated human-object contact. The
proposed contact-based refinement prevents the learning of
erroneous correlation between human and object, which en-
ables accurate 3D reconstruction. As a result, our CON-
THO achieves state-of-the-art performance in both human-
object contact estimation and joint reconstruction of 3D hu-
man and object. The code is publicly available1.

1. Introduction
Joint reconstruction of 3D human and object is an essen-
tial task for various applications of immersive experiences
of AR/VR and robot manipulation of robotics. In essence,
the task aims to learn a meaningful human-object interac-
tion that further improves the reconstruction of humans and
objects. Physical human-object contact is notably one of
the most prevalent and basic interactions that humans make
with objects.

Although human-object contact is a strong cue in joint

1https://github.com/dqj5182/CONTHO_RELEASE
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Figure 1. Overview of CONTHO. Our proposed CONTHO esti-
mates human-object contact maps through our proposed Contact-
Former and exploits the contact maps for 3D human and object
refinement with CRFormer. The green color indicates human-
object contact regions estimated from ContactFormer.

reconstruction of 3D human and object, recent works of
human-object interaction have been studied separately in
two major tracks: 1) human-object contact estimation and
2) 3D human and object reconstruction. The recent research
track for human-object contact estimation [13, 37, 40] pre-
dicts a contact map on the surface of a pre-defined hu-
man body model [24, 31] without reconstructing 3D hu-
man and object. Another research track for 3D human and
object reconstruction [45, 46, 48, 52] does not yet suffi-
ciently explore how to extract and utilize contact informa-
tion for the reconstruction. For example, PHOSA [52] and
D3D-HOI [48] heuristically pre-define contacting regions
and follow the pre-defined regions as a hard constraint dur-
ing their optimizations. The pre-defined contacting regions
can be different from the authentic ones in the image, which
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results in incorrect reconstructions of 3D human and object.

In this work, we integrate the two separate tracks with
one unified framework, CONTHO (CONTact-based 3D
Human and Object reconstruction) that estimates human-
object contact maps and exploits the contact maps for 3D
human and object reconstruction, as shown in Figure 1. In
CONTHO, there are two core stages: 1) 3D-guided con-
tact estimation and 2) contact-based 3D human and object
refinement. In the first stage, our proposed contact estima-
tion Transformer (ContactFormer) utilizes initially recon-
structed 3D human and object meshes as 3D guidance on
3D positional relationships between human and object. In
inferring contact, 3D positions of human and object surfaces
provide valuable information about which parts of the hu-
man interact with the object. However, previous contact
estimation methods [13, 37, 40] do not infer 3D geomet-
ric information of human and object surfaces during their
estimation pipeline. Unlike these methods, our Contact-
Former utilizes the 3D positions of human and object sur-
faces along with image evidence, enabling 3D geometric
reasoning about the relationship between 3D human and ob-
ject. In the end, 3D-guided contact estimation provides ac-
curate human-object contact maps, which benefits the next
stage, the contact-based 3D human and object refinement.

In the second stage, our proposed contact-based refine-
ment Transformer (CRFormer) refines the initially recon-
structed 3D human and object by effectively aggregating
human and object features based on the estimated contact
maps. In the CRFormer, human and object features are se-
lectively forwarded based on human-object contact maps
to learn human-object interaction. Such an approach has
two advantages in 3D human and object refinement. First,
the CRFormer makes the human-object contact maps the
main decisive signals that indicate which features to fo-
cus on. While contact information is one of the most in-
fluential components for understanding relationships be-
tween humans and objects, human-object contact exists in
small regions of the image and thus may often be neglected.
Our CRFormer design explicitly spotlights the contact re-
gions, making human-object contact a key signal for re-
finement. Second, the CRFormer alleviates the undesired
human-object correlation by removing features unrelated to
physical interaction (i.e., contact). A refinement network
can learn undesired human-object correlation by easily cap-
turing a strong bias of human pose and object pose, differ-
ent from the actual appearance in the image. When naively
aggregating contact maps and image features (Transformer
baseline in Figure 2), the refinement network reconstructs a
monitor display always facing toward a human head, show-
ing an undesired correlation between the object and the hu-
man. On the other hand, our CRFormer considers human-
object relations solely from the features of contacting re-
gions based on human-object contact captured in the image,
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view

Top
view

Undesired correlation

Front
view

Top
view

Figure 2. Example of undesired human-object correlation. Due
to the undesired human-object correlation in the Transformer base-
line, the monitor display always faces toward the human head,
which should not move as in the images. Our proposed CRFormer
effectively alleviates the undesired correlation, resulting in accu-
rate reconstruction results.

preventing undesired human-object correlation. With these
two strengths, our proposed CRFormer accurately refines
3D human and object with human-object contact maps.

As a result, we show that CONTHO achieves state-of-
the-art performance in both human-object contact estima-
tion and joint reconstruction of 3D human and object. Our
contributions can be summarized as follows.
• We propose CONTHO, which jointly reconstructs 3D hu-

man and object by exploiting human-object contact as a
key signal in reconstruction.

• To obtain precise human-object contact, we leverage in-
termediate 3D human and object reconstructions as ex-
plicit 3D guidance in contact estimation.

• To accurately reconstruct 3D human and object, our pro-
posed CRFormer effectively aggregates human features
and object features based on contact information, while
preventing learning undesired human-object correlation.

• CONTHO largely outperforms previous methods in both
human-object contact estimation and joint reconstruction
of 3D human and object.

2. Related works

Human-object contact estimation. Most of the pioneering
works on human-object contact estimation represent contact
in the form of 2D contact [3], 3D joint-level contact [34–
36, 49, 53], or 3D patch-level contact [9, 10, 27]. Recently,
several works [11, 13, 37, 40] tackle the problem of esti-
mating a dense vertex-level contact map, defined on the hu-
man body surface (i.e., SMPL [24]). POSA [11] proposed
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a conditional variational autoencoder (cVAE) [18] that out-
puts which vertices are likely to be in contact with objects,
given a human pose without any use of image evidence.
BSTRO [13] demonstrated a Transformer that learns con-
textual relationships among body vertices. DECO [40] pro-
posed a cross-attention-based network that jointly leverages
human body parts and scene contexts for contact estimation.

These methods are simply trained with cross-entropy
loss between the predicted and ground-truth (GT) contact
maps, without learning 3D geometry of human and object
surfaces. On the other hand, our CONTHO jointly learns
human-object contact maps along with reconstructing the
3D human and object meshes, which has two noticeable ad-
vantages in contact estimation. First, 3D human and object
meshes provide guidance on where to focus on local im-
age regions related to the human and object, with 2D vertex
coordinates obtained by projecting the 3D meshes onto the
input image. Second, the per-vertex 3D coordinates pro-
vide a 3D positional relationship between human and ob-
ject surfaces that allows 3D geometric reasoning on contact
between human and object. Under these two advantages,
our 3D-guided contact estimation is much more effective in
capturing human-object contact than the previous methods.
3D human and object reconstruction. Most of the re-
cent works [2, 15, 45, 48, 52] of 3D human and object re-
construction are optimization-based approaches, which it-
eratively fit 3D human and object meshes to satisfy con-
straints of human-object interaction. Holistic++ [2] de-
signed human-object interaction priors based on human ac-
tions. PHOSA [52] and D3D-HOI [48] each presented an
optimization framework that fits human and object meshes
based on pre-defined contact pairs to reason about human-
object interaction. CHORE [45] proposed a two-stage ap-
proach, which first predicts distance fields and then opti-
mizes 3D humans and objects based on the distance fields.

All of the above optimization-based methods only rely
on optimization targets (e.g., 2D silhouettes) without con-
sidering image context. One of the limitations of such an
approach is vulnerability to imperfect optimization targets.
Since their optimization targets are acquired by estimation,
the targets contain estimation errors, and some optimization
targets are ambiguous (e.g., depth ambiguity of 2D silhou-
ettes) for reconstruction. Accordingly, their optimization
methods often fail by becoming biased toward the imper-
fect optimization targets. Different from these methods, our
CONTHO is an end-to-end learning approach that is free
from the above issues. This is because, in the inference
stage, the system produces outputs based on the data-driven
knowledge from the training data instead of being opti-
mized towards imperfect targets. Despite such a strength,
we found that the learning-based systems can be vulnera-
ble to being biased to specific contexts within an image,
which we call an undesired human-object correlation. In

this work, we unveil the undesired human-object correlation
in the joint learning of 3D humans and objects and address
it with our CRFormer.
3D human reconstruction. Most of the 3D human re-
construction methods [5–7, 16, 19–23, 26, 28, 29, 51] are
based on parametric 3D human model (i.e., SMPL [24]).
HMR [16] proposed an end-to-end learning framework that
introduced adversarial loss to reconstruct a plausible 3D hu-
man mesh. PARE [20] used a part-guided attention network
to ensure robustness in occlusions. Hand4Whole [25] pro-
posed a whole-body 3D human mesh estimation framework
to reconstruct 3D human body, hand, and face with features
from the 3D positional pose-guided pooling. In our method,
we bring the 3D body and hand reconstruction pipeline of
Hand4Whole for initial 3D human mesh reconstruction.
3D object reconstruction. One of the main approaches [8,
32, 39, 42, 44] of 3D object mesh reconstruction is to pre-
dict 6DoF pose (i.e., rotation and translation) of a given
object mesh template after classifying the object category.
PoseCNN [44] is a pioneering work that proposes a con-
volutional neural network for object pose estimation. SO-
Pose [8] employs self-occlusion information to predict ac-
curate object pose. ZebraPose [38] proposed a coarse-to-
fine surface encoding technique for 6DoF object pose esti-
mation. Our CONTHO also estimates the 6DoF object pose
as an initial prediction and refines it considering human-
object contact.

3. CONTHO
Figure 3 shows the overall pipeline of our CONTHO, which
consists of three stages: initial reconstruction, 3D-guided
contact estimation, and contact-based refinement.

3.1. Initial reconstruction

Given concatenated inputs Iinput ∈ R5×H×W of image I,
human segmentation Sh, and object segmentation So, we
obtain the initial 3D human and object meshes (Mh ∈
R431×3 and Mo ∈ R64×3), where H and W denote
the height and width of the image, respectively. Follow-
ing previous works [1, 45], human and object segmenta-
tions are obtained from DetectronV2 [43] for both train-
ing and inference. From the inputs Iinput, a backbone net-
work (i.e., ResNet-50 [12]) extracts an image feature F ∈
R2048×H/32×W/32. To obtain the initial 3D human mesh
Mh, we predict human body parameters θbody ∈ R76 and
hand parameters θhand ∈ R90 of the SMPL+H model [24]
from the image feature F. Then, the predicted parameters
are forwarded to SMPL+H model to obtain a 3D human
mesh. To reduce computational burden, the obtained 3D hu-
man mesh is downsampled with a sampling algorithm [33].
To obtain initial 3D object mesh Mo, we predict object ro-
tation Ro and translation to from the image feature F, given
a 3D object mesh template as in prior works [45, 46]. The
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Figure 3. Overall pipeline of CONTHO. Our method first reconstructs 3D human and object meshes (Mh and Mo). Then, the initial
meshes are utilized to construct 3D vertex features (Fvh and Fvo). Subsequently, ContactFormer estimates human-object contact maps
(Ch and Co) from the 3D vertex features. Lastly, CRFormer aggregates the 3D vertex features based on the estimated contact maps to
provide refined human and object meshes (M∗

h and M∗
o ). The green color indicates the estimated contacting regions.

overall design of the initial reconstruction module follows a
state-of-the-art whole-body 3D human mesh reconstruction
method [25] with modifications to only predict the human
body and hands. We provide a detailed description of the
architecture in the supplementary material.

3.2. 3D-guided contact estimation

In this stage, ContactFormer predicts human and object
contact maps (Ch ∈ R431 and Co ∈ R64) from 3D vertex
features (Fvh and Fvo) extracted based on initially recon-
structed 3D human and object meshes (Mh and Mo).
3D vertex feature extraction. 3D vertex features (Fvh
and Fvo) consist of vertex-aligned features and per-vertex
3D coordinates. The vertex-aligned features are obtained
by grid sampling of the image feature F with (x, y) po-
sitions of the projected 3D vertices of initial meshes (Mh
and Mo) to image space. After grid sampling, we apply a
1-by-1 convolution to the vertex-aligned features to reduce
the channel dimension from 2048 to 256. Subsequently, we
obtain 3D vertex features (Fvh and Fvo) by concatenating
the vertex-aligned features and per-vertex 3D coordinates
of the initial meshes (Mh and Mo). Therefore, the final di-
mensions of the 3D vertex features of the human and object
are Fvh ∈ R(256+3)×431 and Fvo ∈ R(256+3)×64. The 3D
vertex features contain rich contextual information around
the 3D mesh vertices, allowing 3D guidance for human-
object contact estimation. The 3D vertex features are passed
to ContactFormer, the contact estimation Transformer.
Human-object contact estimation. Given the 3D vertex
features (Fvh and Fvo), ContactFormer predicts human and
object contact maps (Ch and Co). To encourage the Con-
tactFormer to focus on relevant information across humans
and objects, we perform a cross-attention operation be-
tween 3D vertex features of humans and objects with cross-
attention (CA) Transformers [41]. Then, the contact maps

(Ch and Co) are predicted with fully-connected (FC) layers,
followed by a sigmoid activation function.

3.3. Contact-based refinement

In this stage, CRFormer provides refined 3D human and
object meshes (M∗

h and M∗
o ) from the 3D vertex features

(Fvh and Fvo) and the contact maps (Ch and Co).
Contact-based masking. Based on the contact maps (Ch
and Co), we mask a part of 3D vertex features (Fvh and
Fvo) that are not in contact with zero vectors, to remain
only features corresponding to human-object contact. We
denote the masked 3D vertex features of the human and
object with Fc

vh and Fc
vo, respectively. This contact-based

masking feature aggregation technique is our core strategy
to force the contact maps to be the main signal for CR-
Former to indicate which features to focus on. Addition-
ally, by removing features from non-contacting parts that
are unrelated to human-object contact, we prevent learn-
ing undesired human-object correlation that is detrimental
to accurate refinement. We provide further discussion about
the effectiveness of contact-based masking in Section 5.3.
3D human and object refinement. The masked 3D ver-
tex features (Fc

vh and Fc
vo) and original 3D vertex features

(Fvh and Fvo) are processed with a combination of cross-
attention (CA) and self-attention (SA) Transformers [41],
to obtain refined 3D human and object meshes (M*

h and
M*

o). Fc
vh and Fc

vo are passed to CA Transformers to pro-
cess relevant information across human and object. As Fc

vh
and Fc

vo only contain features in contact, the CA Trans-
formers mainly process contextual information related to
human-object contact. Fvh and Fvo are passed separately to
SA Transformers to infer each own 3D positional informa-
tion, without considering human-object interaction. The SA
Transformers mainly process contextual information related
to non-contacting parts of the human and object. This com-
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bination of CA and SA transformers prevents excessive bias
or disregard of the contact information. Lastly, the outputs
of CA and SA Transformers are added and processed with
additional SA Transformers followed by FC layers to pro-
duce refined 3D human and object meshes (M∗

h and M∗
o ).

3.4. Loss functions

Our proposed CONTHO is trained in an end-to-end manner
by minimizing loss function L, defined as follows:

L = Lcontact + Lrefine + Linit, (1)

where Lcontact is a binary-cross entropy loss between pre-
dicted and GT contact maps (Ch and Co). The Lrefine is
defined as

Lrefine = Lvertex + Ledge, (2)

where Lvertex is a L1 distance between predicted and GT
per-vertex 3D coordinates of refined human and object
meshes (M∗

h and M∗
o ), and Ledge is edge length consistency

loss between predicted and GT edges of the refined human
meshes (M∗

h ). The Linit is defined as

Linit = Lparam + Lcoord + Lhbox, (3)

where Lparam is a L1 distance between predicted and GT
SMPL+H parameters (θbody and θhand), 3D object rotation
Ro, and 3D object translation to. Lcoord is a L1 distance be-
tween the predicted and GT human joint coordinates, con-
sisting of 3D and 2D joint coordinates. Lhbox is a L1 dis-
tance between the predicted and GT bounding boxes of the
hands. We design Linit by modifying the loss function of
Hand4Whole [25]. For a detailed explanation, please refer
to the supplementary material.

4. Implementation details
PyTorch [30] is used for implementation. The backbone
is initialized with pre-trained weights of publicly released
Hand4Whole [25]. The weights are updated by Adam op-
timizer [17] with a mini-batch size of 16. The region
of the reconstruction target is cropped using a GT box in
both the training and the testing stages following previous
works [45, 46]. Data augmentations, including scaling, ro-
tation, and color jittering, are performed in training. The
initial learning rate is set to 10−4 and reduced by a factor of
10 after the 30th epoch. We train the model for 50 epochs
with an NVIDIA RTX 2080 Ti GPU.

5. Experiments
5.1. Datasets

BEHAVE [1, 47] and InterCap [14] datasets are used for
our experiments. BEHAVE [1, 47] is a dataset that captures

the interactions of 8 human subjects and 20 objects. We
follow CHORE [45] for the split of BEHAVE [1, 47] for
a fair comparison. InterCap [14] is another human-object
interaction dataset containing 10 human subjects with 10
objects. Following the prior work [46], we split the dataset
accordingly. For both datasets, we labeled contact maps on
3D human and object vertices with a 3D distance threshold
of 5cm between human and object.

5.2. Evaluation metrics

Precision & recall for contact estimation (Contactest
p ,

Contactest
r ). We evaluate human-object contact estimation

with standard detection metrics: precision (Contactest
p ) and

recall (Contactest
r ), following Huang et al. [13]. Unlike our

CONTHO, which estimates both human and object contact
maps, previous contact estimation methods [13, 40] only
estimate human contact maps. Thus, for comparison, we
report evaluations on human contact maps for all methods.
Chamfer distance (CDhuman, CDobject). We evaluate 3D
human and object reconstruction using Chamfer distance
between predicted and GT meshes, following previous
works of 3D human and object reconstruction [45, 46].
Specifically, given the predicted 3D human and object
meshes, we apply Procrustes alignment on combined 3D
human and object meshes with the GT 3D human and object
meshes. With the aligned 3D human and object meshes, we
measure the Chamfer distance from GT separately on 3D
human (CDhuman) and 3D object (CDobject), in centimeters.
Precision & recall for contact from reconstruction
(Contactrec

p , Contactrec
r ). To evaluate 3D human and ob-

ject reconstruction, especially in terms of contact, we fur-
ther adopt standard detection metrics for the reconstructed
3D human and object meshes. We obtain a contact map
by classifying human vertices within 5cm of the object
mesh. Then, we measure precision (Contactrec

p ) and recall
(Contactrec

r ) between the human contact map and the GT
counterpart.

5.3. Ablation study

We carry out the ablation study by training and evaluating
all methods on BEHAVE [1].
Effectiveness of 3D-guided contact estimation. In Ta-
ble 1, we show the effectiveness of 3D-guided contact es-
timation by examining the following variations: 1) varia-
tions of ContactFormer inputs and 2) variations of Contact-
Former design. The first block of Table 1 shows that using
3D vertex features as the ContactFormer input largely out-
performs other input variants. The first variant uses a global
average pooled (GAP) image feature. The second and third
variants follow existing methods [13, 40] by implementing
their feature extractors into our framework. Specifically,
the second variant use a convolutional layer to extract per-
vertex features from the image feature. The third variant
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Methods Contactest
p ↑ Contactest

r ↑

* Variations of ContactFormer input

GAP feature 0.645 0.481

Per-vertex image feature [13] 0.716 0.539

Part-scene image feature [40] 0.719 0.556

3D vertex feature (Ours) 0.754 0.587

* Variations of ContactFormer design

FC layers 0.639 0.471

SA Transformers 0.725 0.575

ContactFormer (Ours) 0.754 0.587

Table 1. Ablation studies for 3D-guided contact estimation on
BEHAVE [1].

designs two encoders for human part and scene [4] and ob-
tains features by applying cross-attention operation between
two encoders’ outputs. One major difference of the second
and third variants from ours is that they do not extract lo-
calized features based on 3D positions of 3D human and
object. Our 3D vertex feature contains localized contex-
tual information around human and object regions by grid
sampling on the image feature. Additionally, the 3D po-
sitional information of 3D vertex features enables 3D geo-
metric reasoning of human-object contact. From these ad-
vantages, exploiting 3D vertex features outperforms other
variants in contact estimation. The second block of Ta-
ble 1 shows that our ContactFormer with CA Transformers
achieves the best performance. Compared to other designs,
the cross-attention operation of the CA Transformers en-
courages ContactFormer to capture meaningful contextual
information within the image.
Effectiveness of contact-based refinement. In Table 2,
we justify our proposed contact-based refinement by con-
ducting ablation studies as follows: 1) variations of fea-
ture aggregation and 2) variations of CRFormer design. The
first block of Table 2 validates the effectiveness of contact-
based masking of CRFormer compared to other variants
of feature aggregation strategies. Comparing the first and
other variants shows the impact of contact maps in refine-
ment. As the contact maps are strong cues for understand-
ing human-object interactions, utilizing the contact maps
significantly enhances refinement performance, especially
in contact-related metrics. Among all variants, our pro-
posed contact-based masking (the fourth variant) achieves
the best performance, as the masking strategy explicitly
highlights contact maps as a key signal for refinement, un-
like other aggregation strategies. Additionally, the contact-
based masking prevents learning undesired human-object
correlation by removing unnecessary features unrelated to
human-object interaction. Due to such reasons, our pro-
posed contact-based masking outperforms other aggrega-
tion strategies by significant margins. The second block
of Table 2 validates our CRFormer design as a combina-

(c) Sensitivity test for human-object correlation
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(b) Two different feature aggregation strategies

Figure 4. Analysis of undesired human-object correlation on
BEHAVE [1]. We conduct a sensitivity test, inspecting which re-
gion is sensitive in reconstruction, for Transformer baseline and
our CRFormer. In the Transformer baseline, the object errors are
sensitive to human regions not actually related to human-object
interaction, as a result of undesired correlation. In our CRFormer,
the object errors are mostly sensitive around regions containing
human-object contact.

tion of CA Transformers and SA Transformers. The CA
Transformers have strength in encouraging attention to the
relevant information across human and object. Differently,
the SA Transformer has strength in learning positional rela-
tionships between human and object, separately. By com-
bining the advantages of each Transformer, our CRFormer
achieves the best performance.
Analysis of undesired human-object correlation. In
this section, we provide an in-depth analysis of undesired
human-object correlation, which is detrimental to plausi-
ble reconstruction. Human-object correlation is beneficial
for learning 3D human and object reconstruction, in most
cases. However, the reconstruction network can be biased
by the strong correlation between human and object poses
and marginalize evidence within the image. In the case
of Figure 2, 3D pose of the object (i.e., monitor) is pri-
marily determined by the human head, ignoring image ev-
idence. Although such an undesired correlation is detri-
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GT CONTHO (Ours) BSTRO DECOInput imageGT CONTHO (Ours) BSTRO DECOInput image

Figure 5. Qualitative comparison of human-object contact estimation with BSTRO [13] and DECO [40], on BEHAVE [1] (left) and
InterCap [14] (right). The green color indicates the contacting regions.

Methods CDhuman↓ CDobject↓ Contactrec
p ↑ Contactrec

r ↑

Initial reconstruction 5.70 10.86 0.547 0.394

* Variations of feature aggregation

Without contact maps 5.13 8.77 0.601 0.456

Add contact maps 5.12 8.54 0.616 0.483

Concat contact maps 5.18 8.65 0.618 0.477

Contact-based masking (Ours) 4.99 8.42 0.628 0.496

* Variations of CRFormer design

CRFormer w/o CA Transformers 5.40 9.03 0.591 0.419

CRFormer w/o SA Transformers 5.49 8.88 0.598 0.473

CRFormer (Ours) 4.99 8.42 0.628 0.496

Table 2. Ablation studies for contact-based refinement on BE-
HAVE [1].

mental to plausible reconstruction, there has not been much
discussion for 3D human and object reconstruction. Con-
sequently, we analyze the undesired human-object correla-
tion issue using a sensitivity test, motivated by pioneering
works [20, 50]. Figure 4 (a) shows the procedure of the sen-
sitivity test. Given an input image, we create an occluded
image with an occluding patch for each pixel of the input
image over a sliding window. Then, we measure object re-
construction error (i.e., CDobject) from each occluded image.
Repeating this process for all image regions yields a sen-
sitivity map that indicates which regions in an image the
object error is correlated with.

We conduct the sensitivity test for two different fea-
ture aggregation strategies of the contact-based refinement
module, as shown in Figure 4 (b). The Transformer base-
line naively aggregates 3D vertex features and contact maps
with concatenation. As shown in Figure 4 (c), the sensitiv-
ity maps of the Transformer baseline are highly activated
around human regions, which are not actually related to
human-object interaction. This means that 3D object recon-
structions are much more correlated with human features

Datasets Methods Contactest
p ↑ Contactest

r ↑

BEHAVE

POSA [11] 0.514 0.299

BSTRO [13] 0.615 0.527

DECO [40] 0.638 0.337

CONTHO (Ours) 0.754 0.587

InterCap

POSA [11] 0.561 0.333

BSTRO [13] 0.506 0.427

DECO [40] 0.635 0.479

CONTHO (Ours) 0.660 0.612

Table 3. Quantitative comparison of human-object contact es-
timation with state-of-the-art methods on BEHAVE [1] and In-
terCap [14].

from human regions than object features, although the hu-
man regions do not contain reasonable human-object inter-
action. On the other hand, our CRFormer shows reasonable
sensitivity maps, which are activated around object regions
or human-object contacting regions. This means that 3D
object reconstruction is mainly correlated with the object’s
own regions or human-object contacting regions, which is
a result of desirable correlation between human and object
features. Our CRFormer only considers human-object in-
teraction among features from contacting regions through
contact-based masking. Thus, by explicitly preventing the
exploitation of features unrelated to human-object contact,
the CRFormer alleviates the undesired human-object cor-
relation, producing accurate reconstruction results. We pro-
vide more analysis examples in the supplementary material.

5.4. Comparison with state-of-the-art methods

We compare ours with previous state-of-the-art methods
with two experimental protocols: 1) training & evaluating
all methods on BEHAVE [1] and 2) training & evaluating
all methods on InterCap [14].
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Figure 6. Qualitative comparison of 3D human and object reconstruction with PHOSA [52] and CHORE [45], on BEHAVE [1]
(left) and InterCap [14] (right). We highlight their representative failure cases with red circles.

Datasets Methods CDhuman↓ CDobject↓ Contactrec
p ↑ Contactrec

r ↑

BEHAVE

PHOSA [52] 12.17 26.62 0.393 0.266

CHORE [45] 5.58 10.66 0.587 0.472

CONTHO (Ours) 4.99 8.42 0.628 0.496

InterCap

PHOSA [52] 11.20 20.57 0.228 0.159

CHORE [45] 7.01 12.81 0.339 0.253

CONTHO (Ours) 5.96 9.50 0.661 0.432

Table 4. Quantitative comparison of 3D human and object
reconstruction with state-of-the-art methods on BEHAVE [1]
and InterCap [14].

Human-object contact estimation. Figure 5 and Ta-
ble 3 show that our CONTHO largely outperforms the
state-of-the-art methods: POSA [11], BSTRO [13], and
DECO [40]. BSTRO [13] and DECO [40] often fail to cap-
ture human-object contact, especially in relatively small hu-
man parts (e.g., hands), as human-object contact exists in
a small area of the image. In such difficult scenarios, our
CONTHO is superior in capturing the local human-object
contact, with the proposed 3D-guided contact estimation.
Under the 3D-guided contact estimation, 3D vertex feature
provides explicit guidance on where to focus in local im-
age regions, which allows the model to capture local con-
text of human-object contact. Furthermore, whereas previ-
ous methods only estimate human contact map, CONTHO
additionally estimates object contact map along with hu-
man contact map. This provides richer information about
human-object interaction, showing which object parts are
in contact with a human.
3D human and object reconstruction. Figure 6 and
Table 4 show that our CONTHO produces much bet-
ter reconstruction results than the state-of-the-art meth-
ods: PHOSA [52] and CHORE [45]. PHOSA [52] and

CHORE [45] produce implausible reconstruction results,
especially in terms of incorrect 3D object pose and human-
object penetration. The previous methods also fail when
human and object are not in contact (the last row in Fig-
ure 6), producing reconstructions with an excessively short
human-object distance. This is largely due to their high re-
liance on imperfect optimization targets (e.g., 2D silhou-
ettes) during their optimization process. On the other hand,
our CONTHO accurately reconstructs 3D human and ob-
ject meshes in both contacting and non-contacting cases by
the following reasons. First, our method reconstructs 3D
human and object based on data-driven knowledge, instead
of being optimized towards imperfect targets. Second, our
CRFormer learns human-object correlation mainly based
on contact maps; focusing on contact regions in contacting
cases, while learning no correlation in non-contacting cases.
As a consequence, our proposed method outperforms the
previous reconstruction methods by a noticeable margin.

6. Conclusion
We propose CONTHO, a novel and powerful contact-based
3D human and object reconstruction method that utilizes
human-object contact as the main driving signal in recon-
struction. For both accurate contact estimation and 3D hu-
man and object reconstruction, we propose a 3D-guided
contact estimation pipeline and a contact-based refinement
Transformer. As a result, our CONTHO significantly out-
performs previous methods in both human-object contact
estimation and 3D human and object reconstruction.
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