
PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision
Neural Networks

Marina Neseem*,†1, Conor McCullough2, Randy Hsin2, Chas Leichner2, Shan Li2, In Suk Chong2,
Andrew Howard2, Lukasz Lew2, Sherief Reda1, Ville-Mikko Rautio2, and Daniele Moro†2

1Brown University, 2Google

Abstract

Low-precision quantization is recognized for its efficacy
in neural network optimization. Our analysis reveals that
non-quantized elementwise operations which are prevalent
in layers such as parameterized activation functions, batch
normalization, and quantization scaling dominate the in-
ference cost of low-precision models. These non-quantized
elementwise operations are commonly overlooked in SOTA
efficiency metrics such as Arithmetic Computation Effort
(ACE) [46]. In this paper, we propose ACEv2 - an ex-
tended version of ACE which offers a better alignment with
the inference cost of quantized models and their energy
consumption on ML hardware. Moreover, we introduce
PikeLPN1, a model that addresses these efficiency issues by
applying quantization to both elementwise operations and
multiply-accumulate operations. In particular, we present a
novel quantization technique for batch normalization layers
named QuantNorm which allows for quantizing the batch
normalization parameters without compromising the model
performance. Additionally, we propose applying Double
Quantization where the quantization scaling parameters
are quantized. Furthermore, we recognize and resolve the
issue of distribution mismatch in Separable Convolution
layers by introducing Distribution-Heterogeneous Quan-
tization which enables quantizing them to low-precision.
PikeLPN achieves Pareto-optimality in efficiency-accuracy
trade-off with up to 3× efficiency improvement compared to
SOTA low-precision models.

1. Introduction
Quantization has long been established as a method to de-
crease the precision of neural network weights and activa-
tions effectively, resulting in smaller models and acceler-

*Work done during internship at Google.
†Corresponding authors: marina neseem@brown.edu and daniele-

moro@google.com
1Pike is a slim fast fish, LPN stands for Low-Precision Network.

101 102

ACEv2 (Billion)

55

60

65

70

75

To
p-

1 
Ac

cu
ra

cy
 o

n 
Im

ag
eN

et
 (%

)

XNOR-Net

Real-to-Binary

Bi-RealNet-18

Bi-RealNet-34
MeliusNet-29

MeliusNet-42

PROFIT

MobiNet

MobileNet-8b

ReActNet

PokeBNN-0.5x

PokeBNN-0.75x

PokeBNN-1x

PikeLPN-1X

PikeLPN-2X

PikeLPN-3X
PikeLPN-6X

Low-Precision Models Ours

Figure 1. Accuracy vs ACEv2 of PikeLPN and SOTA low-
precision neural networks. ACEv2 is an efficiency metric that
estimates the cost of arithmetic operations during inference.

ated processing [11]. Recent studies have shown impressive
results in image classification tasks, making the use of low-
precision quantization (i.e., 4 bits or fewer) increasingly
popular [28, 33, 34, 46]. In these compact models, convo-
lutional and fully connected layers are typically constrained
to 4-bit precision or even less, while precision is maintained
at higher levels in other layers of the network. For exam-
ple, the state-of-the-art (SOTA) binary network PokeBNN
[46] binarizes the convolutional layers of ResNet-50 [15],
and to avoid accuracy loss, they incorporate extra skip con-
nections, extra batch normalization layers, and parameter-
ized activation functions (DPReLU) that are executed in
high precision. As illustrated in Figure 2, while this strat-
egy significantly reduces the cost of multiply-accumulate
(MAC) operations, it shifts the energy burden to the ele-
mentwise operations within these remaining high-precision
layers. Although there are fewer of these elementwise op-
erations, they use more energy because they are still in high
precision. This indicates a critical area of optimization to
improve the overall efficiency of low-precision models.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15996



PikeLPN-1x (Ours)

ACEv2 (Billion)
10 20 30

Elementwise

PokeBNN-0.5x [48]

MAC

Figure 2. Contribution of multiply-accumulate (MAC) versus
elementwise operations to the commonly used efficiency metric
ACEv2 for PikeLPN-1X and PokeBNN-0.5X [46]. PikeLPN se-
lectively increases the precision of MAC operations which allows
for effectively quantizing elementwise operations, achieving 3×
more efficiency while being 2% more accurate on ImageNet.

We analyze the key efficiency bottlenecks in low-
precision models uncovering a fundamental limitation of
the efficiency metrics in literature, ACE [46], CPU64 [28,
30], Unit-gate model [47] and FA-count [37]. Those met-
rics exclude the elementwise operations in arithmetic cal-
culations, a sentiment grounded in the belief that their con-
tribution to the total computation cost is negligible com-
pared to MAC operations. Optimizing for those metrics
drives researchers to prioritize the reduction of computa-
tional precision in Convolutional and Dense layers, yet
they overlook the quantization of elementwise operations.
As a result, operations such as batch normalization, acti-
vation functions, and quantization scaling multiplications,
are often performed at full precision. Moreover, SOTA
low-precision models tend to rely extensively on mecha-
nisms like branching [18] and skip connections [15], which
significantly increase energy costs associated with mem-
ory reads and writes. To overcome this issue, we propose
ACEv2 which extends the efficiency metric ACE to ac-
count for all arithmetic operations in quantized neural net-
works including both elementwise and MAC operations.
This would help guide researchers’ choices when designing
low-precision models.

Guided by our ACEv2 metric, we design PikeLPN – a
novel family of efficient low-precision models. PikeLPN
quantizes both elementwise and MAC operations. Remark-
ably, PikeLPN not only achieves a 3× cost reduction com-
pared to SOTA binary models [28, 46], it also achieves com-
petitive accuracy levels on ImageNet [10].
Our contributions can be summarized as follows:
• We identify and analyze the overlooked cost of non-

quantized elementwise operations in SOTA low-precision
models. Our analysis shows that the non-quantized el-
ementwise operations used in parameterized activation
functions, batch normalization, and quantization scaling
dominate the inference cost of low-precision models.

• We propose ACEv2 – an extension to the existing
hardware-agnostic cost metric ACE. ACEv2 offers a bet-
ter alignment with the cost of the low-precision models
and their energy consumption on ML hardware by ac-

counting for all arithmetic operations during inference.
• We propose PikeLPN – a novel family of low-precision

architectures, which improves the efficiency of low-
precision models by quantizing both elementwise and
multiply-accumulate operations. Specifically, we pro-
pose (a) QuantNorm for effective batch normalization
quantization, (b) Double Quantization where quantiza-
tion parameters are also quantized, and (c) Distribution-
Heterogeneous Quantization for Separable Convolution
layers to tackle their distribution mismatch problem.
The rest of the paper is organized as follows. We review

the related work in Section 2. In Section 3, we propose
ACEv2 providing detailed analysis to the overlooked effi-
ciency bottlenecks by previous cost metrics. Then, guided
by the new cost metric, we propose our efficient PikeLPN
model. Next, we compare PikeLPN to SOTA low-precision
models in Section 4. Finally, we conclude in Section 5.

2. Related Work
Low-precision Quantization: A substantial body of work
exists in the realm of low-precision quantization, exem-
plified by studies that indicate that architectures can be
quantized to 4 bits with minimal impact on accuracy [1,
5, 23, 33]. Others perform logarithmic quantization meth-
ods known for their hardware efficiency [12, 26, 40]. In
addition, there are attempts to push the boundaries by in-
troducing predominantly binary models where some of the
convolution layers are quantized to 1 bit while other lay-
ers are maintained at a higher precision [28, 35, 46]. Some
researchers have also developed automated strategies for
mixed-precision modeling to dynamically choose the op-
timal precision for each layer, contingent upon a predeter-
mined efficiency metric [24]. However, existing approaches
primarily focus on the quantization of multiply-accumulate
(MAC) operations in convolution and dense layers. They
commonly neglect elementwise operations such as those in
batch normalization layers and activation functions. Our
empirical findings show that this assumption becomes in-
valid for low-precision models, specifically 4 bits or below.

Architectural Approaches to Low-precision Models:
Several studies have adopted architectural modifications to
enhance the performance of low-precision models. Many
such modifications involve the integration of modules con-
sisting solely of elementwise operations, aiming to mini-
mize computational and parameter overhead. For instance,
the channelwise real-valued rescaling of binarized tensors
has been proposed as an effective means to reduce quan-
tization error [36]. This approach incorporates element-
wise floating-point multiplications for each channel. Addi-
tional methods, as suggested in [9], advocate for per-vector
quantization, which results in multiple elementwise mul-
tiplications per channel. Studies like FracBNN [45] and
PokeBNN [46] include extra Batch Normalization layers in

15997



their predominantly binary models to expedite the training
convergence. Moreover, the use of parameterized activation
functions, such as PReLU [14] and DPReLU [46], has be-
come a standard practice for improving the performance of
low-precision models [28, 29]. All these modifications ne-
cessitate elementwise floating-point multiplications and ad-
ditions. Moreover, the introduction of skip connections has
proven beneficial in enhancing low-precision model quality.
Notably, ReActNet [28] and PokeBNN [46] are designed
with 4 and 3 parallel branches, respectively. Although skip
connections only involve elementwise additions, they con-
tribute to an increased memory access during inference to
store multiple activations increasing the inference cost [21].

Cost Metrics for Efficiency Evaluation: MAC oper-
ations have been recognized in literature as the principal
contributors to inference cost of deep learning models. As
a result, efficiency metrics have predominantly focused on
these specific operations. The CPU64 metric [27–29] has
been used to gauge the efficiency of mixed-precision neural
networks when running on CPUs. With the growing uti-
lization of specialized machine learning hardware and ac-
celerators, a newer metric named ACE has been introduced
[46]. ACE, an acronym for Arithmetic Computation Effort,
is formulated as the product of the number of MAC opera-
tions and the bitwidth of the two operands involved, which
is directly proportional to the number of active hardware
bit-adders required. The Unit-gate model [47] and FA-count
[37] correlate very well with ACE and differ only by a small
constant factor 2. All these metrics do not consider elemen-
twise operations. Thus, in this paper, we extend the ACE
metric introducing ACEv2, and this extension should gen-
eralize to other metrics as well. All these metrics, including
the extended ACE, are technology node independent.

3. Method

In this section, we identify previously overlooked costs in
state-of-the-art (SOTA) cost metrics. Additionally, we pro-
pose extending the Arithmetic Computational Effort (ACE)
metric [46] to provide a more accurate representation of
the inference cost of low-precision models. Subsequently,
we assess the impact of various design alternatives in low-
precision models on the cost of inference. Finally, we
present PikeLPN – a novel family of low-precision models.

3.1. Cost Metrics for Low Precision Models

The prevalent notion is that multiply-accumulate operations
in the convolution and dense layers are the sole substan-
tial contributors to inference cost in deep learning models
[28, 33, 46]. This viewpoint stems from the observation
that for full precision models the energy cost of those layers

2They do not account for carry-save format for local accumulator rep-
resentations typically used in systollic arrays.

0 50 100 150 200 250 300 350 400 450Binary
INT2
INT4
INT8
FP16
FP32

89.1%

84.3%

71.1%

45.2%

13.4%

1350 1400

4.1%

Arithmetic Energy (mJ)

Multiply-Accumulate Elementwise

Figure 3. Arithmetic Energy on 45nm CMOS technology by
multiply-accumulate operations versus non-quantized element-
wise operations for MobileNetV2. Energy costs are calculated us-
ing Table 1. The figure reveals that elementwise operations are a
substantial contributor to the overall cost in low-precision models.

is more than 95% of the total model operations as shown in
Figure 3. Consequently, commonly used efficiency metrics
for quantized neural networks, such as CPU64 [27–29] and
ACE [46], are tailored to exclusively account for multiply-
accumulate operations in these specified layers. Optimiza-
tion in accordance with these metrics drive researchers to
prioritize reducing the precision of multiply-accumulate op-
erations in convolution and dense layers while maintaining
high precision for all other elementwise operations. More-
over, they re-parameterize the models adding layers that
only have elementwise operations to compensate for any ac-
curacy losses by low-precision quantization [28, 46]. How-
ever, our analysis reveals that these non-quantized elemen-
twise operations substantially contributes to the arithmetic
cost during inference of low-precision models (i.e., 8 bits
and lower), thereby challenging the prevailing assumptions.

Figure 3 illustrates the relative contributions of
low-precision multiply-accumulate operations and non-
quantized elementwise operations to the total energy con-
sumption by arithmetic computations at various precisions.
The data reveals a notable trend: the proportion of energy
consumed by elementwise operations becomes more signif-
icant as the precision decreases. For example, in binary-
quantized models, those non-quantized elementwise opera-
tions account for up to 89% of the total cost. This obser-
vation highlights the limitations of existing metrics in accu-
rately gauging the efficiency of quantized models. Conse-
quently, we propose ACEv2 which extends the ACE met-
ric [46] to account for both multiply-accumulate operations
as well as elementwise operations. We anticipate that our
comprehensive ACEv2 metric will enable more informed
optimization choices within the research community.

3.2. Introducing ACEv2

ACE has been used to estimate the cost of inference on
idealized ML hardware implemented with CMOS method-
ology [46]. ACE is defined by its authors as the number

15998



Table 1. Cost under 45nm CMOS technology [16, 44] 3. f(i, j)
refers to the formula used to calculate the ACEv2 cost where i
and j are the precisions of the two operands. ca = 6 and cs = 5.
The correlation coefficient between ACEv2 and the independently
measured arithmetic energy consumption is 0.991.

MULTIPLY ADD SHIFT
Energy

ACEv2
Energy

ACEv2
Energy

ACEv2(pJ) (pJ) (pJ)

FP32 3.7 992 0.9 192 - -
FP16 1.1 240 0.4 96 - -

f(i, j) i · j - max(i, j) ca ·max(i, j) -

INT32 3.1 992 0.1 32 0.13 32
INT16 - 240 - 16 0.057 12.8
INT8 0.2 56 0.03 8 0.024 4.8
INT4 - 12 - 4 - 1.6
INT2 - 2 - 2 - 0.4

Binary - - - 1 - -

f(i, j) i · j - max(i, j) max(i, j) i · log2(j)/cs

of bitadders (i.e., digital circuit adding 3 bits to form a
2 bit number – carry and sum) required to perform every
multiply-accumulate operation. The authors justify that def-
inition by showing a high correlation coefficient (i.e., 0.946)
between the number of bitadders and the independently
measured energy consumption on 45nm CMOS technology.
While ACE provides a hardware-agnostic method to evalu-
ate the efficiency of quantized neural networks, it fails to in-
clude the elementwise operations which can be the dominat-
ing cost factor in low precision models as shown in Figure 3.
Moreover, ACE does not provide a way to estimate the cost
of shift operations which are required to implement non-
linear base-2 logarithmic quantization [43, 44]. We propose
ACEv2 which improves ACE by extending it to include el-
ementwise multiplication, elementwise addition, and shift
operations. We establish the ACEv2 formulas for the pre-
viously discussed operations as shown in Table 1.
Elementwise Multiplications: Using established methods
for constructing multipliers, such as adder trees proposed
by Wallace and Dadda [8, 42], we calculated the number of
adders needed to multiply an i-bit number by a j-bit number
as i · j −max(i, j). This formula exactly matches the opti-
mal number of adders for 1 <= i, j <= 64. See Section 6
in the Appendix for a detailed explanation.
Elementwise Additions: Fixed-point numbers added using
established adders 4 activate an upper bound of max(i, j)
bit adders to add i-bit and j-bit numbers. Floating-point
adders additionally require exponent alignment, significand
addition, and normalization steps [38], resulting in a much
higher energy consumption compared to fixed-point adders
as shown in Table 1. We analyze the operations needed in

3Energy costs for low-precision operations can be extrapolated lin-
early for addition and quadratically for multiplication [6].

4While there are many methods for constructing adders, such as Carry
Lookahead Adder [32] and Ripple Carry Adder [3], the particular imple-
mentation has a limited effect on the energy use.

Table 2. The contribution of non-quantized Batch Normalization
Layers to the overall ACEv2 cost.

Model BN Adds BN Mults BN ACEv2

(Million) (Million) (%)

MobileNetV2 (4W, 4A) 6.67 6.67 41.87
ResNet50 (1W, 1A) 10.58 10.58 41.38

floating point adders [38] and come to an ACEv2 cost of
6× the cost of a fixed-point adder. Therefore, we derive
ACEv2 for floating point adders using ca · max(i, j) with
ca = 6. See Appendix Section 7 for a detailed explanation.
Shift Operations: A Barrel Shifter is an established
method to shift and rotate i-bit numbers by j locations in
modern processors [13]. The barrel shifter is implemented
as a cascade of i log2(j) 2:1 multiplexers. Therefore, we
derive ACEv2 for a shift operation as i log2(j)/cs where
cs is the ratio of the cost of a 2:1 multiplexer compared to a
full adder. Since a full adder can be efficiently implemented
using five 2:1 multiplexers based on [22], we assign cs = 5.

To verify the correctness of our ACEv2 metric, Table 1
shows a 0.991 correlation coefficient between the indepen-
dently measured energy consumption of various arithmetic
units on the 45nm CMOS technology and its ACEv2 cost, a
notable improvement compared to the 0.946 correlation co-
efficient in ACE [46]. Using those definitions, we estimate
a more accurate arithmetic cost for any quantized model.

3.3. Overlooked Efficiency Bottlenecks

Batch Normalization: Batch normalization layers, which
necessitate elementwise multiplications and additions, typi-
cally retain parameters in floating-point format during deep
neural network quantization to maintain training stability
and prevent accuracy loss [28, 35, 46]. Consequently, these
operations are performed using floating-point (FP32) arith-
metic, with a single FP32 operation consuming approxi-
mately 18× more energy than an INT8 multiplication, as
detailed in Table 1. Assessing the impact of these non-
quantized batch normalization layers in Table 2 reveals that
they can account for as much as 42% of the total ACEv2

cost in various low-precision models. This substantial con-
tribution shows the importance of considering the cost of
these operations and potentially quantizing its parameters.
Activation Layers: In recent literature, low-precision
models have increasingly replaced ReLU [2] activation
functions with parameterized activation functions such as
PReLU [14] and DPReLU [46] to improve performance
and training stability of quantized models [28, 34]. The
dynamic parameterized rectified linear unit (DPReLU), for
instance, is defined by the following piecewise function:

DPReLU(x) =

{
η(x− α)− β if x− α > 0

γ(x− α)− β otherwise
(1)

Here, the parameters η, α, β, and γ are represented in
floating-point format. Consequently, the computation of

15999



Table 3. The contribution of non-quantized parameterized activa-
tion functions to the overall ACEv2 cost. Analysis performed by
applying different activation functions to a 4-bit MobileNetv2.

Activation Adds Mults ACEv2 Overhead
(Million) (Million) (×109) (%)

ReLU [2] 0 0 20.44 -
PReLU [14] 0 6.1 26.5 +29.6%

DPReLU [46] 6.1 6.1 27.67 +35.3%

DPReLU necessitates both elementwise floating-point mul-
tiplications and additions. Our study, detailed in Table
3, assesses the impact of these elementwise operations on
the ACEv2 cost. We find that in a 4-bit MobileNetV2
model, the incorporation of different activation functions
— namely ReLU, PReLU, and DPReLU — significantly
influences the cost. Specifically, the use of PReLU and
DPReLU, despite their benefits on accuracy, introduces up
to 35% increase in the overall inference cost. This finding
highlights the need to balance the benefits of parameterized
activation functions with their computational demands.
Skip Connections: Skip connections are regarded as zero-
cost operations in terms of arithmetic computation. Con-
sequently, previous work overused them to improve the
model performance without having any measurable effect
on the cost [28, 35, 46]. For instance, ReActNet [28] in-
corporated four parallel branches, quadrupling its mem-
ory footprint compared to a single-path model. PokeBNN
[46] followed a similar design, incorporating three parallel
branches. However, such branching necessitates the con-
catenation of feature maps from previous layers, leading
to an increase in the amount of data concurrently stored
in memory. That increase the required memory reads and
writes which have significant costs. As an example, in a
processor with a 32KB cache designed using 45nm CMOS
technology, moving an 8-bit element from the cache con-
sumes approximately 2.5pJ of energy. This is about 12×
the energy needed for an INT8 multiplication operation,
which requires only around 0.2pJ as shown in Table 1. This
disparity becomes even more profound when data must be
transfered from DRAM, where the energy requirement bal-
loon to 162.5pJ – 810× higher than the INT8 multiplica-
tion [16]. Quantifying this overhead in a hardware-agnostic
manner is challenging since it is influenced by a multitude
of factors including the underlying hardware architecture,
memory location, and model size. Yet, understanding its
impact remains crucial to design efficient models. We ad-
vocate for the adoption of Arithmetic Intensity as a practical
metric to measure memory reads and writes during infer-
ence [21]. Arithmetic Intensity (AIc) is defined as the ratio
of the arithmetic operations (Mc) to the amount of data, in-
cluding both Weights (W ) and Activations (A), required to
execute these operations as shown in Equation 2.

AIc =
Mc

W +A
(2)

Table 4. Arithmetic Intensity computed according to Equation (3)
for a ResNet-50 model with various number of branches.

Arithmetic Intensity (Ops/Element ↑)
2 Branches 3 Branches 4 Branches

73.5 49.66 36.75

Table 5. ACEv2 of a 4-bit MobileNetV2 and a binary ResNet50
model with various quantization granularities. The Overhead rep-
resents the percentage of cost required by the extra FP operations
due to quantization (i.e. quantization scaling).

Quantization Mults ACEv2 (×109) ↓
Granularity (Million) Total Overhead (%)

MobileNetV2 - < 4W, 4A >

Layerwise [11] 6.67 20.44 32.52%
Channelwise [11] 6.67 20.44 32.52%

Sub-Channelwise [9] 13.35 27.06 48.97%
ResNet50 - < 1W, 1A >

Layerwise [11] 10.63 28.13 32.03%
Channelwise [11] 10.63 28.13 32.03%

Sub-Channelwise [9] 32.75 50.08 63.55%

Consequently, Arithmetic Intensity serves as an indica-
tor of the amount of memory reads and writes to perform
computational operations. Adding branches lead to a sub-
stantial increase in the amount of data that must be loaded
to execute a relatively small number of operations; hence
decreasing the arithmetic intensity as shown in Table 4.
Quantization Granularity Overhead: Uniform quantiza-
tion, a widely adopted technique in SOTA low-precision
models [33, 35, 46], transforms discrete integer values, q,
into continuous real values, r through the affine relation

r = S(q − Z) (3)
where S is a scale factor. S is a critical component of quan-
tization which is typically learned as an arbitrary floating-
point value during training. In the inference phase, this
necessitates an elementwise multiplication by S, contribut-
ing to computational overhead [20]. Proper scaling is cru-
cial in quantization to mitigate quantization error enabling
quantized models to maintain high accuracy. Quantization
granularity dictates the level at which scaling factors are
applied in a model [11]. For example, Layerwise quan-
tization assigns a single scale factor based on all weights
within a layer. Channelwise quantization, widely adopted
in state-of-the-art low-precision models, allocates a unique
scaling factor to each channel, catering to the varying dis-
tributions of weights and potentially enhancing model accu-
racy. Sub-Channelwise quantization takes this further by as-
signing several scaling factors within each channel, allow-
ing for even finer adjustments at the expense of increased
computational cost [9]. All quantization granularities add
one or more elementwise multiplications per channel. Table
5 compares the ACEv2 cost of such quantization granulari-
ties. In the popular Channelwise quantization, the overhead
from elementwise multiplications is 32% of the total cost.

16000



Figure 4. PikeLPN building block architecture.

Table 6. Top-1 Accuracy on ImageNet vs ACEv2 cost of PikeLPN
using various quantizers for the Depthwise and Pointwise Lay-
ers. PW-Convolution layers contribute to 95% of the number of
multiply-accumulate operations in the model, that is why we lower
the precision of the PW Conv layers to 4 bits while we keep the
DW Conv layers at 8-bits.

Pointwise Conv. Depthwise Convs Top-1 ACEv2

Weights Q-Params Weights Q-Params (%) (×109)

Linear-4 Arbitrary Linear-8 Arbitrary 68.50 20.91
Linear-4 PoT Linear-8 PoT 68.41 15.93

PoT-4 - PoT-8 - 64.50 10.05

PoT-4 - Linear-8 Arbitrary 67.60 12.86
PoT-4 - Linear-8 PoT 67.55 10.95

3.4. PikeLPN Architecture

Based on our comprehensive analysis, we introduce
PikeLPN, a novel architecture engineered to mitigate the
inefficiencies of SOTA low-precision models. This section
introduces the basic block of our proposed PikeLPN model,
explores quantization strategies for the different layers, and
proposes a novel method for quantizing batch normalization
layers without compromising the model’s accuracy.
PikeLPN Basic Block: To engineer an effective low-
precision model, we first design the baseline architecture
with building blocks that are inherently efficient. With this
principle in mind, our architecture adopts separable con-
volutional layers, subdivided into depthwise and pointwise
convolutions, in line with the framework established by Mo-
bileNetV1 [17]. Those layers are widely recognized for
their computational efficiency and have been integrated into
SOTA efficient ConvNets [39, 41]. Figure 4 illustrates the
building block for PikeLPN. To maximize computational
efficiency, the used architecture deliberately avoids param-
eterized activation functions and skip connections that are
likely to increase computational cost as explained in Sub-
section 3.3. Finally, our model uses the first and last blocks
from the MobileNetV1 architecture due to their proven ef-
fectiveness and reliability.
Quantizing Separable Convolution Layers: Linear quan-

(a) (b)
Figure 5. Weights distribution of pre-trained PW and DW Con-
volution layers in PikeLPN where (a) Sample Pointwise layer
weights (b) Sample Depthwise layer weights.

tizers results in a set of equally spaced values since they
use affine mapping as shown in Equation 3. Non-uniform
quantizers have different constraints. For example, Power-
of-two (PoT) [31] restrict quantization levels to be powers-
of-two values. They can be used to increase the represen-
tational density of small values, furthermore, they have the
benefit of replacing the multiplication operations during in-
ference with shifts which are significantly cheaper as shown
in Table 1. However, using PoT quantizers for both point-
wise (PW) and depthwise (DW) convolution operations in
the separable convolution block leads to significant accu-
racy degradation as shown in the third row of Table 6. To
get some insights, we analyze the distribution of the full-
precision weights of PikeLPN when pre-trained on Ima-
geNet. Figures 5(a) and 5(b) visualize the distributions of a
sample PW and DW weights respectively. Interestingly, the
majority of the weights of the PW layer lie around ±0.1,
while the weights in the DW layer are distributed around
±2. This mismatch in weights distribution across differ-
ent layers makes low-precision quantization for the separa-
ble convolution blocks challenging because the used values
fail to capture both distributions. To address this problem,
we propose using Distribution Heterogeneous Quantization
where the pointwise weights use the more efficient PoT
quantizer while the depthwise weights use a linear quan-
tizer. It is important to note that pointwise convolutions
contribute to 95% of the number of multiply-accumulate
operations in PikeLPN; hence using the PoT quantizer in
pointwise layers only improves the model’s efficiency by
50% as shown in Table 6.
Double Quantization: Quantization requires extra ele-
mentwise multiplications by a floating-point scaling factor
which add significant overhead as shown in Table 5. While
we can not completely remove the scale factor, we can re-
duce the overhead from quantization scale multiplications
by quantizing those quantization parameters. We refer to
quantizing the quantization parameters as Double Quantiza-
tion. We consider using a PoT scale for the linear depthwise
quantizer in PikeLPN which can potentially reduce the ele-
mentwise operation from 3.7mJ to 0.13mJ based on Table
1. Our experiments indicates negligible effect on accuracy
when applying Double Quantization as shown in Table 6.
Quantizing Batch Norm Layers: Batch normalization
layers are used in most modern deep learning models to

16001



stabilize the training and improve their performance [19].
Batch normalization is computed as follows:

batchnorm(x) =
(x− µ) ∗ γ√

σ2 + ϵ
+ β (4)

Where x is the input feature map and the batch norm pa-
rameters µ, γ, σ, β are represented as floating-point values.
To avoid performing floating point multiplications and ad-
ditions, those parameters need to be quantized as follows:

Qbatchnorm(x) =
(x−Q(µ)) ∗Q(γ)√

Q(σ)2 + ϵ
+Q(β) (5)

Computation folding is a commonly used approach to
reduce the overhead of batch normalization operations in
quantized models (i.e., mainly in 8 bit models) [20]. How-
ever, the batch normalization parameters (i.e., µ, γ, σ, and
β) have to be quantized to the same precision of the pre-
ceding convolution layers to enable folding. Doing that in
low-precision models (i.e., 4 bits or lower) leads to a signifi-
cant loss in accuracy as shown in Figure 6. That is why pre-
vious low-precision model research [33, 35, 46] excluded
batch normalization layers from the quantization process,
where they keep the batch norm parameters as floating point
numbers. However, as we showed earlier in Table 2, the
non-quantized batch normalization operations can add up
to 40% overhead to the model’s ACEv2 cost.

Another solution is to quantize the batch normalization
parameters at a higher precision. Figure 6 shows the vali-
dation accuracy curve during training when batch normal-
ization parameters are represented as INT8 values (denoted
as 8-bit Vanilla BN). Although the accuracy is better than
the folded batch norm, we can still notice some degrada-
tion in accuracy compared to non-quantized batch norm lay-
ers. To minimize the accuracy loss, we propose a novel
QuantNorm layer. In our QuantNorm layer, we re-write
the batch norm quantization operation as shown in Equa-
tion 6 where we first multiply by a quantized scale s, then
add a quantized bias b. s is represented as the quantized
division between the γ and σ parameters as shown in Equa-
tion 7. Using QuantNorm helps reduce quantization error
by allowing high precision division in the scale s compu-
tation during training. As shown in Figure 6, our Quant-
Norm layer maintains close-to-FP accuracy without any ex-
tra costs compared to vanilla quantization for batch norm
layer. After training, we pre-compute s to avoid high preci-
sion division during inference.

Qbatchnorm(x)improved = x ∗ s− b (6)

s = Q(
γ√

σ2 + ϵ
) (7)

b = Q(β)−Q(µ) ∗ s (8)

Model Scaling: To generate a Pareto family of models,
we scale the number of output channels as practiced in the

0 100 200 300 400 500
Training Iterations

0

20

40

60

Va
lid

at
io

n 
To

p-
1 

(%
)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)
Folded BN

Figure 6. Validation Top-1 Accuracy during QAT on ImageNet for
different Batch Norm Quantization techniques.

MobileNetV1 model [17]. We also scale the precision of
the input activation to the pointwise convolution layers in
the PikeLPN block. We show more details about scaling
PikeLPN in Appendix Section 8.

4. Experiments
4.1. Implementation and Training

All models are implemented using QKeras [7], then we
performed Quantization-aware training (QAT) [20]. We
train and evaluate the PikeLPN family of models on the
ILSVRC12 ImageNet classification dataset [10]. To train
our low-precision models, we follow a multi-phase train-
ing approach. We first train the full-precision model, then
we quantize the model as explained previously in Subsec-
tion 3.4, and train for another 500 epochs. All Models
are trained with an effective batch size of 256 using an
AdamW optimizer and a Cosine Decay schedule. We use
label smoothing regularization with cross-entropy loss and
a smoothing factor of 0.1 for all models. The initial learn-
ing rate is 1e − 4 and annealed using a cosine schedule to
1e − 12. An interesting observation was that training for
the final 100 epochs at a constant low learning-rate (i.e.,
1e − 12) help the weights of the low-precision models sta-
bilize and significantly boost the accuracy. More details
and visualization about this behaviour in added in the Ap-
pendix. We use standard augmentation techniques like re-
sizing, cropping, and flipping. At test time, all PikeLPN
models are evaluated on images of resolution 224× 224.

4.2. Results

To evaluate the accuracy-efficiency trade-off by PikeLPN,
we compare its performance to state-of-the-art low-
precision models. Figures 7 and 1 show that PikeLPN es-
tablishes the SOTA Pareto frontier for low-precision and
binary models in terms of arithmetic energy consumption
and ACEv2 cost respectively. Table 7 compares PikeLPN
to SOTA low-precision models in terms of Top-1 Accu-
racy on ImageNet, Energy consumption in millijoules,
ACEv2, and Arithmetic Intensity. We clearly see how
the elementwise operations dominate (i.e., 31-93%) the

16002



Table 7. Results – PikeLPN versus SOTA low-precision models in terms of Accuracy and Efficiency Metrics. ACEv2 is measured
according to the definition in Section 3.2. The fourth and fifth columns show the contribution to the overall ACEv2 cost by multiply-
accumulate and elementwise operations respectively. Energy represents the arithmetic energy according to 45nm CMOS technology
according to table 1. Arithmetic Intensity is an indication for the memory reads and writes required by the model as explained in Section
3.3. Used Precisions represent the the precision of the various operations in the mixed-precision models.

Model Accuracy Arithmetic Computational Effort (ACEv2) Energy Arithmetic Intensity Used
(%) Total (×109 ↓) MAC (%) Elementwise (%) (mJ ↓) (Ops/Element ↑) Precisions

XNOR-Net [36] 51.2 143.78 - - 587.69 - 32, 1
MobiNet [34] 54.4 12.64 13.17 86.83 50.66 28 -

Bi-RealNet-18 [27] 56.4 166.26 - - 678.75 - 32, 1
Bi-RealNet-34 [27] 62.2 168.11 - - 691.47 - 32, 1

MobileNet (8W, 4A) [25] 64.0 33.8 68.96 31.04 118.54 39.57 32, 8, 4
MobileNet (4W, 8A) [25] 65.0 33.8 68.96 31.04 118.54 39.57 32, 8, 4
Real-to-Binary Net [30] 65.4 186.85 - - 762.24 - 32, 1

MeliusNet-29 [4] 65.8 158.21 - - 656.81 - 32, 1
PokeBNN-0.5x [46] 65.2 33.58 4.18 95.81 143.78 24.5 32, 8, 4, 1

PikeLPN-1× (Ours) 67.55 8.50 96.38 3.62 34.98 39.57 8, 4

PROFIT [33] 69.05 20.91 47.51 52.49 82.70 39.57 32, 4
MeliusNet-42 [4] 69.20 215.71 - - 901.82 - 32, 1

PikeLPN-2× (Ours) 69.23 15.56 97.87 2.13 64.20 39.57 16, 8, 4

ReActNet [28] 69.4 83.24 26.78 73.22 361.63 36.75 32, 1
PokeBNN-0.75x [46] 70.5 50.61 5.11 94.88 218.51 40.48 32, 8, 4, 1
MobileNet (8bit) [25] 70.7 51.44 79.61 20.39 173.68 39.57 32, 8

PikeLPN-3× (Ours) 71.95 33.70 98.52 1.48 139.59 52.66 16, 8, 4

PokeBNN-1x [46] 73.4 68.56 6.16 93.83 298.44 40.48 32, 8, 4, 1

PikeLPN-6× (Ours) 73.59 58.74 98.87 1.13 243.85 63.38 16, 8, 4

102 103

Arithmetic Energy (mJ)

55

60

65

70

75

To
p-

1 
Ac

cu
ra

cy
 o

n 
Im

ag
eN

et
 (%

)

XNOR-Net

Real-to-Binary

Bi-RealNet-18

Bi-RealNet-34

MeliusNet-29

MeliusNet-42

PROFIT

MobiNet

MobileNet-8b

ReActNet

PokeBNN-0.5x

PokeBNN-0.75x

PokeBNN-1x

PikeLPN-1X

PikeLPN-2X

PikeLPN-3X
PikeLPN-6X

Low-Precision Models Ours

Figure 7. Accuracy and Energy Consumption by the arithmetic op-
erations of our PikeLPN vs SOTA low-precision neural networks.

ACEv2 cost for other low-precision models. On the other
hand, PikeLPN carefully quantizes the elementwise oper-
ations reducing their contribution to the total energy con-
sumption to less than 5%. Additionally, PikeLPN-1× is
1.5× more efficient in terms of both ACEv2 and arith-
metic energy consumption compared to MobiNet [35] (i.e.,
A binary version of MobileNetV1 with added skip connec-
tions) while achieving 13.2% higher Top-1 Accuracy on
ImageNet. Moreover, PikeLPN-3× achieves 1.5% higher
Top-1 accuracy than PokeBNN-0.75× [46] (i.e., A binary
ResNet-50 with parameterized activation functions) while
being 35% more efficient. In terms of arithmetic intensity,
PikeLPN shows a much higher arithmetic intensity when

compared to other low-precision models, this is mainly due
to the absence of any skip connections. As mentioned ear-
lier in Section 3.3, high arithmetic intensity is advantageous
as it suggests a greater proportion of computational opera-
tions per data element, which can lead to reducing the mem-
ory reads and writes by the model; hence reducing the over-
all energy consumption during inference.

5. Conclusion

Our investigation into SOTA low-precision models uncov-
ered overlooked efficiency bottlenecks, particularly noting
that operations traditionally considered negligible—such
as elementwise operations in activation functions, batch
normalization, and quantization scaling can contribute up
to 90% of the inference cost. Addressing these chal-
lenges, we proposed ACEv2 which extends the efficiency
metric ACE to better reflect the inference cost of low-
precision models. Moreover, we introduced PikeLPN,
a novel family of models that quantizes both element-
wise and multiply-accumulate operations. Specifically,
we propose (a) a novel QuantNorm layer for effective
batch normalization quantization, (b) Double Quantiza-
tion where quantization parameters are also quantized, and
(c) Distribution-Heterogeneous Quantization for Separable
Convolution layers to tackle their distribution mismatch
problem. PikeLPN achieves up to a threefold reduction in
inference cost over existing low-precision models while im-
proving the Top-1 accuracy in ImageNet dataset.

16003



References
[1] AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal,

Jonathan Malmaud, Oleg Rybakov, Chas Leichner, and
Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3091–3099, 2021. 2

[2] Abien Fred Agarap. Deep learning using rectified linear units
(relu). 2018. 4, 5

[3] S. Archana and G. Durga. Design of low power and high
speed ripple carry adder. In 2014 International Conference
on Communication and Signal Processing, pages 939–943,
2014. 4

[4] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen,
and Christoph Meinel. Meliusnet: Can binary neural net-
works achieve mobilenet-level accuracy? arXiv preprint
arXiv:2001.05936, 2020. 8

[5] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev.
Low-bit quantization of neural networks for efficient infer-
ence. In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pages 3009–3018. IEEE,
2019. 2

[6] Wesley Donald Chu. Wallace and dadda multipliers imple-
mented using carry lookahead adders. 2013. 4

[7] Claudionor N Coelho Jr, Aki Kuusela, Shan Li, Hao Zhuang,
Jennifer Ngadiuba, Thea Klaeboe Aarrestad, Vladimir Lon-
car, Maurizio Pierini, Adrian Alan Pol, and Sioni Summers.
Automatic heterogeneous quantization of deep neural net-
works for low-latency inference on the edge for particle de-
tectors. Nature Machine Intelligence, 3(8):675–686, 2021.
7

[8] Luigi Dadda. Some schemes for fast serial input multipli-
ers. In 1983 IEEE 6th Symposium on Computer Arithmetic
(ARITH), pages 52–59, 1983. 4

[9] Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer,
William Dally, and Brucek Khailany. Vs-quant: Per-vector
scaled quantization for accurate low-precision neural net-
work inference. Proceedings of Machine Learning and Sys-
tems, 3:873–884, 2021. 2, 5

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 2, 7

[11] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of quan-
tization methods for efficient neural network inference. In
Low-Power Computer Vision, pages 291–326. Chapman and
Hall/CRC, 2022. 1, 5

[12] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R Iris
Bahar, and Sherief Reda. Understanding the impact of preci-
sion quantization on the accuracy and energy of neural net-
works. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pages 1474–1479. IEEE, 2017.
2

[13] Irina Hashmi and Hafiz Md. Hasan Babu. An efficient de-
sign of a reversible barrel shifter. In 2010 23rd International
Conference on VLSI Design, pages 93–98, 2010. 4

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 3, 4, 5

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2

[16] Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pages 10–14, 2014. 4, 5

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 6, 7

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. pages 448–456, 2015. 7

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 5, 7

[21] Nandan Kumar Jha and Sparsh Mittal. Modeling data
reuse in deep neural networks by taking data-types into cog-
nizance. IEEE Transactions on Computers, 70(9):1526–
1538, 2020. 3, 5

[22] Iosr Journals, B. Ananda Babu, Jamshid M. Basheer, and Ab-
delmoty .M. Abdeen. Power optimized multiplexer based 1
bit full adder cell using .18 µm cmos technology. 2015. 4

[23] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to quantize deep networks by op-
timizing quantization intervals with task loss. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4350–4359, 2019. 2

[24] I. Koryakovskiy, A. Yakovleva, V. Buchnev, T. Isaev, and G.
Odinokikh. One-shot model for mixed-precision quantiza-
tion. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7939–7949, Los Alami-
tos, CA, USA, 2023. IEEE Computer Society. 2

[25] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 8

[26] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-
two quantization: An efficient non-uniform discretization for
neural networks. arXiv preprint arXiv:1909.13144, 2019. 2

[27] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

16004



formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018. 3, 8

[28] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. Reactnet: Towards precise binary neural net-
work with generalized activation functions. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16, pages
143–159. Springer, 2020. 1, 2, 3, 4, 5, 8

[29] Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen,
Dong Huang, and Kwang-Ting Cheng. How do adam and
training strategies help bnns optimization. In International
conference on machine learning, pages 6936–6946. PMLR,
2021. 3

[30] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos. Training binary neural networks with real-
to-binary convolutions. arXiv preprint arXiv:2003.11535,
2020. 2, 8

[31] Daisuke Miyashita, Edward H Lee, and Boris Murmann.
Convolutional neural networks using logarithmic data rep-
resentation. arXiv preprint arXiv:1603.01025, 2016. 6

[32] Yu-Ting Pai and Yu-Kumg Chen. The fastest carry looka-
head adder. In Proceedings. DELTA 2004. Second IEEE In-
ternational Workshop on Electronic Design, Test and Appli-
cations, pages 434–436, 2004. 4

[33] Eunhyeok Park and Sungjoo Yoo. Profit: A novel training
method for sub-4-bit mobilenet models. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part VI 16, pages 430–446.
Springer, 2020. 1, 2, 3, 5, 7, 8

[34] Hai Phan, Yihui He, Marios Savvides, Zhiqiang Shen, et al.
Mobinet: A mobile binary network for image classification.
In Proceedings of the IEEE/CVF winter conference on ap-
plications of computer vision, pages 3453–3462, 2020. 1, 4,
8

[35] Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides,
Kwang-Ting Cheng, and Zhiqiang Shen. Binarizing mo-
bilenet via evolution-based searching. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13417–13426, 2020. 2, 4, 5, 7, 8

[36] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 2, 8

[37] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Ana-
lytical guarantees on numerical precision of deep neural net-
works. In International Conference on Machine Learning,
pages 3007–3016. PMLR, 2017. 2, 3

[38] P.-M. Seidel and G. Even. On the design of fast ieee floating-
point adders. In Proceedings 15th IEEE Symposium on Com-
puter Arithmetic. ARITH-15 2001, pages 184–194, 2001. 4

[39] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 6

[40] Hokchhay Tann, Soheil Hashemi, R. Iris Bahar, and Sherief

Reda. Hardware-software codesign of accurate, multiplier-
free deep neural networks. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, 2017. 2

[41] Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu,
Oncel Tuzel, and Anurag Ranjan. Mobileone: An im-
proved one millisecond mobile backbone. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7907–7917, 2023. 6

[42] C. S. Wallace. A suggestion for a fast multiplier. IEEE Trans-
actions on Electronic Computers, EC-13(1):14–17, 1964. 4

[43] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,
Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin.
Shiftaddnet: A hardware-inspired deep network. Advances
in Neural Information Processing Systems, 33:2771–2783,
2020. 4

[44] Haoran You, Huihong Shi, Yipin Guo, et al. Shiftaddvit:
Mixture of multiplication primitives towards efficient vision
transformer. arXiv preprint arXiv:2306.06446, 2023. 4

[45] Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen,
Deming Chen, and Zhiru Zhang. Fracbnn: Accurate and
fpga-efficient binary neural networks with fractional activa-
tions. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 171–182, 2021. 2

[46] Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A
binary pursuit of lightweight accuracy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12475–12485, 2022. 1, 2, 3, 4, 5, 7, 8

[47] Reto Zimmermann. Computer arithmetic: Principles, archi-
tectures, and vlsi design. Personal publication (Available at
http://www. iis. ee. ethz. ch/ zimmi/-publications/comp arith
notes. ps. gz), 1999. 2, 3

16005


