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Abstract

Most domain adaptation (DA) methods are based on ei-
ther a convolutional neural networks (CNNs) or a vision
transformers (ViTs). They align the distribution differences
between domains as encoders without considering their
unique characteristics. For instance, ViT excels in accuracy
due to its superior ability to capture global representations,
while CNN has an advantage in capturing local represen-
tations. This fact has led us to design a hybrid method to
fully take advantage of both ViT and CNN, called Explicitly
Class-specific Boundaries (ECB). ECB learns CNN on ViT
to combine their distinct strengths. In particular, we lever-
age ViT’s properties to explicitly find class-specific decision
boundaries by maximizing the discrepancy between the out-
puts of the two classifiers to detect target samples far from
the source support. In contrast, the CNN encoder clusters
target features based on the previously defined class-specific
boundaries by minimizing the discrepancy between the prob-
abilities of the two classifiers. Finally, ViT and CNN mutually
exchange knowledge to improve the quality of pseudo labels
and reduce the knowledge discrepancies of these models.
Compared to conventional DA methods, our ECB achieves
superior performance, which verifies its effectiveness in this
hybrid model. The project website can be found here.

1. Introduction
Over the past few years, convolutional neural networks
(CNNs) [13] have been the cornerstone of deep learning
techniques in computer vision tasks. This progress is mainly
attributed to a convolution layer, which efficiently captures
local spatial hierarchies for robust image representations.
This local feature extraction capability has enabled CNNs to
achieve State-of-the-Art (SOTA) performance in a variety of
vision tasks, from image classification to object detection. In
spite of its powerful local feature extraction, CNNs are some-
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Figure 1. Illustration of the proposed hybrid network architecture
that leverages the strengths of ViT and CNN models.

what limited in capturing more global and comprehensive
visual context. To overcome this limitation, vision trans-
former (ViT) [7] was introduced. ViT starts by dividing an
image into patches, which are transformed into a sequence
of tokens. Positional embeddings are incorporated into the
tokens to retain the order of these patches. The model then
uses transformer blocks to extract these tokens into features
as image representations. Thanks to self-attention mecha-
nisms in ViT, it is able to weigh the importance of different
regions in an image irrespective of their spatial proximity,
leading to comprehensive global representations with im-
pressive accuracy. The advancements in ViT have led to
a growing inclination in the machine learning realm over
CNN-based approaches for a range of tasks.

Instead of focusing solely on replacing CNN with ViT,
our approach diverges from this trend. We believe that both
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ViT and CNN architectures have their own strengths that
can be harnessed when combined well. For instance, ViT
has shown the capability to capture global representations
and demonstrates robustness when trained on large datasets.
Yet, because it is composed of multilayer perceptron (MLP)
layers, ViT can overfit if the dataset is limited. On the other
hand, CNNs perform well with relatively small datasets
thanks to their spatial invariance and robustness in captur-
ing local representations. Motivated by this, we propose
a novel method that capitalizes on the distinct strengths
of both architectures. As shown in Fig. 1, we exploit the
superior accuracy of ViT in identifying more general class-
specific boundaries by maximizing the discrepancy between
the outputs of the two classifiers, enabling us to estimate the
worst-case hyperspaces. Once these class-specific bound-
aries are defined, CNN minimizes the discrepancy by clus-
tering target features closer to the source domain, aiming to
minimize errors within the identified hyperspaces. However,
the knowledge discrepancies between ViT and CNN still
exist, so we applied additional co-training to bridge this gap
while improving the quality of the pseudo labels. In the
field of unsupervised domain adaptation (UDA), MCD [30]
emphasizes the importance of maximizing the discrepancy
between classifier outputs for target samples, which are far
from the source domain’s support, and then minimizing this
discrepancy through a feature generator to align the target
features closer to the source’s support.

Although UDA has made significant advancements in
domain adaptation (DA) tasks, the semi-supervised do-
main adaptation (SSDA) scenarios, as discussed in [11, 14–
16, 28, 31, 34–36], are extensively employed to yield remark-
able classification accuracy compared to the UDA setting
[2, 4, 5, 19, 37]. This is because a model trained under
UDA is only accessed to labeled source data, while a model
trained with the SSDA setting benefits from the extra tar-
get information with a few labeled target samples besides
labeled source data. However, the previous DA methods
only take full advantage of the unique benefits of CNN as a
feature extractor. Specifically, works in [12, 15, 21, 31] use
a combination of a CNN encoder followed by an MLP clas-
sifier, but the decision boundary towards the source domain
leads to data bias in DA. To address this bias, some previ-
ous works [27, 28, 37] introduce a multi-model by adding
one more MLP classifier, which consists of a single CNN
encoder and two MLP classifiers. Furthermore, the first DA
approaches in [22, 34] use two CNN encoders and two MLP
classifiers to boost the classification accuracy by leveraging a
co-training strategy that ensures the consistency of unlabeled
target data through knowledge exchange. However, these
methodologies still follow the same rule, where the CNN
model is selected as the encoder, and MLP is assigned as
the classifier. Therefore, the capabilities of ViT in capturing
global information remain unexploited. Inspired by the ideal,

we make use of this multi-model architecture to build a new
hybrid framework that leverages the advantages of ViT and
CNN for DA settings. However, the proposed method does
not require any additional complexity compared to previous
works in the test phase. We summarize the contributions of
this paper as follows:
• We introduce a hybrid model that can take advantage of

ViT. Beyond simply replacing CNN with ViT, we can drive
the feature space of ViT to CNN.

• Our approach demonstrates the successful integration of
ViT and CNN, making a synergy with these two powerful
frameworks.

• The proposed method outperforms the prior works to
achieve SOTA performances on DA benchmark datasets.

2. Related Works
Co-training. In the realm of semi-supervised learning (SSL),
co-training is a scheme to improve the robustness, first pro-
posed by [1], and harnesses data from dual views, enabling
two models to iteratively ’teach’ each other. During this pro-
cess, each model alternately makes predictions on unlabeled
data, with the most confident predictions used to augment
the training set of the other model. This mutual teaching
strategy can significantly improve the performance of both
models, particularly when labeled data is scarce. In the DA
context, FixBi [22], DECOTA [34], and MVCL [23] offer
innovative co-training strategies. Notably, FixBi and DE-
COTA utilize two distinct branches, each including a feature
extractor and a classifier. They utilize MIXUP augmentation
to reduce the gap in multiple intermediate domains between
the source and target domain during co-training. However,
they miss the potential benefits of strong augmentation. In
contrast, while MVCL employs both weak and strong aug-
mentation to bolster its co-training approach, it relies on a
single CNN-based encoder and two classifiers to produce
two views. This limits the representation of unlabeled target
data, depriving its comprehensive global information. To
address these limitations, we employ the ViT in conjunction
with a CNN-based encoder. This combination generates two
representational views that encapsulate both local and global
information. Additionally, we integrate both weak and strong
augmentations for unlabeled target samples, which enhances
the interactivity and effectiveness of our co-training strategy.
Domain Adaptation Framework. In the realm of DA, vari-
ous frameworks have been presented. Early methods such as
MME [31], APE [15], and SENTRY [26] adopt the conven-
tional approach of constructing deep learning frameworks
that have a feature extractor coupled with a classifier. How-
ever, source and target domains share the same decision
boundary, which leads to data bias toward the source do-
main. To alleviate data bias, MDD [37] and UODA [27]
introduce two distinct classifiers. They demonstrate that
using a dual-classifier setup can improve the performance
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Figure 2. Illustration of a hybrid network with the proposed Finding to Conquering strategy. We use ViT to build E1 that drives two
classifiers F1 and F2 to expand class-specific boundaries comprehensively. Besides, we select CNN for the second encoder E2 to cluster
target features based on the boundaries identified by ViT. These encoders all use two classifiers F1, F2.

of classification tasks. These methods use a single feature
extractor to train on both labeled source and target datasets.
However, the source domain is more reliable than the target
domain thanks to labeled source samples, which can lead
the feature extractor to overly focus on source data repre-
sentations. This results in a learning bias toward the source
domain, accumulating errors during the training process. To
solve this problem, DECOTA [34] proposes a novel archi-
tecture by decomposing two distinct branches, UDA and
SSL, each consisting of a feature extractor and a single clas-
sifier. Specifically, the UDA branch is trained on labeled
source data and unlabeled target data, while the SSL branch
is trained on labeled and unlabeled target data. Thanks to the
SSL branch, focusing solely on the target domain facilitates
the alleviation of learning bias. In addition, the UDA branch
is capable of mitigating learning bias by leveraging extra
information from the SSL branch via the co-training strategy.
Despite the notable advancements in the field, DECOTA still
follows the framework of using CNN as the feature extractor.
Therefore, it is impossible to completely improve the quality
of pseudo labels for unlabeled target samples and exploit
learning space based on the properties of ViT. As a result, the
capabilities of ViT in capturing global information still need
to be explored. Instead of solely replacing CNN with ViT,
we propose a hybrid model that combines their strengths of
both architectures.

3. Methodology
In DA scenarios, we deal with the following data setting:
• Labeled source domain: Denoted as DS =
{(xS

i , y
S
i )}

NS
i=1 includes NS richly labeled samples.

• Labeled target domain: Denoted as DTl
=

{(xTl
i , yTl

i )}NTl

i=1 includes NTl
limited labeled target sam-

ples. Notably, DTl
is empty in UDA.

• Unlabeled target domain: Denoted as DTu =

{(xTu
i , yTu

i )}NTu

i=1 includes NTu
target samples that do not

have corresponding labels during the training phase.
In this setup, the sample xS

i and xTl
i from the source do-

main and the labeled target domain are associated with corre-
sponding ground-truth labels ySi and yTl

i , respectively. There
is an assumption that the label yS , yTl , and yTu all belong
to the same label space with K classes. Notably, yTu , which
denotes labels for the unlabeled target data, are only used
during the testing phase. Furthermore, the number of labeled
target samples NTl

is much smaller than both NS and NTu
.

Moreover, we implement two varied stochastic data transfor-
mations: Augw(·) and Augstr(·). The function Augw(·) is
a weak augmentation method employing light perturbations
such as random horizontal flipping and random cropping,
whereas Augstr(·) stands as a strong augmentation method,
using RandAugment [3], which involves 14 transformation
techniques. Specifically, both Augw(·) and Augstr(·) are
applied to the unlabeled set DTu

, transforming a sample xTu
i

to two versions xTu
i,w and xTu

i,str, respectively. Subsequently,
we train the model on the labeled set Dl = DS ∪DTl

and the
unlabeled set DTu

, and evaluate the trained model on DTu
.

To improve the performance on DTu , we propose a hybrid
model consisting of ViT and CNN branches. The ViT branch
is made up of a ViT encoder E1(·;θE1

) and a classifier
F1(·;θF1

), while the CNN branch includes a CNN encoder
E2(·;θE2) and a classifier F2(·;θF2). Our strategy training
proceeds in three steps:
1. Supervised Training: We train both ViT and CNN

branches on Dl whose knowledge is adapted to the DTu

as illustrated in Fig. 2.
2. Finding to Conquering: In Fig. 2, we find class-specific

boundaries based on fixed E1 by maximizing discrepancy
between F1 and F2. Subsequently, the E2 clusters the
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target features based on those class-specific boundaries
by minimizing discrepancy.

3. Co-training: To exchange effectively knowledge be-
tween two branches on DTu

, the ViT branch generates a
pseudo label for weakly version xTu

i,w to teach the CNN
branch with strongly version xTu

i,str. Then, the reverse
process is also applied as depicted in Fig. 3.

3.1. Supervised Training

In this phase, we employ the standard cross-entropy loss to
train a model’s two branches: ViT branch and CNN branch.
In the ViT branch, we aim to minimize the empirical loss of
labeled data, which is defined as follows:

Lsup
vit (θE1

,θF1
) =

1

Nl

Nl∑
i=1

H(yli, p
l
1(x

l
i)), (1)

where H(·) denotes the standard cross-entropy loss. When
pl1(x

l
i) = σ(F1(E1(x

l
i))), σ represents the softmax func-

tion, which transforms the logits into probabilities across
K categories. Initially, ViT encoder E1 maps the labeled
sample xl

i into a d-dimensional feature space. The classi-
fier F1 then categorizes the input feature space E1(x

l
i) into

the logits. Finally, we minimize the cross-entropy loss be-
tween the predicted labeled probability by pl1(x

l
i) and the

provided ground-truth label yli, ensuring accurate predictions
on labeled data.

Similarly, the CNN branch is also trained using labeled
data to minimize the empirical loss as follows:

Lsup
cnn(θE2

,θF2
) =

1

Nl

Nl∑
i=1

H(yli, p
l
2(x

l
i)), (2)

where pl2(x
l
i) = σ(F2(E2(x

l
i))) is obtained by extracting

features from the labeled sample xl
i using the CNN encoder

E2. These features are then mapped to logits through the
classifier F2. Finally, the softmax function σ transforms
these logits into probabilities across K categories. The main
goal of this process is to minimize the cross-entropy loss to
ensure a close alignment between the predicted probabilities
pl2(x

l
i) and the ground-truth labels yli.

3.2. Finding to Conquering

Discrepancy Loss Definition. In this work, we use the
absolute difference between the probabilistic outputs a and
b from two distinct classifiers F1 and F2, respectively, for
each class to guarantee that the discrepancy loss is always
non-negative as follows:

d(a,b) =
1

K

K∑
k=1

|ak − bk|, (3)

where ak and bk correspond to the probability outputs of
the two classifiers for the k-th class. Normalizing with the

total number of categories assures that the discrepancy loss
is scale-invariant and bounded between 0 and 1. The dis-
crepancy loss serves as a measure of divergence between the
probabilistic outputs of two classifiers, a and b. A discrep-
ancy loss of zero indicates the perfect agreement between
them across all classes. On the other hand, a higher discrep-
ancy loss points to a more significant divergence in the two
classifiers’s predictions. This loss is beneficial in scenarios
where we want to expand class-specific boundaries.
Finding Stage. In this stage, we aim to expand the class-
specific boundaries of the classifiers (F1, F2) in relation to
the fixed ViT encoder E1 by maximizing the discrepancy
loss between their outputs. This means we have a possibility
to estimate worst-case hyperspaces, which identifies target
samples that fall outside the broader source distribution’s
support, rather than using CNN encoder E2. To avoid this
issue, we add a supervised loss on the labeled samples as
follows:

Lfind(θF1
,θF2

) = Lsup
vit + Lsup

cnn

− 1

NTu

NTu∑
i=1

d
(
pfind1 (xTu

i ), pfind2 (xTu
i )

)
, (4)

where pfind1 (xTu
i ) = σ(F1(E1(x

Tu
i ))) and pfind2 (xTu

i ) =

σ(F2(E1(x
Tu
i ))) denote the probability outputs of F1 and

F2 with ViT encoder E1 on the unlabeled target data xTu
i , re-

spectively. By integrating the supervised loss on the labeled
samples, we ensure that the classifiers not only distinguish
different classes, but also push to deviate as far as possible
from the currently learned class-specific boundaries while
all labeled samples are correctly distinguished. In essence,
the Finding Stage is a delicate balance between maximizing
the discrepancy to explore the class-specific boundaries and
minimizing the supervised loss to maintain classification
accuracy.
Conquering Stage. In this stage, we leverage the class-
specific boundaries established by the ViT encoder E1 as a
reference to guide the optimization of the CNN encoder E2,
while keeping the classifiers F1 and F2 fixed. The primary
is to minimize the discrepancy between the outputs of two
classifiers, F1 and F2, allowing the features extracted by
CNN encoder E2 to be accurately classified. The objective
function is formulated as follows:

Lconq(θE2
) =

1

NTu

NTu∑
i=1

d
(
pconq1 (xTu

i ), pconq2 (xTu
i )

)
, (5)

where pconq1 (xTu
i ) = σ(F1(E2(x

Tu
i ))) and pconq2 (xTu

i ) =

σ(F2(E2(x
Tu
i ))) denote the probability outputs of F1 and

F2 with CNN encoder E2 on the unlabeled target data, xTu
i .

By focusing on minimizing the discrepancy loss, the fea-
tures extracted by the CNN encoder E2 are clustered on the
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Figure 3. Illustration of co-training strategy.

class-specific boundaries of the ViT encoder E1, even when
estimating the worst-case hyperspaces. This alignment is
crucial as it guarantees that the unlabeled samples are not
only correctly classified but also robust to variations in the
class-specific boundaries.

3.3. Co-training

Following the Finding-to-Conquering (FTC) strategy, we
recognize a significant gap in the knowledge discrepancy
between the ViT and CNN branches that needs to be mini-
mized for the optimal performance. To resolve this, we have
adopted a co-training strategy with dual objectives as illus-
trated in Fig. 3. The first objective focuses on reducing the
gap between the two branches by enabling mutual enhance-
ment and leveraging each branch’s strength to improve the
quality of pseudo labels. The second objective is to specifi-
cally improve the performance of the CNN branch, thanks to
the potential to capture complex patterns and relationships
in the data of the ViT branch.

Initially, we employ pseudo labels generated by the ViT
branch to teach the learning process of the CNN branch.
This is achieved by setting a fixed threshold, denoted as τvit,
and applying it as follows:

Lunl
vit→cnn(θE2

,θF2
) =

1

NTu

NTu∑
i=1

1[max(qv
i ) ≥ τvit]H

(
q̂vi , p

c(xTu
i,str)

)
, (6)

where 1[·] is the binary indicator, returning 1 if the condition
inside [·] is satisfied, and 0 otherwise. In this context, qv

i =
σ(F1(E1(x

Tu
i,w))) indicates the ViT branch’s prediction for

a weakly augmented version of an unlabeled target sample.
Then, the highest prediction, exceeding the fixed threshold
τvit, is converted into pseudo label q̂vi = argmax(qv

i ). Fi-
nally, the output prediction pc(xTu

i,str) = σ(F2(E2(x
Tu
i,str)))

of the CNN branch on the strongly augmented target sam-
ple is adjusted to closely align with the pseudo label q̂vi
using the cross-entropy loss. This process ensures that the
CNN branch effectively learns from the ViT branch’s pre-
dictions, making the consistency and alignment between the
two branches better.

Similarly, we also leverage the pseudo labels from the
CNN branch to guide the learning process of the ViT branch.
This is achieved by setting another fixed threshold, denoted
as τcnn, and using it as follows:

Lunl
cnn→vit(θE1 ,θF1) =

1

NTu

NTu∑
i=1

1[max(qc
i ) ≥ τcnn]H

(
q̂ci , p

v(xTu
i,str)

)
, (7)

where qc
i = σ(F2(E2(x

Tu
i,w))) is the CNN branch’s predic-

tion for a weakly augmented target sample. The pseudo la-
bel q̂ci is generated from the highest predictions of the CNN
branch that is higher than the threshold τcnn. Meanwhile,
pv(xTu

i,str) = σ(F1(E1(x
Tu
i,str))) indicates the output predic-

tion of the ViT branch on the strongly augmented target
sample and is adjusted to closely align with the pseudo label
q̂ci , using the cross-entropy loss. Through the co-training
process, we enhance the model’s ability to generalize and
perform accurately on unlabeled target data.

3.4. Testing Phase

For a fair comparison with the previous DA methods [12, 16,
26, 31, 36], we select the CNN encoder E2 associated with
its classifier F2 in the testing phase as illustrated in Fig. 2 as
follows:

ŷTu
i = argmax

(
F2(E2(x

Tu
i ))

)
, (8)

where ŷTu
i is the predicted class of unlabeled target sample.

4. Experiments
4.1. Experiment Setup

Datasets. We conduct extensive evaluations on standard DA
benchmark datasets: Office-Home [29] and DomainNet [25].
On Office-Home dataset, we perform experiments on all
possible combinations of these 4 domains: Real (R), Clipart
(C), Art (A), and Product (P ) with 65 categories. Consistent
with prior SSDA methods [11, 16, 17, 31, 36], we conduct
an evaluation on a subset of DomainNet that includes 126
categories in 4 domains: Real (rel), Clipart (clp), Painting
(pnt), and Sketch (skt) using 7 different mixtures of these
domains.
Implementation Details. We use the ViT/B-16 [7] for the
ViT encoder E1, while the ResNet [10] is adopted for the
CNN encoder E2. For UDA, we used ResNet-50 as the
backbone network following previous works [2, 12, 30, 37].
Similarly, we follow the evaluation protocol of previous
SSDA methods [9, 17, 28, 31], ResNet-34 is applied for
this scenario on the DomainNet dataset. Each model is
initially pre-trained on the ImageNet-1K [6]. Given the
disparate nature of the backbone architectures, we will have
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Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD [30] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
BNM [4] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

MDD [37] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MCC [12] 55.1 75.2 79.5 63.3 73.2 75.8 66.1 52.1 76.9 73.8 58.4 83.6 69.4
GVB [5] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

DCAN [18] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
DALN [2] 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.3 71.8
FixBi [22] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

DCAN+SCDA [19] 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1
ATDOC [20] 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2
EIDCo [38] 63.8 80.8 82.6 71.5 80.1 80.9 72.1 61.3 84.5 78.6 65.8 87.1 75.8
ECB (CNN) 68.5 85.4 88.3 79.2 86.8 89.0 79.3 66.4 88.5 81.0 71.1 90.4 81.2

Table 1. Accuracy (%) on Office-Home of UDA methods across different domain shifts. ECB (CNN) represents the performance of our
method when applied to ResNet-50. The top and second-best accuracy results are highlighted in bold and underline for easy identification.

rel→clp rel→pnt pnt→clp clp→skt skt→pnt rel→skt pnt→rel MeanMethod 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot

ENT [9] 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME [31] 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
S3D [35] 73.3 75.9 68.9 72.1 73.4 75.1 60.8 64.4 68.2 70.0 65.1 66.7 79.5 80.3 69.9 72.1

ATDOC [20] 74.9 76.9 71.3 72.5 72.8 74.2 65.6 66.7 68.7 70.8 65.2 64.6 81.2 81.2 71.4 72.4
MAP-F [24] 75.3 77.0 74.0 75.0 74.3 77.0 65.8 69.5 73.0 73.3 67.5 69.2 81.7 83.3 73.1 74.9

DECOTA [34] 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
CDAC [16] 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
ASDA [28] 77.0 79.4 75.4 76.7 75.5 78.3 66.5 70.2 72.1 74.2 70.9 72.1 79.7 82.3 73.9 76.2

CDAC+SLA [36] 79.8 81.6 75.6 76.0 77.4 80.3 68.1 71.3 71.7 73.5 71.7 73.5 80.4 82.5 75.0 76.9
ProML [11] 78.5 80.2 75.4 76.5 77.8 78.9 70.2 72.0 74.1 75.4 72.4 73.5 84.0 84.8 76.1 77.4
MVCL [23] 78.8 79.8 76.0 77.4 78.0 80.3 70.8 73.0 75.1 76.7 72.4 74.4 82.4 85.1 76.2 78.1
G-ABC [17] 80.7 82.1 76.8 76.7 79.3 81.6 72.0 73.7 75.0 76.3 73.2 74.3 83.4 83.9 77.2 78.4
ECB (CNN) 83.8 87.4 85.4 85.6 86.4 87.3 79.7 80.6 83.4 85.6 79.5 81.7 88.7 90.3 83.8 85.5

Table 2. Accuracy (%) on DomainNet of SSDA methods in both 1-shot and 3-shot settings using ResNet-34.

two different classifiers, F1 and F2, consisting of two fully-
connected layers followed by the softmax function. We
optimize our models using stochastic gradient descent with
a 0.9 momentum and 0.0005 weight decay. Considering the
different architectures of the ViT and the CNN branches, we
set the initial learning rates for ViT and CNN at 1e− 4 and
1e− 3, respectively. The size of the mini-batch is set to 32
for both Dl and DTu . The confidence threshold values for
pseudo-label selection are set to τvit = 0.6 and τcnn = 0.9.
The warmup phase for both branches on Dl is finetuned
for 100, 000 iterations. Then, we update the learning rate
scheduler and proceed with 50, 000 iterations of training for
our method.

4.2. Comparison Results

We evaluate our ECB method and the previous SOTA meth-
ods on Office-Home and DomainNet under UDA and SSDA
settings, respectively. For a fair comparison with other DA
methods, we rely on classification outcomes from the CNN
branch, employing ResNet-50 as the backbone for UDA
and ResNet-34 for SSDA. As a result, our method does not

add any testing complexity compared to previous DA ap-
proaches. Besides, we have included further details about
the experimental results in Supplementary Materials.

Results on Office-Home under UDA setting. The imple-
mentation of our ECB method has significantly boosted clas-
sification efficiency in all domain shift tasks, consistently
outperforming the comparison methods, as detailed in Tab. 1.
Remarkably, our approach has recorded accuracy enhance-
ments of +7.7%, +8.1%, and +7.2% for the C→A, C→R,
and P→A tasks, respectively, surpassing the results of the
second-best. In addition, our method has achieved an im-
pressive average classification accuracy of 81.2%, showing
a remarkable margin of +5.4% over the nearest-competitor
EIDCo [38].

Results on DomainNet under SSDA setting. The results
on the DomainNet dataset are presented for both 1-shot and
3-shot settings in Tab. 2, where the CNN branch of our ECB
method outperforms all prior methods. In comparison to the
nearest-competitor method, G-ABC [17], the ECB (CNN)
achieves an impressive maximum performance increase of
+9.3% in the skt→pnt task for 3-shot learning. Even in the
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Method
rel→clp rel→pnt pnt→clp clp→skt skt→pnt rel→skt pnt→rel Mean

ViT CNN ViT CNN ViT CNN ViT CNN ViT CNN ViT CNN ViT CNN ViT CNN

vit→cnn 73.3 79.0 78.8 81.0 75.1 79.2 71.6 74.7 78.6 80.8 67.2 72.0 88.1 88.8 76.1 79.4

cnn→vit 74.2 61.9 76.8 66.8 76.1 67.4 69.5 57.2 74.9 64.6 67.4 54.8 86.0 76.1 75.0 64.1

co-training 87.4 87.4 85.8 85.6 87.3 87.3 80.7 80.6 85.8 85.6 81.7 81.7 90.9 90.3 85.7 85.5

Table 3. Ablation study on DomainNet between co-training and one-direction teaching under 3-shot settings.
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Figure 4. (a) The quality and quantity of the pseudo labels are
generated by the CNN branch on DomainNet under the 3-shot
setting of the rel→clp task using ResNet-34. (b) Comparison
between backbone settings on DomainNet under the 3-shot setting.
Displayed is the mean accuracy across all domain shift tasks.

more restrictive 1-shot learning, the ECB method demon-
strates robust performance, showing a minimum increase of
+3.1% in the rel→clp task. On average, the ECB method
validates a performance improvement of +6.6% in the 1-shot
setting and +7.1% in the 3-shot setting.

5. Analyses
Ablation studies. A single classifier is concurrently trained
with both labeled source and target data. It is thus easily
dominated by the labeled source data. This imbalance pre-
vents the classifier from using the extra-labeled target data
effectively, resulting in a misalignment between the learned
and true class-specific boundaries. This misalignment is
called data bias. Therefore, we perform an ablation study
to evaluate the effectiveness of each stage in the proposed
method. The emphasis is on addressing the data bias is-
sue within the ViT branch, leveraging the CNN branch’s
capability to generate high-quality pseudo labels during the
rel→clp task on DomainNet under, as illustrated in Fig. 4a.
Initially, during the Supervised Training phase, we are only
able to generate around 8,000 total pseudo labels. Following
the integration of the FTC strategy, the total pseudo labels
smoothly increase up to 14,000 with steady maintenance of
10,000 correct pseudo labels. This plays a crucial role in
substantially mitigating data bias by generating numerous
pseudo-labels, which improves the diversity and representa-
tiveness of the unlabeled target dataset. The final experiment
is implemented to highlight that co-training is necessary for
reducing the remaining gap following the FTC stage, which
yields a total of 18,000 pseudo labels and 16,000 correct

Cannon CNN (Before) ViT (Before) CNN (After) ViT (After)

Bird CNN (Before) ViT (Before) CNN (After) ViT (After)

Table 4. Visualize the feature maps for the ‘Cannon’ and ‘Bird’
examples to investigate the learning behaviors of CNN and ViT
with and without using the proposed method ECB.

pseudo labels.

Effectiveness of co-training. We further investigate a vari-
ant of ECB termed one-direction teaching on the DomainNet
under the 3-shot setting. In this approach, we employ ei-
ther Lunl

vit→cnn or Lunl
cnn→vit to generate pseudo labels for the

remaining branch, while maintaining the standard config-
urations through the use of Supervised Training followed
by FTC strategy. As depicted in Tab. 3, there is a perfor-
mance drop when using one-direction teaching. Specifically,
in the vit→cnn scenario, the ViT branch generates pseudo
labels for the unlabeled target data to teach the CNN branch
through minimizing Lunl

vit→cnn. It is crucial to highlight
that the ViT branch does not receive pseudo labels from
the CNN branch, resulting in the CNN branch outperform-
ing the ViT branch by +3.3%. In contrast, in the cnn→vit
scenario, where Lunl

cnn→vit is minimized, the average perfor-
mance on the ViT branch is +10.9% more outstanding than
the CNN branch. However, it is worth mentioning that the
performance on the ViT branch suffers from -1.1% reduc-
tion over the vit→cnn scenario. This performance drop is
attributed to the introduction of noise by the CNN branch
during the learning process of the ViT branch. On the other
hand, when employing Lunl

vit→cnn, the CNN branch provides
a significant boost in the average performance by +15.3%,
highlighting the superior generalization capabilities of the
ViT branch compared to the CNN branch. These scenarios
try to leverage the unique strengths of CNN and ViT through
the co-training strategy, showcasing the mutual exchange of
knowledge between two branches and its potential for gen-
eralizing to unlabeled target data. As a result of co-training,

28551



-76 -38 0 38 76

-76

-38

0

38

76
Representations of CNN before using ECB

real
sketch

(a)
-76 -38 0 38 76

-76

-38

0

38

76
Representations of ViT before using ECB

real
sketch

(b)
-76 -38 0 38 76

-76

-38

0

38

76
Representations of CNN after using ECB without FTC

real
sketch

(c)
-76 -38 0 38 76

-76

-38

0

38

76
Representations of CNN after using ECB

real
sketch

(d)

Figure 5. We visualize feature spaces for the rel→skt task on DomainNet in the 3-shot scenario using t-SNE [33]. Figures (a) and (b)
illustrate the features obtained by CNN and ViT branches before adaptation, respectively. Figures (c) and (d) showcase the distribution
changes of the CNN branch depending on the presence of the FTC strategy when implementing our ECB method.

the average performance on the target domain of the ViT
and CNN branches reaches the optimal results of 85.7% and
85.5%, respectively.
Architecture analysis. We examine the effectiveness of
the unique strengths of ViT and CNN over variations of
architectures such as “CNN + CNN” and “ViT + ViT” on
DomainNet under 3-shot settings using ResNet-34 for CNN
and ViT/B-16 for ViT as shown in Fig. 4b. On average, the
results show that “CNN + CNN” only achieves around 77.0%
due to the lack of global information when just using CNN.
In addition, the introduction of ViT with the primary goal of
improving performance drives the “ViT + ViT” architecture
to achieve a significant increase of +7.0% compared to the
“CNN + CNN” architecture. This architecture makes it pos-
sible to establish more general class-specific boundaries, yet
is unfair when compared with the previous SSDA methods
[20, 30, 31, 34, 36] using ResNet-34 as the backbone, and
the lack of local representation is extremely important. As
a result, the evidence shows that combining “CNN + ViT”
with the bridge of co-training achieves the highest accuracy
of about 85.5% for both branches.
Attention map visualization analysis. To demonstrate the
effectiveness of our designing framework methodology, we
provide the attention map visualization results by using Grad-
CAM [32], as visualized in Tab. 4. CNN supports ViT: Be-
fore applying ECB, ViT was background-sensitive in the
“Cannon” class, whereas CNN still captures the correct ob-
ject. However, after applying ECB, ViT can explicitly recog-
nize the target object and back to enhance the robustness of
CNN. ViT supports CNN: In the “Bird” class before applying
ECB, CNN only obtains the part of the target, while ViT can
cover the whole input object. Then, CNN is complemented
to focus on the object accurately by ViT using ECB. Con-
sequently, these findings validate that both branches offer
distinct expertise and enhance each other rather than one
overshadowing the other.
Feature Visualization. We present a detailed visualization
of the feature space for the DomainNet dataset within the
rel→skt task under the 3-shot setting. This visualization

distinctly highlights the source domain (blue-colored) and
the target domain (red-colored). Figs. 5a and 5b show the
domain alignment of both the CNN and ViT branches be-
fore adaptation. In particular, Fig. 5a visualizes the feature
space extracted by the CNN branch before applying ECB, re-
flecting a scatter that indicates weak classifier performance.
In contrast, Fig. 5b displays the well-defined clusters in
the ViT branch for the same unlabeled target data, which
emphasizes the robustness of ViT in identifying more gen-
eral class-specific boundaries compared to the CNN branch.
Figs. 5c and 5d show the distribution changes of the CNN
branch depending on the presence of the FTC strategy when
implementing ECB. Initially, Fig. 5c indicates that the tar-
get representations overlap (highlighted with green box)
when implementing ECB without the FTC strategy. On the
other hand, Fig. 5d shows the well-aligned source and target
domain representations with clusters to distinct separation
when applying the FTC strategy, which demonstrates the
effectiveness of our proposed method.

6. Conclusion

In this work, we have developed a novel method for learning
CNN on ViT with ECB strategy, taking advantage of ViT
and CNN. This innovative approach focuses on reducing
data bias and significantly improves the precision of pseudo
labels generated, which aligns between source and target
domains. Our method is also fair when evaluated on the
CNN branch and outperforms the previous SOTA methods
on various DA benchmark datasets.
Discussions. We found that identifying an optimal thresh-
old pair {τvit and τcnn} was quite time-consuming. There-
fore, we leave an open task for future research that uses a
dynamic threshold algorithm for domain adaptation instead
of the fixed threshold.
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tional Research Foundation of Korea (NRF) grant funded
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