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Abstract

In this paper, we tackle the task of category-agnostic
pose estimation (CAPE), which aims to predict poses for
objects of any category with few annotated samples. Pre-
vious works either rely on local matching between features
of support and query samples or require support keypoint
identifier. The former is prone to overfitting due to its sen-
sitivity to sparse samples, while the latter is impractical
for the open-world nature of the task. To overcome these
limitations, we propose ESCAPE - a Bayesian framework
that learns a prior over the features of keypoints. The prior
can be expressed as a mixture of super-keypoints, each be-
ing a high-level abstract keypoint that captures the statis-
tics of semantically related keypoints from different cate-
gories. We estimate the super-keypoints from base cat-
egories and use them in adaptation to novel categories.
The adaptation to an unseen category involves two steps:
first, we match each novel keypoint to a related super-
keypoint; and second, we transfer the knowledge encoded
in the matched super-keypoints to the novel keypoints. For
the first step, we propose a learnable matching network to
capture the relationship between the novel keypoints and the
super-keypoints, resulting in a more reliable matching. ES-
CAPE mitigates overfitting by directly transferring learned
knowledge to novel categories while it does not use key-
point identifiers. We achieve state-of-the-art performance
on the standard MP-100 benchmark. Our code is available
at https://github.com/khoiucd/escape-tgt.

1. Introduction

2D pose estimation aims to locate the semantic keypoints
of an object of interest from an input image. This task is
crucial for many visual understanding tasks, such as un-
derstanding human/animal behavior or interpreting the sur-
rounding environment in autonomous driving. Existing
works focus on detecting keypoints of only one specific
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Figure 1. We encode super-keypoint ‘left knee’ from the ‘left
knee’ of base animals and use the super-keypoint in adaptation
to the left knee of novel animal.

(super-)category, such as human, animal, or vehicle. They
are inefficient in the sense that they need to train a separate
model for each application. Moreover, annotating a large
number of samples for some categories, e.g., rare species, is
too expensive, if not impossible, and thus hinders the use-
fulness of the deep learning approach. A unified model that
can quickly adapt to keypoints of unseen categories is de-
sirable. Addressing this, Xu et al. [42] propose the task of
category-agnostic pose estimation (CAPE) in which a uni-
fied model is trained to detect the poses of objects from any
category with limited supervision.

Previous works attempts to compute keypoint prototypes
from support and query samples and use them to locate key-
point positions on the query image via a matching step. Xu
et al. [42] introduce POMNet, a transformer-based network,
to capture the interactions between support and query im-
ages into the keypoint prototypes. POMNet is prone to over-
fitting since the keypoint prototypes heavily rely on very
few, typically one or five, support samples. Recently, Shi et
al. [31] propose a two-stage framework, called CapeFormer,
to further calibrate the matching results. Although effec-
tive, CapeFormer uses support keypoint identifier to alle-
viate the ambiguity of keypoints with similar appearances.
The keypoint identifier requires additional effort to consis-
tently annotate the keypoints of different categories. This
might prohibit their application in scenarios where keypoint
identifiers are not available.

In this work, we aim to improve the representation ca-
pacity of the keypoint prototypes by leveraging the knowl-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23491



edge learned from the base categories. We propose a
Bayesian framework that models a prior over the keypoint
prototypes. This allows us to analytically encode the knowl-
edge from the base categories and explicitly transfer it to
the novel ones. Specifically, we introduce the notion of
super-keypoint, a high-level abstract keypoint that models
the distribution of semantically related keypoints from dif-
ferent categories. This is based on the observation that
keypoints from different categories can be closely related.
For example, keypoints corresponding to the left knee of
many animals are visually similar and can be grouped into
a super-keypoint ‘left knee’. Encoding the super-keypoint
‘left knee’ from many base animals can help generalize to
the left knee of an unseen animal (see Fig. 1). The super-
keypoints are discovered and estimated automatically from
the keypoints of base categories, whose keypoint distribu-
tions are well estimated from the abundant number of sam-
ples. The adaptation to an unseen category involves two
steps: first, we match each novel keypoint to a related
super-keypoint; and second, we estimate the keypoint pro-
totypes by considering both the features from the support
samples and the prior knowledge encoded in the matched
super-keypoints. The first step requires finding an optimal
bipartite matching between the set of novel keypoints and
the learned super-keypoints. To solve this, we leverage a
learnable matching network to capture the structural rela-
tions between the novel keypoints and the super-keypoints
before making predictions.

We call our framework Encoding Super-keypoints for
Category-Agnostic Pose Estimation, dubbed ESCAPE. ES-
CAPE prevents the estimated keypoints from overfitting to
the sparse support samples by allowing knowledge from the
abundant base categories to be explicitly transferred to the
novel one during adaptation. Furthermore, ESCAPE does
not use keypoint identifiers to alleviate keypoint ambiguity.
Experiments show that our method outperform state-of-the-
art methods on the standard MP-100 benchmark, assuming
keypoint identifiers are not available.

2. Related works
2D pose estimation. 2D pose estimation aims to esti-
mate the positions of a set of semantic keypoints of an ob-
ject from its image. This task holds significant importance
across various applications, such as human pose estimation
for understanding human behaviors [19, 24, 40, 41], ani-
mal pose estimation for wildlife conservation [11, 17, 20,
46], and more. Existing methods can be roughly divided
into regression-based methods [3, 26, 34, 35, 37, 39] and
heatmap-based methods [1, 2, 4, 5, 18, 33]. The former di-
rectly predicts the coordinates of keypoints, while the latter
infers heatmaps and takes the peak positions as it predic-
tions. However, these methods are primarily designed for
estimating poses for a single (super-)category with a fixed

set of semantic keypoints, and they typically require access
to large-scale datasets.

Few-shot learning. Few-shot learning focuses on learn-
ing novel concepts from few examples [14, 45]. While few-
shot learning has been extensively studied in domains such
as image classification [16] and video classification [25], its
application in 2D pose estimation remains relatively under-
explored. Our notion of super-keypoints is related to the
Bayesian approach in few-shot learning literature [29, 43,
48]. Salakhutdinov et al. [29] introduce super-categories
that play role as higher-level abstract concepts for cate-
gories and encode distributions over category parameters.
Zhang et al. [48] design a Bayesian framework to learn a
single super-category that induces a prior over parameters
for all categories; such an approach limits model flexibility
and is not suitable for CAPE due to the diversity of key-
points. Yang et al. [43] observe that similar categories have
nearly identical statistics and propose enhancing novel cate-
gories with similar base categories. However, it is not trivial
to adopt this method for CAPE due to the lack of a structural
way to measure similarity between categories with seman-
tically and quantitatively different keypoints.

Semantic correspondence. Semantic correspondence
refers to the semantic matching between pixels or keypoints
between images [6]. A semantic correspondence model
typically includes a feature extractor that generates dense
features from images and establishes the correspondence
using a similarity function. Oquab et al. [27] show that
self-supervised ViT models can produce expressive features
for finding semantic correspondence. Recently, Tang et
al. [36] observe that semantic correspondence naturally
emerges as an ability of diffusion models These models
can effectively solve CAPE by matching query pixels to
keypoints in support images. Since ESCAPE operates in
the feature space, it complements semantic correspondence
models. Integrating ESCAPE with an off-the-shelf feature
extractor consistently enhances its performance in CAPE
tasks.

3. Background
3.1. Category-agnostic pose estimation

Category-agnostic pose estimation (CAPE) [42] seeks an
unified model to estimate poses from any category given a
few annotated samples. Each category y has a set of Ty key-
points of interest: Jy = {jr}

Ty

r=1. Given an image I of y,
the model’s objective is to accurately predict the coordinates
P = {pr}

Ty

r=1 of these keypoints. The setting of CAPE
consists of two disjoint sets of categories that are Cbase

for training the model and Cnovel for testing its generaliza-
tion capabilities. While the base categories have abundant
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training data, the novel categories have very few training
samples. Specifically, a training set Dy

base = {(Ii, P i)}ny

i=1

(ny is large) of each base category y from Cbase is avail-
able for training the model. The testing stage includes
a large number of episodes (or tasks) sampled from the
novel categories. In each episode, a support set Sy

novel =
{(Ii, P i)}Ki=1 of K annotated samples from y ∈ Cnovel is
given to the model for adaptation, and the model perfor-
mance is evaluated on a set Qy

novel = {(Ii, P i)}K+Q
i=K+1 of

Q query samples.

Support keypoint identifier. The MP-100 dataset is
composed of existing widely used datasets, many of which
impose an ordering over the keypoints of their categories.
Shi et al [31] refer to this ordering information as support
keypoint identifier and encode it into the keypoint features
to alleviate the ambiguity of novel keypoints. However, in-
corporating keypoint identifiers may limit the applicability
of CAPE to real-world scenarios where novel keypoints can
be freely defined. In this paper, we focus on the challenging
yet practical settings for CAPE that do not assume the order
of keypoints to be available. We refer readers to [13] for
detailed discussion of the support keypoint identifier.

3.2. Simple baseline for CAPE

In this section, we introduce a simple yet effective baseline
for CAPE. The baseline includes a feature extractor fθ that
extracts dense features from input images. We denote the
local feature extracted at a position p of an input image I as
fθ(I)[p] ∈ Rd. We aim to train fθ so that it possesses strong
semantic correspondence for the keypoints of interest.

For each base category y with keypoints of interest Jy ,
we define a set of prototypes Wy = {wr}

Ty

r=1; each proto-
type wr ∈ Rd is responsible for predicting a heatmap Hr

for the rth keypoint in Jy as follows:

Hr[p] = ⟨fθ(I)[p],wr⟩, (1)

where ⟨· , ·⟩ denotes the inner product, and p varies over
the spatial dimensions. The peak position in the heatmap is
then the prediction for that keypoint.

We train the feature extractor fθ and the base prototypes
{Wy}y∈Cbase

on the base training data
⋃

y∈Cbase
{Dy

base}
with the standard Mean Squared Error (MSE) loss [23, 38,
41] between the predicted heatmaps and the ground-truth
heatmaps.

To adapt to a novel category y ∈ Cnovel with support and
query sets (Sy

novel,Q
y
novel), we freeze the feature extractor

and compute the prototypes Wy = {wr}
Ty

r=1 for novel key-
points as the means of keypoint features extracted from the
support set:

wr =
1

K

∑
(Ii,P i)∈Sy

novel

fθ(I
i)[pi

r]. (2)
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Figure 2. t-SNE visualization of distributions of 7 keypoints of ze-
bra and horse. Different colors represent different keypoints. ‘×’
denotes keypoint features extracted from images. (a) shows ex-
tracted features (denoted as ‘×’) and distribution means (denoted
as ‘△’) for keypoints of zebra. (b) shows extracted features (de-
noted as ‘×’) and distribution means (denoted as ‘◦’) for keypoints
of horse.

right back paw of horseright back paw of zebra

right back paw

Figure 3. Super-keypoint modeling. Keypoint ‘right back paw of
zebra’ and keypoint ‘right back paw of horse’ belong to the same
super-keypoint ‘right back paw’. The keypoints distribute closely
around their super-keypoint.

The computed prototypes are then used to predict key-
point heatmaps for query images as in Eq. 1.

Our simple baseline provides results comparable to
POMNet [42], which has more complicated matching net-
work. The baseline, however, has the same problem of over-
fitting as POMNet and CapeFormer due to its heavy reliance
on the sparse support samples. Building on our simple base-
line, we propose a Bayesian framework that allows us to es-
timate better prototypes for the novel keypoints, while keep-
ing the feature extractor the same. Specifically, we seek to
equip the baseline with strong a prior to prevent the key-
point prototypes from overfitting to the support set.

4. Prior as a mixture of super-keypoints
We notice that keypoints of different categories can be vi-
sually similar, and hence their features should follow the
same distribution. To verify our hypothesis, we use the fea-
ture extractor from our baseline model to extract features at
the positions of seven keypoints in images of ‘zebra’ (a base
category) and ‘horse’ (an unseen category). Fig. 2 (a) and
(b) show keypoints features extracted from zebra and horse
images respectively. For each keypoint, we also visualize
the mean of its distribution (denoted as △ for keypoint of
zebra and # for keypoint of horse). As shown in the figure,
although the model has not seen any horse sample during

23493



training, the keypoint features of horse still align well with
those of zebra. This alignment suggests that capturing the
distributions of zebra keypoints facilitates generalization to
horse keypoints. From this observation, we introduce super-
keypoints to model the connections between keypoints of
horse and zebra. For instance, the keypoint ‘right back paw
of zebra’ and the keypoint ‘right back paw of horse’ belong
to the same super-keypoint ‘right back paw’.

4.1. Super-keypoints modeling

We introduce the notion of super-keypoint to define a prior
over a group of visually similar keypoints from different
categories. Let us consider the rth keypoint of a category
y. Given an image I of y, we denote or := fθ(I)[pr] as the
local feature extracted at the position of the rth keypoint in I.
We assume that the keypoint feature or follows a Gaussian
distribution with a mean ζr and covariance ϕ2I . We further
assume that the mean of the keypoint distribution ζr obeys a
Gaussian distribution with a mean µzr and covariance σ2I ,
where µzr represent the super-keypoint of the rth keypoint.
Formally,

or ∼ N (o|ζr;ϕ2), and ζr ∼ N (ζ|µzr ;σ
2). (3)

Fig. 3 illustrates our super-keypoint modeling. Intu-
itively, µ is the representation of a super-keypoint in the
feature space, and its keypoint members distribute closely
nearby. Our goal is to discover and estimate a set of super-
keypoints from keypoints of base categories so that the
super-keypoints can encode the statistics of groups of re-
lated keypoints across different categories. When adapt-
ing to a novel category, the statistics encoded in the super-
keypoints are directly transferred to the prototypes of novel
keypoints, preventing our model from overfitting to the
sparse support set.

4.2. Super-keypoints discovering and learning

We obtain the set of super-keypoints by applying a cluster-
ing method to the keypoints of all base categories. Specif-
ically, given the trained feature extractor fθ from the base-
line, we extract the features of keypoints from all base cate-
gories. We then estimate the distribution mean of each key-
point in the base categories as follows:

ζyr =
1

|Dy
base|

∑
(Ii,P i)∈Dy

base

fθ(I
i)[pi

r], (4)

where ζyr represents the distribution mean of the rth key-
point of category y ∈ Cbase. The set of keypoints from
all base categories is then

⋃
y∈Cbase

{ζyr }
Ty

r=1. In this work,
we use the k-nearest neighbor based density peaks cluster-
ing [9, 47], which does not require the number of clusters
to be known in advance. Note that keypoints of the same

category are distinct, so they cannot belong to the same
super-keypoint. A detailed description of the clustering is
provided in the Appendix. Finally, we estimate each super-
keypoint representation µ as the empirical mean of distribu-
tion means of keypoints within the cluster, resulting in a set
of L super-keypoints: M = {µ1, µ2, . . . , µL}.

5. Novel category adaptation

In this section, we describe how to adapt to a novel cate-
gory y whose support and query sets are (Sy

novel,Q
y
novel).

Our goal is to estimate the prototypes that well represent
the distributions of the novel keypoints from a few support
samples. In particular, for the rth keypoint of y, we want
the estimated prototype wr to be close to the true distribu-
tion mean ζr as much as possible. With this interpretation,
the estimated prototype for a novel keypoint in the baseline
(Eq. 2) can be viewed as maximum likelihood estimate of
the mean of the keypoint distribution. It is clear that the
baseline is prone to overfitting since the number of support
samples is extremely limited.

5.1. Prototype estimate via maximum a posteriori

We propose to alleviate the overfitting by letting the statis-
tics captured in the super-keypoints to be transferred to the
novel keypoints. Specifically, consider the rth keypoint of
y, we compute its prototype wr as maximum a posterior
estimate of ζr:

wMAP
r = argmax

ζr

log p(ζr|{oi
r}Ki=1,M), (5)

where oi
r = fθ(I

i)[pi
r] is the feature of the rth keypoint

extracted from the ith support sample in Sy
novel, and M =

{µ1, µ2, . . . , µL} is the set of learned super-keypoints.
However, when adapting to a novel category, the super-

keypoints of the novel keypoints are not available in gen-
eral. We do not know which super-keypoint the rth novel
keypoint should belong to. To this extent, we adopt the
expectation maximization (EM) algorithm [21], which first
matches the rth keypoint with the ‘best’ super-keypoint
from M (the expectation step) and then optimizes for the
prototype with the prior encoded in the matched super-
keypoint (the maximization step). Below, we summarize
the two steps; detailed derivation of the (EM) algorithm is
provided in the Appendix.

Expectation step. Let zr be the super-keypoint assign-
ment of the rth keypoint of y. We align the keypoint with
the most likely super-keypoint z⋆r , i.e, the zr that maxi-
mizes log p(ζr, zr|{oi

r}Ki=1,M). Note that keypoints of the
same category cannot belong to the same super-keypoint.
Therefore, we further adopt the Hungarian algorithm [15]
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Figure 4. Illustration of our adaptation procedure for a novel category. We leverage the EM algorithm to probabilistically optimize for
the keypoint prototypes, considering both the support samples and the learned super-keypoints. We first align the novel keypoints with
the different super-keypoints via a learnable matching network (expectation step). We then let the statistics encoded in the matched super-
keypoints to be transferred directly to the keypoint prototypes (maximization step). The keypoint prototypes can be used to estimate poses
for query samples.

to optimally align the Ty keypoints of y with distinct super-
keypoints {µz⋆

r
}Ty

r=1 ⊂ M. We refer to this matching pro-
cedure as simple matching for the rest of the paper.

Maximization step. Now, we know the ‘best’ super-
keypoint for each keypoint of y. We can compute their pro-
totypes analytically as follows:

wMAP
r = argmax

wr

log p(wr|{oi
r}Ki=1, µz⋆

r
) (6)

= α
1

K

K∑
i=1

oi
r + (1− α)µz⋆

r
, (7)

where α ∈ (0, 1) depends on ϕ and σ. Since the distribution
mean of a keypoint must distribute near its super-keypoint,
the second term in Eq. 7 has an effect of pulling the es-
timated prototype closer to the true mean of the keypoint
distribution, diminishing the dependence of the prototype
on the support samples.

5.2. Learnable matching network

Matching novel keypoints with semantically related super-
keypoints is crucial for the success of our method. A cor-
rect super-keypoint can pull the estimated prototype closer

to the distribution mean of the keypoint under considera-
tion, while an incorrect super-keypoint pulls the prototype
away. However, as later shown in the experiments, the sim-
ple matching in the expectation step fails to produce reli-
able super-keypoints assignments. We argue that this is be-
cause the simple matching treats the novel keypoints inde-
pendently, discarding their structural relations. It ignores
the keypoint coordinates in the support samples, and so the
model cannot reason about poses of the object of interest.

To overcome these limitations, we replace the simple
matching in the expectation step with a learnable match-
ing network to simultaneously produce matching scores
between keypoints in an image and the learned super-
keypoints. The design is inspired by SuperGlue [30], a
matching framework that has shown great performance in
aligning two sequences of features.

Input features. Our matching network takes two se-
quences of features as input and produces the matching
score matrix for their elements. The first sequence is aug-
mented features of Ty keypoints extracted from a support
image of y. The second sequence is a set of features for the
L super-keypoints. To encode features for the keypoints,
we consider not only their visual appearance but also their
coordinates within the support image. Specifically, given
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Method Split 1 Split 2 Split 3 Split 4 Split 5 Mean PCK Split 1 Split 2 Split 3 Split 4 Split 5 Mean PCK

ProtoNet [32] 46.05 40.84 49.13 43.34 44.54 44.78 60.31 53.51 61.92 58.44 58.61 58.56
MAML [10] 68.14 54.72 64.19 63.24 57.20 61.50 70.03 55.98 63.21 64.79 58.47 62.50
Finetune [22] 70.60 57.04 66.06 65.00 59.20 63.58 71.67 57.84 66.76 66.53 60.24 64.61
POMNet [42] 84.23 78.25 78.17 78.68 79.17 79.70 84.72 79.61 78.00 80.38 80.85 80.71

CapeFormer [31] 84.13 79.90 79.58 79.78 80.34 80.75 90.46 86.47 85.80 86.47 86.71 87.19

ESCAPE 86.89 82.55 81.25 81.72 81.32 82.74 91.41 87.43 85.33 87.27 86.76 87.63

Table 1. Comparison with state-of-the-art works on MP-100 dataset under 1-shot and 5-shot settings.† denotes keypoint identifiers.

support image I ∼ Sy
novel, the keypoint features are:

ur = fγ(I)[pr] + PEgeo(pr), for r = {1, . . . , Ty}, (8)

where fγ is a CNN feature extractor, and PEgeo embeds a
coordinate into the feature space. By considering the key-
point coordinates, our model can reason about the pose of
the object in the support image.

At the other end, the features for the super-keypoints are
defined as:

vz = ωz + PEabs(z), for z ∈ {1, . . . , L}, (9)

where ωz is a learnable feature vector for the zth super-
keypoint, and PEabs embeds an index (1, . . . , L) into the
feature space. Note that the indexes of the super-keypoints
are obtained from the clustering step described in Sec. 4.2.

Feature aggregation with attention. The two sequences
of features {ur}

Ty

r=1 and {vz}Lz=1 are then passed to a
neural network for information aggregation. The network
comprises U blocks of self-attention and cross-attention to
model interactions both within and between the elements
of the sequences. Results are two sequences of refined
features: {u⋆

r}
Ty

r=1 and {v⋆
z}Lz=1. The predicted match-

ing scores matrix is then S ∈ RTy×L, with each element
Sr,z = ⟨u⋆

r ,v
⋆
z⟩ measuring the matching score between the

rth keypoint and the zth super-keypoint. An illustration of
the matching network is provided at the bottom of Fig. 4.

Matching as optimal transport problem. Since the key-
points within the same category must be matched to differ-
ent super-keypoints, our goal is to find a maximum score
bipartite matching between the two sequences. Following
SuperGlue [30], we replace the Hungarian algorithm with
the differentiable Sinkhorn algorithm [7] for optimal trans-
port. It takes the matching score matrix S as input and pro-
duces a matrix Q ∈ RTy×L where each element Qr,z rep-
resents the probability that the rth keypoint is matched with
the zth super-keypoint. We train the network end-to-end on
the keypoints of base categories, whose super-keypoints as-
signments are available from the clustering step. Details of
the Sinkhorn algorithm and the training procedure of the
matching network are provided in the Appendix.

Incorporating learnable matching network to novel cat-
egory adaptation. We integrate the learned matching net-
work into the novel category adaptation. Specifically, for
every support image Ii ∈ Sy

novel, we compute the matching
score matrix Si from its keypoints and the learned super-
keypoints. The corresponding optimal assignment matrix is
then denoted as Qi. The final prototype for the rth keypoint
are then estimated as follows:

wESCAPE
r = α

1

K

K∑
i=1

oi
r + (1− α)

L

K

K∑
i=1

L∑
z=1

Qi
r,zµz.

(10)

Here we keep the soft assignment form of Qi instead of
the hard assignment to model uncertainty. Our adaptation
procedure is shown in Fig. 4.

6. Experiments

We perform experiments on Multi-category Pose (MP-100)
proposed in [42]. The dataset consists of more than 20,000
data instances of 100 categories from 8 super-categories
including human hand, human face, human body, animal
body, animal face, clothes, furniture, and vehicle. We also
follow the five splits from [42] for standard CAPE settings.
Each split divides the dataset into 70 training categories, 10
validation categories, and 20 testing categories. The train-
ing set is used as base categories, while validation and test-
ing sets are novel categories for validation and testing, re-
spectively. Please refer to [42] for more details.

6.1. Experimental details

Unless otherwise specified, for fair comparisons with pre-
vious works, we utilize ResNet-50 [12] pretrained on Ima-
geNet [8] as the feature extractor. Also following [42], we
crop the object of interest from the original image using the
ground-truth bounding box, and resize it to a fixed size of
256× 256.

Probability of correct keypoint [44] with a threshold of
0.2 (PCK@0.2) is the evaluation metric for MP-100. Dur-
ing testing, we generate 60,000 episodes evenly distributed
across the test categories and report the average PCK@0.2
over these episodes.
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Figure 5. Keypoints of four different super-keypoints discovered from the base categories. Below each keypoint is the name of its category.
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Figure 6. Qualitative comparison between simple matching and learnable matching network in aligning novel keypoints with super-
keypoints. We show one base keypoint member of each matched super-keypoint.

6.2. Comparison with previous methods

We compare ESCAPE against previous methods, including
Prototypical Networks [32], MAML [10], Finetune [22],
POMNet [32] and CapeFormer [31]. Note that we remove
the support keypoint identifier from CapeFormer. The re-
sults are shown in Tab. 1. We can see that ESCAPE out-
performs other methods by around 2.5% and 0.5% in 1-shot
and 5-shot settings, respectively, establishing a new state-
of-the-art on the MP-100 benchmark.

6.3. Ablation study

Super-keypoints discovering. We perform clustering on
the keypoints of base categories to form super-keypoints. To
verify that we can obtain meaningful super-keypoints from
the clustering process, we show some keypoints members
of a few super-keypoints in Fig. 5. We see that each super-

keypoint represents a meaningful concept. For example,
super-keypoint 1 consists of ‘left knee’ of deer, antelope
and zebra. super-keypoint 4 consists of ‘right rear wheel’
of suv, bus, and car, while super-keypoint 6 is a landmark
on the collars of different clothes categories.

Novel keypoints and super-keypoints matching. We
qualitatively compare the performance of the simple match-
ing and the learnable matching network in aligning novel
keypoints with the learned super-keypoints. Fig. 6 shows
the matching results for two novel categories, namely squir-
rel and woodpecker. The left side of the figure shows sup-
port images of the categories, while the right side shows
the super-keypoints aligned by the simple matching and the
learnable matching network. For each super-keypoint, we
only show one base keypoint member. Compared with the
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Method PCK

MLE 83.00± 0.16
MAP 83.88± 0.15

ESCAPE 86.89± 0.14

Table 2. Results of different
prototype estimation meth-
ods, namely MLE, MAP
and ESCAPE.

Feature extractor Method PCK

DIFT [36] MLE 60.61
DIFT [36] ESCAPE 62.47

DINOv2 [27] MLE 88.31
DINOv2 [27] ESCAPE 89.14

Table 3. Results of integrating
ESCAPE to feature extractors of
different semantic correspondence
models

simple matching, our learnable matching network provides
more reliable super-keypoints for the novel keypoints. In
particular, the simple matching aligns keypoints of squirrel
with super-keypoints of keypoints of kingfisher, sling and
suv, which are irrelevant to the squirrel. On the other hand,
the learnable matching network aligns the novel keypoints
with their actual concepts, e.g., the ‘left elbow of squirrel’
is matched with the super-keypoint of the ‘left elbow of rat’.

Ablation on novel category adaptation. In Tab. 2, we
study the performance of different methods to estimate key-
point prototypes for a novel category, namely MLE, MAP
and ESCAPE. MLE is our baseline, which estimate key-
point prototypes as means of support features as in Eq. 2.
MAP and ESCAPE compute keypoint prototypes as maxi-
mum a posterior estimate with the EM algorithm. The dif-
ference between MAP and ESCAPE is that MAP (Eq. 7)
uses the simple matching in the expectation step, whereas
ESCAPE (Eq. 10) leverages the learnable matching net-
work. We observe that incorporating super-keypoints into
the estimation of keypoint prototypes helps improve the
overall performance. Specifically, the MAP outperforms
MLE by roughly 1%. Regardings ESCAPE, better novel
keypoints and super-keypoints alignments from the learn-
able matching network immediately translate into 3% im-
provements over the MAP counterpart.

Ablation on different feature extractors. Feature ex-
tractors from semantic correspondence models can effec-
tively solve CAPE since they can generate dense features
for support and query images. In Tab. 3, we study the
compatibility of ESCAPE with feature extractors from dif-
ferent semantic correspondence models, namely DIFT [36]
and DINOv2 [27]. We take the pretrained stable diffusion
2.1 [28] as the backbone for DIFT, whereas we use ViT-ViT-
S/14 for DINOv2. As seen, ESCAPE consistently boosts
the performance of the considered semantic correspondence
models. This shows that ESCAPE can benefit from future
research for better representation.

support ground-truth CapeFormer ESCAPE

Figure 7. We qualitatively compare pose estimation of Cape-
Former and ESCAPE under 1-shot setting.

6.4. Qualitative results

Figure 7 compares the pose estimation performance of
CapeFormer and ESCAPE. Overall, ESCAPE gives more
accurate pose predictions compared to CapeFormer. In par-
ticular, CapeFormer is overfitting to the support image of
the sheep category. The predicted positions of the left front
and back paws by CapeFormer are geometrically close to
each other as they appear in the support image. In contrast,
since ESCAPE allows learned knowledge about base ani-
mals to be transferred to the novel keypoints, it recovers the
pose of the query sheep beautifully.

7. Conclusion

In this paper, we address the task of category-agnostic pose
estimation by introducing ESCAPE, a Bayesian framework
that induces a prior over the keypoint features of different
categories. This prior is a mixture of super-keypoints, with
each super-keypoint encoding a distribution of a group of
related keypoints. ESCAPE enables the transfer of knowl-
edge from base categories to the novel ones, thereby pre-
venting the query predictions from overfitting to sparse sup-
port samples. ESCAPE offers several advantages over pre-
vious works: it exhibits less overfitting to support samples,
does not rely on support keypoint identifiers, and is model-
agnostic.
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