
Edit One for All: Interactive Batch Image Editing

Thao Nguyen Utkarsh Ojha Yuheng Li Haotian Liu Yong Jae Lee
University of Wisconsin–Madison

https://thaoshibe.github.io/edit-one-for-all

Abstract
In recent years, image editing has advanced remarkably.

With increased human control, it is now possible to edit an
image in a plethora of ways; from specifying in text what we
want to change, to straight up dragging the contents of the
image in an interactive point-based manner. However, most
of the focus has remained on editing single images at a time.
Whether and how we can simultaneously edit large batches
of images has remained understudied. With the goal of min-
imizing human supervision in the editing process, this paper
presents a novel method for interactive batch image editing
using StyleGAN as the medium. Given an edit specified by
users in an example image (e.g., make the face frontal), our
method can automatically transfer that edit to other test im-
ages, so that regardless of their initial state (pose), they all
arrive at the same final state (e.g., all facing front). Ex-
tensive experiments demonstrate that edits performed using
our method have similar visual quality to existing single-
image-editing methods, while having more visual consis-
tency and saving significant time and human effort.

1. Introduction
Image editing has undergone a transformation in recent
years with the aid of modern generative models. The pro-
cess has been greatly democratized, where many of the
sophisticated edits, which previously might have required
hours and niche expertise, can now be completed with rel-
ative ease in a matter of minutes. For example, different
types of learning based algorithms can be used for image
correction/adjustment [1–12] and for manipulating the se-
mantic contents of real images [13–22]. Moreover, there are
many different ways to edit an image. For instance, a user
can specify in text what changes they want - e.g., “make the
hair darker” [14, 15, 23, 24], or they can drag the contents
of the image in an interactive manner to shrink, enlarge, or
move a part of an object [12, 16, 17, 19, 25].

A common theme across many of these works is that the
edits are designed to work for a single image at a time. For
example, given an image of a cat with open eyes, Drag-
GAN [17] allows the user to drag the contents of that par-

Test Image Output Test Image Output

Example Edited Image Example Edited Image

Automatic! Automatic!

Figure 1. Interactive Batch Image Editing. Given a single user
edited image, the goal is to automatically transfer that edit to new
unseen images, so that all edited images end up with the same final
state as the user edited image.

ticular image so that both the eyes can be closed in the re-
sulting cat image. But what if we wish to apply the same
edit to many different types of cats so that we can close all
of their eyes? While one could perform dragging on each
cat separately, the whole process would be quite cumber-
some (requiring lots of human annotation) and time inten-
sive (requiring optimization for each image).

In this paper, we introduce the new problem of Inter-
active Batch Image Editing. Given a user-specified edit
I → I ′, the goal is to automatically transfer that edit to new
unseen images, so that all edited images end up with the
same final state as I ′ (e.g., all cats with eyes closed) regard-
less of their original starting states (e.g., varying degrees
of original eye openness); see Figure 1. Hence, a solution
to this problem requires two components: (i) modeling the
user edit in the example pair (I, I ′) so that it can be trans-
ferred to new images; and (ii) controlling the degree of the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8271

edit one image at a time

Edit

(a) Single Image Editing

edit one image, transfer to others at the same time!

(b) Batch Image Editing

Edit Edit Edit Edit Auto! Auto! Auto!

Figure 2. Single Image Editing vs. Batch Image Editing. (a) Prior work (e.g., [17, 19, 25]) focuses on single image editing. (b) We
focus on batch image editing, where the user’s edit on a single image is automatically transferred to new images, so that they all arrive at
the same final state regardless of their initial starting state. In this way, we can achieve time speed up and reduce human effort in editing.

edit so that all edited images have the same final state.
To model the user’s edit, we build upon existing litera-

ture on Generative Adversarial Networks (GANs) [23, 26–
29], and in particular StyleGAN [30, 31], which shows that
their learned latent space emits globally linear editing direc-
tions where the edited attribute (e.g., eye closeness) varies
linearly in magnitude along such a direction for all seman-
tically related instances (e.g., all closed eyes cat). To try
to discover the global direction corresponding to a user
edit, we perform optimization in the latent space of Style-
GAN2 [31] so that (i) the edited image with the discovered
direction is visually similar to the original edited image I ′,
and (ii) the linear correlation between the distance along the
direction and the strength of the visual attribute is highest
(e.g., going twice the amount in that direction closes a cat’s
eyes by twice the amount).

To control the degree of the edit so that all edited images
end up with the same final state, we derive a closed-form so-
lution. Taking motivation from [29], we model the attribute
strength (e.g., how much the cat’s eyes are open) as the dis-
tance along the normal vector from a hyperplane. By setting
the example edited image as lying on that hyperplane (i.e.,
its distance is 0), the objective is to move all other images
along that same direction so that their distances to the hy-
perplane also become 0. In this way, regardless of the start
state of any image (e.g., varying degree of eye openness),
their edited end states all become the same (e.g., closed
eyes). We show that we can analytically compute the exact
amount of traversal along the direction for any image with a
closed-form solution. Editing images in this way helps im-
prove the results visually, as the final state of any new image
matches that of the edited example given by the user.

Our method works with various edits given by an
editing framework, e.g., it can be a change given by
a dragging operation [17], or it can be a change given
by a text-based edit [14, 23] (e.g., “make eyes big-
ger”), as long as it is a direction compatible with a
StyleGAN2 [31] model. We present qualitative and

quantitative results in transferring edits for a variety
of objects (cats/dogs/faces/humans/lions/arts/etc.), parts
(mouths/ears/legs/etc.), and corresponding attributes (big
eyes/short faces/pale skins/etc.). Importantly, we show that
the final state of the edited images is comparable to the sce-
nario in which a user performs the edit for each image sep-
arately. But since our method does this automatically (see
Fig. 2), we show that it takes much less time (e.g., only
0.05s per image, compared to DragGAN [17] about 2s per
image), and does not require laborious human annotation
(e.g., only need 1 annotated image, compared to 4 required
for DragGAN [17]). Finally, we show practical applications
of batch image editing; e.g., changing wheel size in every
photo of a car collection by editing just one.

In sum, our contributions are: (1) We introduce the novel
problem of interactive batch image editing, wherein a user-
driven edit is automatically transferred to other similar test
images. (2) We study what having the same final state
means in a geometrical sense, and propose a principled ap-
proach to achieving that in StyleGAN2 [31]’s latent space.
(3) We show that our method works on a wide variety of
domains e.g., cats, dogs, humans etc., taking significantly
less time than editing each image individually while having
similar visual quality and more visual consistency.

2. Related Work
Latent space of GANs. The capabilities of generative
adversarial networks (GANs) have transformed drastically,
from the first GAN [32] designed for simple image datasets
like MNIST [33] to big and powerful models like Big-
GAN [34], Progressive GAN [35] and StyleGANs [30, 31]
designed for much more complex datasets [36, 37]. Paral-
lel to the efforts to enhance their capabilities, there has also
been work done to better understand and make use of their
learned latent space. Specifically, there is a line of work
which tries to find interpretable directions in that space, so
that moving in such a direction majorly changes only one
discernible attribute in the image. Some methods [38, 39]

8272

Ex
am

pl
e

Te
st

Edit: Rotate to frontal

𝑤")𝑤"

𝑤!)𝑤!

? Transfer

(a) Setting (d) Adjusting Edit Strength

𝑤!

𝑤"

𝛼!Δ'∗
Δ'∗

𝑤")∗

𝑤!)∗

𝑦
0

edit attribute

(c) Optimizing Editing Direction(b) Naïve Approach

𝑤"
𝑤")

Δ'
𝑤!)

𝑤!
Δ'

𝑤! 𝑤!)∗𝑤! 𝑤!) 𝑤! 𝛼!𝑤!)∗𝑤")∗

𝑤!

𝑤"

Δ'∗

Δ'∗
𝑤")∗

𝑤!)∗

𝑦
edit attribute

𝐼!)𝐼!

𝐼")𝐼"

𝑤"

Figure 3. Different editing strategies. (a) Setting. (b) Naive Approach: The editing direction effective for an example may not generalize
well to test images. (c) Optimizing Editing Direction: We optimize for a globally consistent direction that is effective for both example and
test images. (d) Adjusting Editing Strength: Ensuring consistent final states requires adjusting the editing strength for each test image.

try to find such directions or particular activations using
(self) supervised methods. Others [26–28] try getting rid
of the need for supervision: discovering the directions rep-
resenting the most important factors of variation, whatever
they may be. Going beyond the W space, the authors in [40]
explore the W+ space, and show that it has even better dis-
entanglement useful for spatial image editing. All of these
hidden capabilities have made StyleGANs a useful tool for
editing purposes. However, prior work mainly focuses on
the effectiveness of the editing direction (e.g., whether the
discovered direction can change yaw pose). The question of
whether these directions can be applied to diverse images to
yield consistent results (e.g., all faces facing frontal) and, if
so, how to achieving such consistency, remains unanswered.

Image editing with generative models. Researchers
have used StyleGAN for real image editing by designing
an encoder to invert a real image into StyleGAN’s latent
space [41–43]. StyleCLIP [23] presents a way to perform
image editing through a text-based interface by making use
of the CLIP encoder [44]. Very recently, StyleGAN has also
been used to perform point-based editing [17, 25] so as to
move any start point to reach a target location in the im-
age; thereby elongating, rotating, shifting the objects. Most
work on GANs has been for single object category datasets,
but with the rise of text-to-image Diffusion Models which
can generate complex images [13, 45, 46], editing such im-
ages is now possible. Complex scenes can be edited either
using text [14, 15, 21, 24, 47, 48], or using the same idea of
point-based manipulation [16, 19]. There have been some
works which discuss the possibility to transfer the edit of
one image to another. EditGAN [49] uses segmentation
mask manipulations to edit an image, but to successfully
transfer them to an unseen image, it needs to do post hoc
manipulation of the editing scale. RewriteGAN [50] in-
volves editing one generated sample; e.g., adding a patch of
a tree onto a church tower. Following this, the rules of the

GAN are manipulated so that all churches have some tree on
the top. Within diffusion models, visual prompting/ image
analogies tries something similar, where users can define a
triplet {before, after, test} to learn the edit and transfer it to
a test image [51–55]. Our task is similar, in that we wish to
transfer user-edits from the training example to new images,
but it differs in one crucial aspect: along with transferring
the edit, we wish to automatically learn its strength so that
the edit produces the same final state for a new image.

3. Approach
Our focus is on the setting in which an image editing pro-
cess edits an attribute of an image so that the attribute’s
value reaches a desired state; e.g., rotating the pose of a
face looking sideways so that it faces front (attribute = face’s
pose, value = front).

With this view, we explain our framework for batch im-
age editing, which can be broken down into two stages: (i)
A user edits an image I0 (e.g., using DragGAN [17]) to ob-
tain an edited image I ′0. We describe in Sec. 3.1 how we
capture this user edit I0 → I ′0, so that the same edit can be
applied to new images. (ii) Next, we describe in Sec. 3.2,
how for any new image, we apply the modeled edit by auto-
matically adjusting its strength so that the attribute’s value
in this new image matches that of I ′0 (e.g., any face, regard-
less of its initial pose, now faces front after the edit).

3.1. Modeling the User Edit

We start with an image I0. This image could be a real im-
age or a generated one. Either way, we get its latent rep-
resentation in the W space of a StyleGAN2 [31] model G,
so that I0 = G(w0). (For real images we can use GAN-
inversion techniques [56].) The user, with the help of an
image editing framework (e.g., DragGAN [17] or Instruct-
Pix2Pix [14]), edits I0 to manipulate one or more of its at-
tributes. The edit maps to the W space as w0 → w′

0. The

8273

resulting edited image can thus be recovered as follows:
I ′0 = G(w′

0). Fig. 3(a) shows an example of the original
and edited image pair, (I0, I ′0), where the user intended to
turn the face forward.

Now, given the user edit I0 → I ′0, we wish to capture
it in a way that can be applied to new images in a general-
izable manner; i.e., the application of the edit changes the
same property in a new image. This is where a nice prop-
erty of GANs, and in particular StyleGANs [30, 31] comes
in useful. It has been shown in prior works [26–28] that it is
possible to discover directions with such properties (using
supervised as well as unsupervised methods) in the learned
W space. In particular, it is possible to find directions (∆w)
that are globally consistent. Taking motivation from [29],
we define a globally consistent direction ∆w as the follow-
ing: for any arbitrary w, moving along ∆w, w → w +∆w

(i) changes the same attribute, and (ii) by the same amount.
To make the precise user edit I0 → I ′0 applicable to other

images, it needs to be captured as a globally consistent di-
rection. The naive way to represent that edit will be through
a simple difference in the W space: ∆w = w′

0 − w0. How-
ever, empirically, and as we show in Fig. 3(b), applying this
∆w to the latent code w1 corresponding to a new image I1
does not always result in the same change; while I0 → I ′0
results in a pose change of ∼30◦degrees in yaw, I1 → I ′1
does not seem to change the same attribute or at least not by
the same amount.

Hence, our goal is to represent the I0 → I ′0 edit through a
W space direction that can better satisfy both the properties
of a globally consistent direction. For this task, we first take
motivation from LARGE [29] to introduce a mathematical
view of what those directions mean.

Globally consistent direction. Let’s say that ∆g is one
such direction. Along with a bias term b, we can define a
hyperplane as follows:

w ·∆g + b = 0 (1)

That is, any point w which lies on the hyperplane will sat-
isfy this equation. The authors in [29] argued that for such a
hyperplane, whose normal vector is a globally consistent di-
rection (∆g), the distance of an arbitrary point w from that
hyperplane (w ·∆g) will be linearly correlated to the actual
attribute (y) that results in the generated image:

y = a× (w ·∆g) + b (2)

Here, a and b are unknown linear coefficients. For exam-
ple, if ∆g corresponds to change in pose, then all the front
facing people will lie at the same distance d from the above
hyperplane. Because of this, any hyperplane defined with
respect to a globally consistent direction can be viewed as a
semantic hyperplane. For simplicity, we can set d = 0 for
the edited image I ′0.

Given that the original ∆w may not always be globally
consistent, we aim to discover, through optimization, a dif-
ferent direction ∆∗

w which produces a similar editing effect,
but is more likely to be a globally consistent one. We ini-
tialize ∆∗

w with 0’s, and design two objective functions to
optimize it. First, to make sure that it produces a similar
effect as the original direction, we use an image reconstruc-
tion loss so that the edited image produced by the new edit
matches the original edit given by the user:

Limg = ∥G(w0 +∆w)−G(w0 +∆∗
w)∥2 (3)

Additionally, user can provide the real value of distance
d, otherwise we set the distance of the edited image from
the hypothetical hyperplane to be 0 (similar to [29]). We
constrain the learned ∆∗

w to follow this property for better
interpretability. That is, the new direction should be such
that when we traverse the original latent code in that di-
rection, w0 → w0 + ∆∗

w, the resulting image should lie
at the hyperplane defined by that direction. Setting b = 0
in Eq. 1, we minimize the edited point’s distance from the
hyperplane:

Latt = |(w0 +∆∗
w) ·∆∗

w| (4)

The overall loss function for optimizing the new direc-
tion ∆∗

w is a weighted sum of the two objectives: L∆ =
Limg + λLatt. We set λ to 0.02 in all experiments to bal-
ance the magnitude of Limg and Latt.

Now, in Fig. 3 (b) and (c), we compare the difference
in image editing results using two different directions when
applied to the same new image (I1): w1 → w1 + ∆w vs.
w1 → w1 + ∆∗

w. As discussed before, in this case, the
editing using the naively computed direction (∆w) is not
able to accurately capture the pose rotation the way it did
for the user edited example (I0 → I ′0). On the other hand,
with ∆∗

w, we see that the pose of the woman changes by a
similar amount as the edited example. However, since the
original pose of the woman (I1) was not the same as the
pose of the man (I0), the new edited image (I ′1) still does
not arrive at the same final state as I ′0. Therefore, our next
goal is to figure out how to scale the learned direction so
that I ′1 does arrive at the same final state as I ′0.

3.2. Adjusting Editing Strength for New Images

Given the optimized ∆∗
w and some new image Ii = G(wi),

we wish to edit it in the following way:

w′
i = wi + αin (5)

where αi is the editing strength computed separately for
each image and n = ∆∗

w/||∆∗
w|| is a unit vector in the di-

rection of ∆∗
w. Fig. 3 (d) illustrates a geometric perspective

that we will use to compute αi. First, we see ∆∗
w repre-

sented as a vector and its corresponding hyperplane that is
normal to it. Next, we depict the new latent point wi. The

8274

Original UserContr. DragGAN DragDiff. Ours Original UserContr. DragGAN DragDiff. Ours

Original UserContr. DragGAN DragDiff. OursDragGAN DragDiff. Ours

Figure 4. Qualitative comparisons between dragging baselines. For ours, green bounding box indicates automatic transfer from the red
bounding box example in the first row (i.e., no point annotation needed!).

goal is to move it along the ∆∗
w direction so that it arrives

onto the hyperplane. Through this depiction, αi can be un-
derstood as the distance of w1 from the hyperplane. We can
get the distance by projecting (w′

0 − wi) in the direction of
n. Therefore, αi = (w′

0 − wi) · n.
Since for each image, the only unique computation that

needs to be done is the calculation of αi, we can see why our
method will be much faster than, for example, annotating
every image and running the DragGAN [17] optimization
each of those times. We will show in our experiments the
significant difference in time taken by our method compared
to single image editing baselines.

Importantly, there is an added benefit to computing α’s
in this way. Let’s say the goal of the editing process is to
rotate n faces and make them frontal. After completion,
all of them do become frontal, each with their own editing
strengths {α1, α2, ..., αn} computed using the above for-
mula. Suppose the user now wants the same faces facing
a bit left instead. To do this, the user does not need to re-
annotate the original training example and run the optimiza-
tion one more time. In an interactive manner, they can sim-
ply scale the α for the training example to match the desired
edit, and all other α’s can be automatically recomputed.

4. Experiments
We study how well our method models and transfers the
edits from an example, and how efficient it is compared to
single image editing baselines using their official code.

Categories. We evaluate on a variety of domains: Human
faces (FFHQ) [30], AFHQ Cats, Dogs [57], MetFaces [58],
Human bodies [59]. For each domain, we use the corre-
sponding pretrained StyleGAN model to perform editing.

4.1. Qualitative results

We start with qualitative comparisons with (i) interactive
point-dragging, and (ii) text-based image editing baselines.

Interactive point based editing. We compare against
DragGAN [17], UserControllableLT [25], and DragDiffu-
sion [16]. For each baseline, we, as a user, desire to edit
a bunch of images to have the same final state for an at-
tribute. Fig. 4 shows the results of editing two kinds of
edits to four images (leftmost column). In the left case,
the goal is to make everyone smile by the same degree. In
the right, it is to vertically compress everyone’s face by the
same degree. For all three baselines, we manually annotate
points for each test image. For our method, we only anno-
tate points and perform DragGAN-based edit on one image
(top row), then automatically transfer the edit to the three
other test images.

For the smiling case (left), we notice that when Drag-
GAN drags the upper/lower lips up/down respectively, it
can either make people smile (1st, 2nd and 4th rows), or
it can make people look shocked (blonde girl; 3rd row).
Both edits are technically correct based on lips movement,
but it won’t match the user expectation of making every-
one smile by the same degree. Since all four images are
edited independently, this is not unexpected. The other two
baselines sometimes have issues introducing the same edit
across different images; e.g., UserControllableLT can make
the blonde girl smile a little bit, but not the other images. In
general, we notice in our experiments that to introduce the
same exact edit that we want, we often need to play around
with some hyperparameters (e.g., # of iterations). In com-
parison, our method produces edited images that are smiling
more equally (left) and have been compressed by a similar

8275

“pale skin”

Original StyleCLIP Ours

“a man”

OursStyleCLIP

“big eyes”

Original InstructP2P Ours OursInstructP2P

“a child”

Figure 5. Qualitative comparisons to text-guided baselines. Ours transfers the edit from example (red), to other test images (green).

amount (right), and with much less human effort.

Text-driven image editing. We consider two baselines:
StyleCLIP [23] and InstructPix2Pix [14]. Each takes an im-
age and text as input to produce an edited image: I → I ′.
Fig. 5 shows the results of Ours vs. StyleCLIP (left) and
Ours vs. InstructPix2Pix (right). (For the latter, we invert
the output of InstructPix2Pix into StyleGAN’s latent space
using [42] for our method.) In each case, for the baselines,
we use the same text prompt, e.g., “A photo of a person with
pale skin” for each edited image (in four rows). For ours,
we capture the edit from the first editing result of a baseline
(first row), and then automatically transfer the edit to the
remaining three images.

Our goal with this particular setup is to test (i) how con-
sistently the baselines introduce the edit denoted by text to
different images (e.g., do all people become equally pale?),
and (ii) how consistently our method captures and transfers
the particular edit of the first example to the rest of the im-
ages, irrespective of how good that first edit was. For (i), we
find that StyleCLIP sometimes has issues; e.g., the paleness
of the edited face in first example is different from the sec-
ond (first vs second rows). For InstructPix2Pix, sometimes
it can give consistent results; the childness of different faces
seems similar. But, it can have consistency issues in other
examples; e.g., the type/strength of maleness introduced is
different in each image. And this is where, we believe, the
utility of our method lies: if one desires to edit every face
to be male in a particular way (i.e., to the same degree) as
the first example, e.g., thick eyebrows & light beard, our
method has an advantage.

Finally, we show our method’s results for non-facial do-
mains in Fig. 6. For the lion examples (top left), we see
that it can preserve not just the type of edit, e.g., dragging

Point Dragging Time Anno.
Method Dist. FID 1 img 1k imgs # imgs

UserControl. [25] 13.64 25.32 0.03s 30s 1000
DragGAN [17] 4.165 9.28 2s 33.33m 1000
DragDiffusion [16] 26.56 36.55 60s 16.67h 1000
Ours 9.467 9.35 2s 82s 1

Table 1. Time is estimated for 1 point drag, without human anno-
tation time. (82s includes 2s to perform edit on the example, 30s to
optimize the editing direction, and 50s to transfer the edit to 1000
test images.) Our method requires only one image annotation in
total, while the baselines need one annotation per test image.

to make the lion roar, but also the strength of the roar. The
strength being preserved can be observed more easily for
the human body poses (bottom left), where we see that the
extent of legs split, hand movements, is consistent enough
to almost align the edited test images with the user edited
one. Overall, results on these diverse set of domains high-
light an observation that many kinds of edits can be thought
of as a combination of {type, strength}, both of which can
indeed be captured and transferred according to our needs.

4.2. Quantitative results

Next, perform quantitative experiments following the setup
proposed in [16, 17, 19]. We first randomly sample 10 facial
test images and pair them with a randomly sampled target
face image. We use dlib-ml [60] to detect keypoints in the
test and target images. Our goal is to see if the keypoints in
the test images can be moved to the target locations spec-
ified by keypoints in the target image. For the baselines
[16, 17, 25], we perform dragging for each test image. For
our method, we perform dragging on one test image, and
then transfer the edit to the remaining nine images. This is
repeated 100 times; i.e., each time a random target image is

8276

Original Edited Images Original Edited Images

Original Edited Images Original Edited Images

Ex
am

pl
e

Te
st

 Im
ag

es
Ex

am
pl

e
Te

st
 Im

ag
es

Ex
am

pl
e

Te
st

 Im
ag

es
Ex

am
pl

e
Te

st
 Im

ag
es

edit edit

editedit

Figure 6. Additional qualitative results on various domains.

paired with 10 random test images.
We report the Euclidean distance between the keypoints

of edited and target images in Table 1. Even without requir-
ing annotations for every test image, our method can move
the points very close to the target; almost as close as Drag-
GAN, which requires annotation each time. We also com-
pute FID [61] between the original test images and their
edited versions to ensure that our method does not distort
the image; and our quality is comparable to DragGAN.

5. Deeper Analysis

We perform deeper analysis on the usefulness of our batch
image editing framework by focusing on a specific edit:
face pose rotation. In particular, if we wish to rotate
many faces to front, how do we visualize the improvements
brought by different components of our method?

Fig. 7 depicts the setup. We use DragGAN to perform

dragging on one image (top; w0 → w′
0). We then transfer

the edit to 1000 other test images (two shown in rows 2-
3). We see that naively applying ∆w = w′

0 − w0 from
DragGAN to test images cannot make them frontal (0◦).
Using our optimized ∆∗

w (without dynamic scaling) does
help it bring closer to facing front. Does this mean that ∆∗

w

might be a more global direction? We study this in Fig. 8
(a), where we visualize the degree to which the correlation
property of global directions (Eq. 2) holds for ∆w and ∆∗

w

individually. We see that there is indeed a better correlation
(R2) between the distances of latents from hyperplanes and
the Yaw degree of resulting images. (We predict Yaw using
6DRepNet [62].) However, as we discussed before, ∆∗

w in
itself is insufficient: to completely bring the facial pose to
front, we need to scale it with corresponding α’s to bring
them much closer to front (Fig. 7, 4th column). To study
this in a more systematic way, we visualize the effect on
all 1000 test images. Similar to Fig. 8 (a), we visualize

8277

𝑤!"𝑤! 𝑤!"∗

7.78!26.45! 11.95!

−32.36!−30.88! −38.69!

0.97!0.43!15.35!

Naïve AdjustedOptimized

−0.47!

0.51!

Te
st

 Im
ag

es

𝑤$"𝑤$

0.97!

𝑤$"∗

Ex
am

pl
e

Original
Figure 7. Effect of adjusted and optimized editing for test images.
Yaw degree of each image is provided on top of each images.

Time complexity
Method MAE Prepare Inference

Random 11.295 ± 8.972 - -
DragGAN [17] + GANgealing [63] 8.141 ± 7.221 30s 2000s
Ours 2.120 ± 1.818 32s 50s

Table 2. Ablation Study: DragGAN + GANgealing.

distance-to-hyperplane vs. Yaw degree for the original test
images (blue) and edited images (red) in Fig. 8 (b). We can
see that the variation in Yaw for the edited images collapses
at around 0◦; i.e., they mostly face front as we would like.

We also compute the time it takes to perform editing in
Table 1, last three columns. Our method only requires an-
notating one image, while the baselines require annotating
each image (e.g., 1000 total in this case). Note the times do
not include human annotation time.

Other ways to automate batch image editing. One
baseline for batch image editing (i.e., so that all edited im-
ages achieve the same final state) is shown in Fig. 9. Af-
ter the user annotates the source/target points in the exam-
ple image, we use GANgealing [63] to transfer the points
to corresponding locations in each new test image. The
edited images are then obtained using DragGAN (Drag-
GAN + GANgealing). We compare our method to this base-
line when the user edits one face image to become front
(Yaw=0◦) and transferring it to 1000 other test images.

Results are shown in Table 2. We report mean absolute
error (MAE) between the Yaw degree of the edited image
and its ideal frontal image (Yaw=0◦). ‘Random’ shows the
variations in Yaw for the original images (before editing).
While ‘DragGAN + GANgealing’ does help in reducing the
variation (8.14 < 11.29), our edited images are much more
frontal, with an MAE of 2.12. This is because the base-
line has no way to bring all edited images to the same final
state. On top of that, since our method does not rely on

20 0 20 40 60 80 100

Distance from the hyperplane

60

40

20

0

20

40

Ya
w

 d
eg

re
es

(a) Naïve (R²=0.744) vs. Optimized direction (R²=0.846)
Naïve direction
Optimized direction
Random Points
Random Points

20 15 10 5 0 5 10 15 20

Distance from the hyperplane

60

40

20

0

20

40

Ya
w

 d
eg

re
es

(b) Effectiveness of Adjusting Alpha for Each Test Image
Optimized direction
Random points
Adjusted points

Figure 8. (a) After optimization, the editing direction is more lin-
early correlated with the yaw attribute. (b) With automatically ad-
justed editing scale for each test image.

Example Image Edited Image Test Image DragGAN
+ GANgealing

Ours

Transfer points

Automatic

Figure 9. Ablation study set up. We use GANgealing [63] to trans-
fer the annotated points from example to test image.

additional information about keypoints (which ‘DragGAN
+ GANgealing’ does), we believe that it is better suited
for batch image editing for many kinds of domains (e.g.,
Fig. 6), where we might not have such information.

6. Conclusion

We introduced the problem of interactive batch image edit-
ing. Given a user edit in an example image, our approach
automatically transfers that edit to other test images, main-
taining a consistent final state of the edit across images. Ex-
tensive experiments demonstrated that our method produces
comparable quality to state-of-the-art single-image-editing
methods while saving significant time and human effort. We
are currently limited to StyleGAN models. Extending this
problem and solution to diffusion-based models for more
edits types would be an exciting future direction.

Acknowledgement

This work was supported in part by NSF CAREER
IIS2150012, Adobe Data Science award, Sony Focused
Research award, and Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. RS-2022-
00187238, Development of Large Korean Language Model
Technology for Efficient Pretraining).

8278

References
[1] Man M. Ho and Jinjia Zhou. Deep preset: Blending and

retouching photos with color style transfer. In WACV, 2021.
1

[2] Mahmoud Afifi, Konstantinos G. Derpanis, Bjorn Ommer,
and Michael S. Brown. Learning multi-scale photo exposure
correction. In CVPR, 2021.

[3] Jong-Hyeon Baek, DaeHyun Kim, Su-Min Choi, Hyo-jun
Lee, Hanul Kim, and Yeong Jun Koh. Luminance-aware
color transform for multiple exposure correction. In ICCV,
2023.

[4] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling,
Weiyuan Li, and Liqing Zhang. Dovenet: Deep image har-
monization via domain verification. In CVPR, 2020.

[5] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli,
Xin Lu, and Ming-Hsuan Yang. Deep image harmonization,
2017.

[6] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu,
and Bing Zheng. Intrinsic image harmonization. In CVPR,
2021.

[7] Jun Ling, Han Xue, Li Song, Rong Xie, and Xiao Gu.
Region-aware adaptive instance normalization for image har-
monization. In CVPR, 2021.

[8] Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe
Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi,
Sarah Kong, and Zhangyang Wang. Ssh: A self-supervised
framework for image harmonization. In ICCV, 2021.

[9] Wenyan Cong, Xinhao Tao, Li Niu, Jing Liang, Xuesong
Gao, Qihao Sun, and Liqing Zhang. High-resolution image
harmonization via collaborative dual transformations. 2022.

[10] Jeya Maria Jose Valanarasu, He Zhang, Jianming Zhang,
Yilin Wang, Zhe Lin, Jose Echevarria, Yinglan Ma, Zijun
Wei, Kalyan Sunkavalli, and Vishal M Patel. Interactive por-
trait harmonization. 2022.

[11] Lingzhi Zhang, Tarmily Wen, and Jianbo Shi. Deep image
blending. In The IEEE Winter Conference on Applications
of Computer Vision, pages 231–240, 2020.

[12] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation. arXiv preprint arXiv:2306.00986,
2023. 1

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. 2021. 1, 3

[14] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
2022. 1, 2, 3, 6

[15] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided
image synthesis and editing with stochastic differential equa-
tions. In ICLR, 2022. 1, 3

[16] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vin-
cent YF Tan, and Song Bai. Dragdiffusion: Harnessing diffu-
sion models for interactive point-based image editing. 2023.
1, 3, 5, 6

[17] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie
Liu, Abhimitra Meka, and Christian Theobalt. Drag your

gan: Interactive point-based manipulation on the generative
image manifold. In SIGGRAPH, 2023. 1, 2, 3, 5, 6, 8

[18] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord. Diffedit: Diffusion-based semantic image
editing with mask guidance, 2022.

[19] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Dragondiffusion: Enabling drag-style manipu-
lation on diffusion models. 2023. 1, 2, 3, 6

[20] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin
Chen, Xiaoyan Sun, Dong Chen, and Fang Wen. Paint by
example: Exemplar-based image editing with diffusion mod-
els. arXiv preprint arXiv:2211.13227, 2022.

[21] Adding Conditional Control to Text-to-Image Diffusion Mod-
els, 2023. 3

[22] GLIGEN: Open-Set Grounded Text-to-Image Generation,
2023. arXiv:2301.07093. 1

[23] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In ICCV, 2021. 1, 2, 3, 6

[24] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. In
CVPR, 2023. 1, 3

[25] Yuki Endo. User-controllable latent transformer for stylegan
image layout editing. Computer Graphics Forum, 2022. 1,
2, 3, 5, 6

[26] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. In NeurIPS, 2020. 2, 3, 4

[27] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing. In
CVPR, 2020.

[28] Yujun Shen and Bolei Zhou. Closed-form factorization of
latent semantics in gans. In CVPR, 2021. 3, 4

[29] Yotam Nitzan, Rinon Gal, Ofir Brenner, and Daniel Cohen-
Or. Large: Latent-based regression through gan semantics.
In CVPR, 2022. 2, 4

[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
2019. 2, 4, 5

[31] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, 2020. 2, 3, 4

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 2

[33] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 2

[34] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv, 2018. 2

[35] Terro Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 2

[36] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2

8279

[37] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. 2015. 2

[38] Ali Jahanian, Lucy Chai, and Phillip Isola. On the ”steer-
ability” of generative adversarial networks. In ICLR, 2020.
2

[39] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza,
Bolei Zhou, and Antonio Torralba. Understanding the role of
individual units in a deep neural network. Proceedings of the
National Academy of Sciences, 2020. 2

[40] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for stylegan image genera-
tion. In ICLR, 2020. 3

[41] Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and
Qifeng Chen. High-fidelity gan inversion for image attribute
editing. In CVPR, 2022. 3

[42] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan image
manipulation. In ACM Transactions on Graphics, 2021. 6

[43] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM Trans. Graph., 2021. 3

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. 2021. 3

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. 2021. 3

[46] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems. Curran Associates,
Inc., 2020. 3

[47] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch,
and Daniel Cohen-Or. Null-text inversion for editing real
images using guided diffusion models. arXiv preprint
arXiv:2211.09794, 2022. 3

[48] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 3

[49] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,
Antonio Torralba, and Sanja Fidler. Editgan: High-precision
semantic image editing. In Advances in Neural Information
Processing Systems (NeurIPS), 2021. 3

[50] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and
Antonio Torralba. Rewriting a deep generative model. In
ECCV, 2020. 3

[51] Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Glober-
son, and Alexei A. Efros. Visual prompting via image in-
painting. 2022. 3

[52] Thao Nguyen, Yuheng Li, Utkarsh Ojha, and Yong Jae
Lee. Visual instruction inversion: Image editing via visual
prompting. In NeurIPS, 2023.

[53] Yasheng Sun, Yifan Yang, Houwen Peng, Yifei Shen, Yuqing
Yang, Han Hu, Lili Qiu, and Hideki Koike. Imagebrush:
Learning visual in-context instructions for exemplar-based
image manipulation. 2023.

[54] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian
Curless, and David H. Salesin. Image analogies. In Seminal
Graphics Papers: Pushing the Boundaries, Volume 2, 2023.

[55] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing
Kang. Visual attribute transfer through deep image analogy.
2017. 3

[56] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei
Zhou, and Ming-Hsuan Yang. Gan inversion: A survey.
TPAMI, 2022. 3

[57] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Starganv2: Diverse image synthesis for multiple domains. In
CVPR, 2020. 5

[58] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data, 2020. 5

[59] Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin,
Chen Qian, Chen-Change Loy, Wayne Wu, and Ziwei Liu.
Stylegan-human: A data-centric odyssey of human genera-
tion. arXiv preprint, arXiv:2204.11823, 2022. 5

[60] Davis E. King. Dlib-ml: A machine learning toolkit. J.
Mach. Learn. Res., 2009. 6

[61] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, Gunter Klambauer, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a
local nash equilibrium. In NeurIPS, 2017. 7

[62] Thorsten Hempel, Ahmed A. Abdelrahman, and Ayoub Al-
Hamadi. 6d rotation representation for unconstrained head
pose estimation. In ICIP, 2022. 7

[63] William Peebles, Jun-Yan Zhu, Richard Zhang, Antonio Tor-
ralba, Alexei Efros, and Eli Shechtman. Gan-supervised
dense visual alignment. In CVPR, 2022. 8

8280

