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1LIGM, École des Ponts 2Adobe 3EPFL

Ground-truth & MegaPose [24] GigaPose Reconstruction & MegaPose [24] GigaPose
Input segmentation (1.68 s / detection) (0.048 s / detection) Input segmentation (1.68 s / detection) (0.048 s / detection)

Using ground-truth 3D models Using 3D models predicted from a single image
Figure 1. Comparison of our method GigaPose with MegaPose [24]. GigaPose is (i) more robust to noisy segmentation, often due to
occlusions, (ii) more accurate with 3.5 % average precision improvement on the BOP benchmark [54], and (iii) significantly faster with a
speed up factor of 35× per detection for coarse object pose estimation stage (0.048 s vs 1.68 s). Left example compares the results using
accurate 3D models, while the right example shows the results with 3D models predicted from a single image by Wonder3D [34]. The
bottom row shows the input segmentation, and the depth error heatmap of each detected object with respect to the ground truth pose, i.e the
distance between each 3D point in the ground-truth depth map and its position with the predicted pose (legend: 0 cm 10 cm).

Abstract

We present GigaPose, a fast, robust, and accurate method
for CAD-based novel object pose estimation in RGB images.
GigaPose first leverages discriminative “templates”, ren-
dered images of the CAD models, to recover the out-of-plane
rotation and then uses patch correspondences to estimate
the four remaining parameters. Our approach samples tem-
plates in only a two-degrees-of-freedom space instead of the
usual three and matches the input image to the templates us-
ing fast nearest-neighbor search in feature space, results in a
speedup factor of 35× compared to the state of the art. More-
over, GigaPose is significantly more robust to segmentation
errors. Our extensive evaluation on the seven core datasets
of the BOP challenge demonstrates that it achieves state-
of-the-art accuracy and can be seamlessly integrated with
existing refinement methods. Additionally, we show the po-
tential of GigaPose with 3D models predicted by recent work
on 3D reconstruction from a single image, relaxing the need
for CAD models and making 6D pose object estimation much
more convenient. Our source code and trained models are
publicly available at https://github.com/nv-nguyen/gigaPose.

1. Introduction
6D object pose estimation has significantly improved over

the past decade [22,23,27,32,52,55,57,61]. However, super-
vised deep learning methods, despite remarkable accuracy,
are cumbersome to deploy to an industrial setting. Indeed,
for each novel object, the pose estimation model needs to be
retrained using newly-acquired data, which is impractical:
Retraining typically takes several hours or days [23, 32], and
the end users might not have the skills to retrain the model.

To fulfill the needs of such industrial settings, CAD-based
novel object pose estimation, which focuses on estimating
the 6D pose of novel objects (i.e., objects only available at
inference time, not during training), has garnered attention
and was introduced in the latest BOP challenge [16]. Cur-
rent approaches involve three main steps: object detection
and segmentation, coarse pose estimation, and refinement.
While object detection and segmentation has been recently
addressed by CNOS [41], refinement has been also addressed
effectively with render-and-compare approaches [24, 56].
However, existing solutions to coarse pose estimation still
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suffer from low inference speed and sensitivity to segmenta-
tion errors. We thus focus on this step in this paper.

The low inference speed stems from how existing coarse
pose estimation methods rely on templates [24, 42, 62].
Among them, MegaPose [24] has been widely adopted and
integrated into various pipelines, notably the BOP challenge-
winner GenFlow [37]. However, the complexity of Mega-
Pose is linear in the number of templates, as it matches the
input images against the templates by running a network on
each image-template pair. As a result, the methods based on
MegaPose require more than 1.6 seconds per detection.

Sensitivity to detection and segmentation errors, often
due to occlusions, is a common issue for template-based
approaches [24, 42]. As illustrated in Figure 1, the segmen-
tation of occluded objects such as the “duck” (left example),
results in a scale and translation mismatch when cropping
the test image and templates. Additionally, the erroneous
segments may include noisy signal from the other objects or
the background, which results in numerous outlier matches
between the input image and the templates.

To address these two major limitations, we introduce Gi-
gaPose, a novel approach for CAD-based coarse object pose
estimation. GigaPose makes several technical contributions
towards speed and robustness and can be seamlessly inte-
grated with any refinement method for CAD-based novel
object pose estimation to achieve state-of-the-art accuracy.

The key idea in GigaPose is to find the right trade-off
between the use of templates, which have been shown to
be extremely useful for estimating the pose of novel ob-
jects, and patch correspondences, which lead to better ro-
bustness and more accurate pose estimates. More precisely,
we propose to rely on templates to estimate two degrees of
freedom (DoFs)—azimuth and elevation—as varying these
angles changes the appearance of an object in complex ways,
which templates excel at capturing effectively. Our templates
are represented with local features that are trained to be ro-
bust to scaling and in-plane rotations. Matching the input
image with the templates based on these local features yields
robustness to segmentation errors.

To estimate the remaining 4 DoFs—in-plane rotation and
3D translation decomposed into 2D translation and 2D scale,
we rely on patch correspondences between the input image
and the template candidates. Given a template candidate,
we match its local features with those of the input image,
which gives us 2D-2D point correspondences. Instead of
simply exploiting the matched point coordinates and use a
PnP algorithm [38] to estimate the pose as done in previous
works [17, 18, 52], we also exploit their appearances: We
show that it is possible to predict the in-plane rotation and
relative scale between the input image and the template from
local features computed at the matched points. The remain-
ing 2D translation is obtained from the positions of these
matched points, allowing the estimation of the four DoFs

from a single correspondence. To robustify this estimate, we
combine this process with RANSAC.

We experimentally demonstrate that our balance between
the use of templates and patch correspondences effectively
addresses the two issues in coarse pose estimation. Indeed,
our method relies on a sublinear nearest-neighbor template
search, successfully addressing the low inference speed issue
with a speedup factor of 35× per detection compared to to
MegaPose [24]. Furthermore, the two steps of our method
are particularly robust to segmentation errors.

We also demonstrate that GigaPose can exploit a 3D
model reconstructed from a single image by a diffusion-
based model [31, 33, 34, 50, 51, 58] instead of an accurate
CAD model. Despite the inaccuracies of the predicted 3D
models, our method can recover an accurate 6D pose as
shown on Figure 1. This relaxes the need for CAD models
and makes 6D pose object detection much more convenient.

In summary, our contribution is a novel RGB-based
method for CAD-based novel object coarse pose estima-
tion from a single correspondence that is significantly faster,
more robust, and more accurate than existing methods. We
demonstrate this through extensive experiments on the seven
core datasets of the BOP challenge [54].

2. Related Work
Seen object pose estimation. Early works on 6D pose
estimation have introduced diverse benchmarks to evaluate
the performance of their approaches [2,8,10,13,14,21,54,60].
This data and its ground truth have powered many deep
learning-based methods [17, 22, 23, 27, 28, 32, 47, 52, 55, 61].
Some of them show remarkable performance in terms of
run-time and accuracy [23, 32]. However, these approaches
require long and expensive training, such as the state-of-
the-art methods [23, 32] require several hours for training
for a single object, making them too cumbersome for many
practical applications in robotics and AR/VR.

To avoid the need for re-training when dealing with new
object instances, one approach is to train on object categories
by assuming that the testing objects belong to a known cate-
gory [6, 19, 20, 26, 30, 35, 36, 59]. These category-level pose
estimation methods, however, cannot generalize to objects
beyond the scope of the training categories. By contrast,
our method operates independently of any category-level
information and seamlessly generalizes to novel categories.

Novel object pose estimation. Several techniques have
been explored to improve the generalization of object pose
estimation methods [1,4,24,29,39,40,42,43,46,49,53,56,62].
These can be roughly divided into feature-matching methods
[1,49] and template matching ones [1,4,24,40,42,43,46,53,
62]. Feature-matching methods extract local features from
the image, match them to the given 3D model and then use
a variant of the PnP algorithm [38] to recover the 6D pose
from the 3D-to-2D correspondences. By contrast, template
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Figure 2. Overview. We first onboard each novel object by rendering 162 templates, spanning the spectrum of out-of-plane rotations. We
also extract dense features using Fae from each of the templates. At runtime, given a query image segmented with CNOS [41], we process it
(by masking the background, cropping on the segment, adding padding then resizing), and extracting features with Fae. We retrieve the
nearest template to the segment using the similarity metric detailed in Section 3.2. Further, 2D scale and in-plane rotation are computed
from a single 2D-2D correspondence using Fist and two lightweight MLPs. The 2D position of the correspondences also gives us the 2D
translation which is used with 2D scale, in-plane rotation to create the affine transformation Mt→q , mapping the nearest template to the
query image. This enables us to recover the complete 6D object pose from a single correspondence. Finally, we use RANSAC to robustly
find the best pose candidate. Onboarding takes 11.5 seconds per object and inference takes 48 milliseconds per detection on average.

matching methods first render synthetic templates of the
CAD models, and then use a deep network to compute a
score for each input image-template pair, thus aiming to find
the template with the most similar pose to the input image.

At the last BOP challenge [16], CAD-based novel ob-
ject pose estimation was introduced as a new task, using
CNOS [41] as the default detection method. MegaPose [24]
and ZS6D [1] showed promising results for this new task.
Nevertheless, MegaPose’s run-time was highlighted as a sig-
nificant limitation due to the need for a forward pass through
a coarse pose estimator to compute a classification score
for every (query, template) comparison. ZS6D relies on
DINOv2 features [45] and the similarity metric of [42] to
predict sparse 3D-to-2D correspondences. Unfortunately,
their experiments do not evaluate the model’s sensitivity to
segmentation errors. In contrast, we present extensive eval-
uations and demonstrate that GigaPose outperforms both
MegaPose and ZS6D. Our method can also be seamlessly
integrated with any refinement method.

Correspondence-based object pose estimation. A classical
approach to solving the 6D object pose estimation problem
is to establish 3D-to-2D correspondences and compute the
pose with a PnP algorithm [17, 18, 28, 48, 52, 55, 61], which
requires at least four 3D-to-2D point correspondences. Be-
cause we first match the input image against templates and
estimate the four remaining DoFs from a single 2D-to-2D
match, we only need one correspondence to determine the
6D object pose. Our experimental evaluation shows that our
method outperforms ZS6D, which, as stated above, is a state-
of-the-art method relying on 3D-to-2D correspondences.

3. Method

Figure 3 provides an overview of GigaPose. Given the
3D model of an object of interest, we render templates and
extract their dense features using a Vision-Transformer (ViT)
model Fae. Then, given an input image, we detect the object
of interest and segment it using an off-the-shelf method
CNOS [41]. GigaPose extracts dense features from the input
image at the object location using Fae again. We select the
template most similar to the input image using a similarity
metric based on the dense features, detailed in Section 3.2.
This gives us the azimuth and elevation of the camera.

To estimate the remaining DoFs, we look for correspond-
ing patches between the input image and its most similar
template. From one such pair of patches, we can directly
predict two additional DoFs: the 2D scale s and the in-plane
rotation α, by feeding two lightweight MLPs the features
for the two patches extracted by another feature extractor
denoted as Fist. Note that the features extracted by Fae are
not suitable here, as they discard information about scale and
in-plane rotation by design. The image locations of the corre-
sponding patches also give us directly the last two DoFs: the
2D translation (tx, ty). From the scale and 2D translation,
we can estimate the 3D translation. We use a RANSAC
framework and iterate over different pairs of patches to find
the optimal pose. We detail the training of Fist and the MLPs,
and the RANSAC scheme in Section 3.3.

3.1. Generating Templates
In contrast to other approaches [42, 62], we do not gener-

ate templates for both in-plane and out-of-plane rotations, as
this yields thousands of templates. Instead, we decouple the
6 DoFs object pose into out-of-plane rotation, in-plane ro-

9905



Figure 3. Contrastive training of Fae. We use pairs made of a query image and a template to train a network using local contrastive
learning as detailed in Section 3.2. Middle: Training samples provided by [24], and the 2D-2D correspondences created from ground-truth
3D information used to generate positive and negative pairs. Right: We seek local features that vary with the out-of-plane rotation, but
are invariant to in-plane rotation and scaling. Thus, positive pairs are made of corresponding patches under scaling and in-plane rotation
changes, and negative pairs are made of corresponding patches under different out-of-plane rotations, patches that do not correspond, or that
come from different objects.

tation, and 3D translation (2D translation and scale). Given
the out-of-plane rotation, finding the scale and in-place ro-
tation is indeed a 2D problem only. We thus create much
less templates and push the estimation of the other DoFs to
a later stage in the pipeline (see Section 3.3).

In practice, we use 162 templates. These are generated
from viewpoints defined in a regular icosphere which is cre-
ated by subdividing each triangle of the icosphere primitive
of Blender into four smaller triangles. This has been shown
in previous works [1,41,42] to provide well-distributed view
coverage of CAD models.

3.2. Predicting Azimuth and Elevation
Training the feature extractor Fae. Fae extracts dense
features from both the input image and each of the templates
independently. Compared to estimating features jointly, this
approach eliminates the need for extensive feature extraction
at runtime, a process that scales linearly with the number of
templates and in-plane rotations considered. Instead, we can
offload the computation of the features for each template to
an onboarding stage for each novel object. We now describe
how we train the feature extractor Fae and how we design the
similarity metric to compare the template and query features.

The extracted features aim to match a query image to a set
of templates with different out-of-plane rotations, but with
fixed scale, in-plane rotation, and translation. The features
should thus be invariant to scale, in-plane rotation, and 2D
translation, but be sensitive to out-of-plane rotation.

We achieve this with a local contrastive learning scheme.
The main difficulty lies in defining the positive and negative
patch pairs. Figure 3 illustrates our training procedure. We
construct batches of B image pairs (Qk, Tk), such that the
query Qk is a rendering of a 3D object in any pose, and the
template Tk is another rendering of that object with the same
out-of-plane rotation but different in-plane rotation, scale,

and 2D translation. Because we have access to the 3D model,
we can compute ground-truth 2D-to-2D correspondences to
create positive and negative pairs. We detail in the supple-
mentary material how we compute these correspondences.

Additionally, since our goal is to close the domain gap
between real images and synthetic renderings, we apply
color augmentation along with random cropping and in-
plane rotation to the input pairs. We use the training sets
provided by the BOP challenge [54], originally sourced from
MegaPose [24]. These datasets consist of 2 million images
and are generated from CAD models of Google Scanned
Objects [9] and ShapeNet [5] using BlenderProc [7]. We
show typical training samples in the middle part of Figure 3.

We pass each image Qk and Tk independently through
Fae to extract dense feature maps qk and tk. Below, we use
the superscript i to denote a 2D location in the local feature
map. Note that because of the downsizing done by the ViT,
each location i in the feature grid corresponds to a 14×14
patch in the respective input image. Each feature map has a
respective segmentation mask mQk

and mTk
corresponding

to the foreground of the object in the images Qk and Tk.
For a location i in the query feature map qk, we denote

by i∗ the corresponding location in the template feature map.
We arrange the query patches (qi

k) and their corresponding
patch (ti

∗

k ) in a square matrix such that the diagonal contains
the positive pairs, and all other entries serve as negative pairs.
For each pair (Qk, Tk), we thus obtain |mQk

| positive pairs
and |mQk

| × (|mQk
| − 1) negative pairs.

To improve the efficiency of contrastive learning, we
use additional negative pairs from a query image Qk and
a template Tk′ , where k′ ̸= k in the current batch. This

process results in total in
(∑B

k=1 |mQk
|
)2

−
∑B

k=1 |mQk
|

negative pairs for the current batch. We train Fae to align
the representations of the positive pairs while separating the
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negative pairs using the InfoNCE loss [44]:

Lout = −
B∑

k=1

|mQk
|∑

i=1

ln
eS(qi

k,t
i∗
k )/τ∑

(k′,i′) ̸=(k,i∗) e
S(qi

k,t
i′
k′ )/τ

, (1)

where S(., .) is the cosine similarity between the local image
features computed by the network Fae. The temperature
parameter τ is set to 0.1 in our experiments.

Since the positive pairs of patches have different scales
and in-plane rotations, our network Fae learns to become
invariant to these two factors, as demonstrated in our ex-
periments. We initialize our feature extractor Fae as DI-
NOv2 [45] pretrained on ImageNet, because it has proven to
be highly effective in extracting features for vision tasks.

Azimuth and elevation prediction. We define a pairwise
similarity metric for each query-template (Q, T ) pair with
their respective dense feature grid (q, t) and feature segmen-
tation masks (mQ,mT ).

For each local query feature qi, corresponding to patch at
location i, we compute its nearest neighbor in the template
features t, denoted as timax , as

imax = argmax
j|mj

T >0

S
(
qi, tj

)
. (2)

This nearest neighbor search yields a list of correspondences
{(i, imax)}. To improve the robustness of our method against
outliers, we keep only the correspondences {(i, imax)} hav-
ing a similarity score ≥ 0.5. The final similarity for this (Q,
T ) pair is defined as the mean of all the remaining corre-
spondences, weighted by their similarity score:

sim(q, t) =
1

|mQ|
∑
i

mi
QS

(
qi, timax

)
. (3)

We compute this score for all templates Tk (1 ≤ k ≤ 162)
and find the top-K candidates yielding the most similar out-
of-plane rotations. This nearest neighbor search is very fast
and delivers results within TODO milliseconds. In practice,
we experiment with K = 1 and K = 5. For the latter, the
final template is selected by the RANSAC-based estimation
detailed in Section 3.3 below.

3.3. Predicting the Remaining DoFs

Once we have identified the template candidates, we seek
to estimate the remaining 4 DoFs, i.e., in-plane rotation,
scale, and 2D translation, which yield the affine transforma-
tion Mt→q transforming each template candidate T to the
query image Q. Specifically, we have

Mt→q =

s cos(α) −s sin(α) tx
s sin(α) s cos(α) ty

0 0 1

 , (4)

where s is the 2D scaling factor, α is the relative in-plane
rotation, and [tx, ty] is the 2D translation between the input
query image Q and the template T .

Training the feature extractor Fist and the MLP. We
have already obtained from the features of Fae a list of
2D-2D correspondences {(i, imax)}. Each correspondence
can inherently provide 2D translation [tx, ty] information
through the patch locations i and imax. To recover the re-
maining 2 DoFs, scale s and in-plane rotation α, we train
deep networks to directly regress these values from a single
2D-2D correspondence. Since the feature extractor Fae is
invariant to in-plane rotation and scaling, the corresponding
features cannot be used to regress those values, hence we
have to train another feature extractor we call Fist. Given
a 2D-2D match from a pair (Q, T ), and their correspond-
ing feature computed by Fist, we pass them through two
small MLPs, which outputs directly α and s. This enables
us to predict 2D scale and in-plane rotations for each 2D-2D
correspondence. To address the 2π periodicity of in-plane
rotation, we predict

[
cos(αl

k), sin(α
l
k)
]

instead of αl
k.

We train jointly both Fist and the MLPs on the same data
samples as Fae using the loss:

Linp =

B∑
k=1

nk∑
i=1

[(
ln(sik)− ln(s∗k)

)2
+ geo(αi

k, α
∗
k)
]
, (5)

where s∗k and α∗
k are the ground-truth scale and in-plane rota-

tion between Q and Tk, and geo(·, ·) indicates the geodesic
loss defined as

geo(α1, α2) = acos
(
cos(α1)cos(α2) + sin(α1)sin(α2)

)
. (6)

RANSAC-based Mt→q estimation. For each template
T , we employ RANSAC on each Mt→q predicted by each
correspondence and validate them against the remaining cor-
respondences using a 2D error threshold of δ. In practice,
we set δ to the size of a patch, corresponding to an error of
14 pixels in image space. The final prediction for Mt→q is
determined by the correspondence with the highest number
of inliers. The complete 6D object pose can finally be re-
covered from the out-of-plane rotation, in-plane rotation, 2D
scale and 2D translation using the explicit formula provided
in the supplementary material.

We initialize Fist with a modified version of ResNet18
[12] instead of the DINOv2 [45] as DINOv2 is trained with
random augmentations that includes in-plane rotations and
cropping, making its features invariant to scale and in-plane
rotation. Similarly to the features from Fae, we offload the
feature computation of Fist to the onboarding stage for all
templates to avoid the computational burden at runtime.

Implementation details. We use the input image of size
224 ×224, resulting in features of size 16×16×1024 and
16×16×256 via the networks Fae and Fist respectively. We
train our networks using the Adam optimizer with an initial
learning rate of 1e-5 for Fae and 1e-3 for Fist. The training
process takes less than 10 hours when using four V100 GPUs.
All the inference experiments are run on a single V100 GPU.
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Method Detections Refinement
LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V

MEAN RUN-TIME
Num. instances: 1445 6423 600 1786 3041 1630 4123

1 OSOP [53] OSOP [53] – 27.4 40.3 – – – – 29.6 – –
2 MegaPose [24] Mask R-CNN [11] – 18.7 19.7 20.5 15.3 8.00 18.6 13.9 16.2 –

3 ZS6D [1] CNOS [41] – 29.8 21.0 – – – – 32.4 – –
4 MegaPose [24] CNOS [41] – 22.9 17.7 25.8 15.2 10.8 25.1 28.1 20.8 15.5 s
5 GigaPose (Ours) CNOS [41] – 29.6 26.4 30.0 22.3 17.5 34.1 27.8 26.8 0.4 s

6 MegaPose [24] CNOS [41] MegaPose [24] 49.9 47.7 65.3 36.7 31.5 65.4 60.1 50.9 17.0 s
7 GigaPose (Ours) CNOS [41] MegaPose [24] 55.7 54.1 58.0 45.0 37.6 69.3 63.2 54.7 2.3 s

8 MegaPose [24] CNOS [41] MegaPose + 5 Hypotheses [24] 56.0 50.7 68.4 41.4 33.8 70.4 62.1 54.7 21.9 s
9 GigaPose (Ours) CNOS [41] MegaPose + 5 Hypotheses [24] 59.8 56.5 63.1 47.3 39.7 72.2 66.1 57.8 7.7 s

10 MegaPose [24] CNOS [41] GenFlow + 5 Hypotheses [37] 56.3 52.3 68.4 45.3 39.5 73.9 63.3 57.0 20.8 s
11 GigaPose (Ours) CNOS [41] GenFlow + 5 Hypotheses [37] 63.1 58.2 66.4 49.8 45.3 75.6 65.2 60.5 10.6 s

Table 1. Results on the BOP datasets. We report the AR score on each of the seven core datasets of the BOP challenge and the mean score
across datasets. The best results with CNOS’s detections [41] without refinement are highlighted in blue , with MegaPose’s refinement
using 1 hypothesis in yellow , and using 5 hypotheses in orange , and with GenFlow’s refinement using 5 hypotheses in red .

4. Experiments
In this section, we first describe our experimental

setup (Section 4.1). Next, we compare our method with
previous works [1, 24, 53] on the seven core datasets of the
BOP challenge [16] (Section 4.2). We conduct this compari-
son to evaluate our method’s accuracy, runtime performance,
and robustness to segmentation errors, highlighting our con-
tributions. Finally, we present an ablation study that explores
different settings of our method (Section 4.4).

4.1. Experimental Setup
Evaluation Datasets. We evaluate our method on the
seven core datasets of the BOP challenge [16]: LineMod
Occlusion (LM-O) [2], T-LESS [13], TUD-L [14], IC-
BIN [8], ITODD [10], HomebrewedDB (HB) [21] and YCB-
Video (YCB-V) [60]. These datasets consist of a total of 132
different objects and 19048 testing instances, presented in
cluttered scenes under partial occlusions. It is worth noting
that, in contrast to the seen object setting, the novel object
pose estimation setting is far from being saturated in terms
of both accuracy and run-time.

Evaluation metrics. For all experiments, we use the stan-
dard BOP evaluation protocol [15], which relies on three
metrics: Visible Surface Discrepancy (VSD), Maximum
Symmetry-Aware Surface Distance (MSSD), and Maximum
Symmetry-Aware Projection Distance (MSPD). The final
score, referred to as the average recall (AR), is calculated by
averaging the individual average recall scores of these three
metrics across a range of error thresholds.

Baselines. We compare our method with MegaPose [24],
ZS6D [1], and OSOP [53]. As of the time of writing, the
source codes for ZS6D and OSOP are not available. There-
fore, we can only report their performance as provided in
their papers, but not their run-time.

Refinement. To demonstrate the potential of GigaPose, we
have applied the refinement methods from MegaPose [24]
and GenFlow [37] to our results. We extract the top-1 and
the top-5 pose candidates and subsequently refine them us-
ing 5 iterations of MegaPose’s refinement network [24] or
GenFlow’s refinement network [37]. For the top-5 hypothe-
ses case, these refined hypotheses are scored by the coarse
network of MegaPose [24], and the best one is selected.
Pose estimation with a 3D model predicted from a sin-
gle image. We use Wonder3D [34] to predict a 3D model
from a single image for objects from LM-O. We then eval-
uate the performance of MegaPose and our method using
reconstructed models instead of the accurate CAD models
provided by the dataset. Due to the sensitivity of Wonder3D
to the quality of input images, we carefully select reference
images. More details about this setting are present in the
supplementary material.

4.2. Comparison with the State of the Art
Accuracy. Table 1 compares the results of our method
with those of previous work [1, 24, 53]. Across all settings,
whether with or without refinement, our method consistently
outperforms MegaPose while maintaining significantly faster
processing times. Notably, our method significantly im-
proves accuracy on the challenging T-LESS, IC-BIN, and
ITODD, with more than a 5% increase in AR score for coarse
pose estimation and more than a 4% increase in AR score
after refinement compared to MegaPose.

It is important to note that although the coarse and refine-
ment networks in MegaPose [24] are not trained together,
they were trained to work together: As mentioned in Sec-
tion 3.2 of [24], the positive samples of the coarse network

“are sampled from the same distribution used to generate the
perturbed poses the refiner network is trained to correct”.
This pose sampling biases MegaPose’s refinement process
towards MegaPose’s coarse estimation errors. This explains
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coarse pose estimation after refinement

Figure 4. Qualitative results on LM-O [2]. The first column shows the ground-truth and CNOS [41] segmentation. The second and third
columns show the results without refinement for both MegaPose [24] and our method, including depth error heatmaps at the bottom. The
last two columns compare the results using the same refinement [24] for MegaPose [24] and our method. In the error heatmap, darker red
indicates higher error with respect to the ground truth pose (legend: 0 cm 10 cm). As demonstrated in this figure, our method
estimates a more accurate coarse pose and avoids local minima during refinement, such as with the white “watering can” object from LM-O.

Figure 5. 3D recontruction by Wonder3D [34]. The first row
displays the input reference image, the second shows the predicted
normal maps from the view opposite to the reference image. More
visualizations are provided in the supplementary material.

Method Detection [41] Single image GT 3D model
w/o refinementCoarse Refined

1 MegaPose [24] GT 3D model 16.3 25.6 22.9
2 GigaPose (ours) GT 3D model 18.3 27.9 29.6

3 MegaPose [24] Single image 15.4 25.2 22.7
4 GigaPose (ours) Single image 17.6 27.2 29.4

Table 2. Results with predicted 3D models on LM-O [2]. We
report AR score using 3D models predicted from a single reference
image by Wonder3D [34]. The 3D reconstruction is shown in
Figure 5. Rows 3 and 4 display additional results for MegaPose and
our method, where CNOS [41] is also given 3D predicted models.

why the refinement process brings larger improvements to
MegaPose than GigaPose, in particular on TUD-L where the
refinement improves MegaPose by 39.5% and our method
only by 28.0%. However, TUD-L represents only about 3%
of the total test data, our method still outperforms MegaPose
over the 7 datasets in all settings.

Figure 4 shows qualitative comparisons with Mega-
Pose [24] before and after refinement showcasing our more
accurate pose estimates. More qualitative results are pro-
vided in the supplementary material.

Accuracy when using predicted 3D models. As shown
in Table 2, our method outperforms MegaPose when using
predicted 3D models. Results in Table 2 implies that when

Method
Run-time

Onboarding Coarse pose Refinement [24]

MegaPose [24] 0.82 s 1.68 s 33 ms
GigaPose (ours) 11.5 s 48 ms 33 ms

Table 3. Run-time. Breakdown of the average run-time for each
stage of MegaPose [24] and our method on a single V100 GPU to
estimate the pose per object (i.e., per detection). Our method is
more than 35× faster than MegaPose for coarse pose estimation.

no CAD model is available for an object, we can use Won-
der3D to predict a 3D model from a single image, then apply
GigaPose and MegaPose refinement. These results are close
to GigaPose’s performance and surpass MegaPose’s coarse
performance when using an accurate CAD model.

Run-time. We report the speed of GigaPose in Ta-
ble 1 (rightmost column) following the BOP evaluation proto-
col. It measures the total processing time per image averaged
over the datasets including the time taken by CNOS [41] to
segment each object, the time to estimate the object pose for
all detections, and the refinement time if applicable.

Table 3 gives a breakdown of the run-time per detection
for each stage of MegaPose and of our method. Our method
takes only 48 ms for coarse pose estimation, more than 38x
faster than the 1.68 seconds taken by MegaPose. This im-
provement can be attributed to our sublinear nearest neighbor
search, significantly faster than feed-forwarding each of the
576 input-template pairs as done in MegaPose.

Robustness to segmentation errors. To demonstrate the
robustness of our method, we analyze its performance un-
der various levels of segmentation errors on three standard
datasets: LM-O [2], T-LESS [13], and YCB-V [60]. We use
the ground-truth masks to classify the segmentation errors
produced by CNOS’s segmentation [41] using the Intersec-
tion over Union (IoU) metric. For each IoU threshold, we
retain only the input masks from CNOS that matched the
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Figure 6. Robustness to segmentation errors. We analyze the
performance of MegaPose and our method under various levels
of segmentation errors, defined by the IoU between the predicted
masks from CNOS [41] and the ground-truth masks. Our method
demonstrates much higher stability in AP across all IoU thresholds
than MegaPose, showing its robustness against segmentation errors.
The improvement is more limited on LM-O because of the small
appearance size of the objects especially after occlusions.

Input RGB Segmentation [41] 2D-to-2D correspondences Prediction

Figure 7. Failure case. The “Cat” object of LM-O [2] is not
retrieved correctly here because of the small size of its segment and
the low-fidelity CAD models, resulting in outlier matches.

ground-truth masks with an IoU smaller than this threshold
and evaluate the AR score for coarse pose estimation.

As shown in Figure 6, our method has a stable AR score
across all IoU thresholds for both T-LESS and YCB-V, in
contrast with MegaPose, which yields high scores primarily
for high IoU thresholds only.

4.3. Failure cases
Figure 6 also shows that the AR score stability is less

important in the case of LM-O where many challenging
conditions are present, including heavy occlusions, low reso-
lution segmentation, and low-fidelity CAD models. We show
in Figure 7 this failure case on the “Cat” object of LM-O.

4.4. Ablation Study
In Table 4, we present several ablation evaluations on

the three standard datasets LM-O [2], T-LESS [13], and
YCB-V [60]. Our results are in Row 5 .

Fine-tuning Fae. Row 1 of Table 4 presents the results of
using the DINOv2 features [45] without fine-tuning Fae. As
shown in Row 5, fine-tuning significantly improves template-
correspondences, leading to a 8.9% increase in AR score.

Fine tune
Fae

Templates
in-plane

PnP
LM-O T-LESS YCB-V MEANType n

1 ✗ ✗ 2D-to-2D 1 20.1 19.3 17.7 19.0

2 ✓ ✓ 2D-to-2D 1 23.3 21.1 22.1 22.1

3 ✓ ✗ 3D-to-2D 4 28.0 25.3 26.3 26.5
4 ✓ ✗ 2D-to-2D 2 30.0 25.6 26.0 27.2
5 ✓ ✗ 2D-to-2D 1 29.6 26.4 27.8 27.9

6 ✓ ✗ 2D-to-2D 1 30.1 27.1 28.4 28.5

Table 4. Ablation study. We report the AR score of different
settings of our method including: without fine-tuning Fae in Row
1, estimating in-plane rotation with dense 3DoF templates in Row
2, different “PnP” variants in Rows 3 and 4. The results of the
complete method are on Row 5 . We show in Row 6 our results
using the same 576 templates as in MegaPose [24]. See Section 4.4.

Estimating in-plane rotation with templates. Row 2 of
Table 4 shows in-plane rotation estimation results using tem-
plates by dividing in-plane angle into 36 bins of 10 degrees,
yielding 5832 templates per object. This approach decreases
the AR score by 5.8% compared to direct predictions with
Fist and H in Row 5, underscoring the effectiveness of our
hybrid template-patch correspondence approach.

2D-to-2D vs 3D-to-2D correspondences. In Row 3, we
introduce a “3D-to-2D correspondence” variant by replac-
ing the 2D locations of the matched patches in the template
with their 3D counterparts obtained from the template depth
map. We then estimate the complete 6D object pose us-
ing the ePnP algorithm [25] implemented in OpenCV [3].
Furthermore, in Row 4, we present a two-“2D-to-2D corre-
spondences” variant, where the scale and in-plane rotation
are computed using a 2D variant of the Kabsch algorithm
(more details are given in the supplementary material). Our
single-correspondence approach in Row 5 is more effective
at exploiting patch correspondences for estimating scale and
in-plane rotation directly.

Number of templates. In Row 6, we present our results
using the same 576 templates as MegaPose [24]. This im-
proves by only 0.6% the AR score compared to using 162
templates (Row 5). This confirms that the correspondences
also allows to decrease the memory footprint of the templates
without hurting the accuracy.

5. Conclusion
We presented GigaPose, an efficient method for the 6D

coarse pose estimation of novel objects. It stands out for
its significant speed, robustness, and accuracy compared to
existing methods, and can be seamlessly integrated with any
refinement methods. We hope that GigaPose will make real-
time accurate pose estimation of novel objects practical. We
discuss avenues for future work in the supplementary.

9910



Acknowledgments. The authors extend their gratitude to Jonathan
Tremblay for sharing the visualizations of DiffDOPE and providing
valuable feedback. We also thank Médéric Fourmy and Sungphill
Moon for sharing the results of MegaPose and of GenFlow in the
BOP Challenge 2023, and Yann Labbé for allowing the authors to
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Labbé, Eric Brachmann, Frank Michel, Carsten Rother, and
Jiri Matas. BOP Challenge 2020 on 6D Object Localization.
In ECCV, 2020. 6

[16] Tomas Hodan, Martin Sundermeyer, Yann Labbé,
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