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Abstract

In precision agriculture, the detection and recognition

of insects play an essential role in the ability of crops to

grow healthy and produce a high-quality yield. The cur-

rent machine vision model requires a large volume of data

to achieve high performance. However, there are approx-

imately 5.5 million different insect species in the world.

None of the existing insect datasets can cover even a frac-

tion of them due to varying geographic locations and ac-

quisition costs. In this paper, we introduce a novel “Insect-

1M” dataset, a game-changing resource poised to revolu-

tionize insect-related foundation model training. Covering

a vast spectrum of insect species, our dataset, including 1

million images with dense identification labels of taxonomy

hierarchy and insect descriptions, offers a panoramic view

of entomology, enabling foundation models to comprehend

visual and semantic information about insects like never

before. Then, to efficiently establish an Insect Foundation

Model, we develop a micro-feature self-supervised learn-

ing method with a Patch-wise Relevant Attention mecha-

nism capable of discerning the subtle differences among in-

sect images. In addition, we introduce Description Con-

sistency loss to improve micro-feature modeling via insect

descriptions. Through our experiments, we illustrate the

effectiveness of our proposed approach in insect model-

ing and achieve State-of-the-Art performance on standard

benchmarks of insect-related tasks. Our Insect Foundation

Model and Dataset promise to empower the next generation

of insect-related vision models, bringing them closer to the

ultimate goal of precision agriculture.

1. Introduction

Insects are the most diverse and abundant eukaryotic organ-

isms on the planet. They inhabit all terrestrial and aquatic

*Co-first authors

Figure 1. Our Proposed Patch-wise Relevant Attention. Given

masked insect images and separated image patches, our model can

discriminate these patches that have small differences via relevant

scores computed between masked images and image patches.

habitats and play a significant role within their community,

habitat, and ecosystem as contributors to nutrient cycling,

maintenance of plant and animal communities, disease cy-

cling, and overall ecosystem health. Therefore, in the agri-

cultural revolution, the detection and identification of in-

sects plays a key role in ensuring healthy crop growth and

high-quality production. Prior methods [2, 3, 6, 32, 55, 66]

often fine-tuned the pre-trained ImageNet models on insect

data for specific insect-related tasks, e.g., Insect Classifica-

tion [2, 6, 13, 66], Insect Detection [66]. However, these

methods remained limited since the models pre-trained on

ImageNet [12, 15, 16, 20, 50, 52] could not model the micro

features of insects, e.g., tiny texture and details of insects,

as ImageNet [12] is the generic object dataset.

Recent foundation models [7–9, 17–19, 40, 43, 69, 70]

pre-trained on large-scale datasets have revolutionized vi-

sion models with solid performance on downstream appli-

cations. These models are designed to model general or

specific properties of images or videos that can later be gen-

eralized to downstream tasks and unseen data. The capa-

bility of the foundation model is often implemented with
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Table 1. Comparison with existing datasets related to insects. Our proposed dataset has hierarchical labels with 6 main hierarchical levels,

i.e., Subphylum, Class, Order, Family, Genus, and Species, and large numbers of species and samples. Moreover, the proposed dataset

contains hierarchical descriptions for each insect and auxiliary taxonomic level, i.e., Subclass, Suborder, Subfamily, etc.

Dataset Year Species
Hierarchical

Labels

Hierarchical

Levels

Insect

Description

Auxiliary

Taxonomic Level

Number of

Samples

Samanta et al. [48] 2012 8 : 1 : : 609

Wang et al. [61] 2012 221 6 3 : : 225

Venugoban et al. [60] 2014 20 : 1 : : 200

Xie et al. [67] 2015 24 : 1 : : 1,440

Liu et al. [28] 2016 12 : 1 : : 5,136

Xie et al. [68] 2018 40 : 1 : : 4,500

Deng et al. [13] 2018 10 : 1 : : 563

Alfarisy et al. [1] 2018 13 : 1 : : 4,511

PestNet [25] 2019 16 : 1 : : 88,670

IP102 [66] 2019 102 6 3 : : 75,222

AgriPest [63] 2021 14 6 2 : : 49,707

INSECT [4] 2021 1,213 : 1 : : 21,212

iNat-2021 [59] 2021 2,752 6 5 : : 723,816

Our Insect-1M 2023 34,212 6 6 6 6 1,017,036

self-supervised or prompt-engineering training on large-

scale datasets [12, 19, 49, 71]. However, the current insect

datasets [1, 2, 6, 13, 28, 48, 60, 61, 66–68] are insufficient to

establish the foundation model of insects due to their scale

and diversity. Indeed, the most recent work presents an

insect recognition dataset containing over 75, 000 images

of 102 species [66]. Although the dataset includes many

species, compared to the species of insects in the natural

environment with over 5.5 million species [45, 51], the cur-

rent work needs to have the diversity of insects. Further-

more, to our knowledge, the current insect dataset [66] does

not provide the corresponding insect descriptions, limiting

the ability to learn the foundation models.

Although the dataset is an important factor in developing

an insect foundation model, the learning approach of the

foundation model plays a significant role in performance.

There is significant progress in developing vision founda-

tion models. Common approaches learned alignment be-

tween vision and language, for example, CLIP [43], ALIGN

[19], CoCa [70], to model visual concepts and data distribu-

tions. Meanwhile, self-supervised contrastive or distillation

learning approaches, e.g., MoCo [9, 10, 17], DINO [7, 40],

MAE [18], etc., learned the vision model by various pre-

text tasks and have shown its scaling ability and generalizes

well to various downstream tasks. However, most of these

previous foundation models represent the general informa-

tion of natural images without specific knowledge. When

deploying in the insect domains, they cannot capture the

micro-features of insects, i.e., key features or appearance

to distinguish the species, since the texture and details of

insects are often small and diverse compared to generic ob-

jects. Meanwhile, fine-grained discrimination between in-

sect images is crucial in insect foundation models due to the

high diversity of species. Therefore, to successfully develop

the insect foundation model, the learning approach needs to

understand and be able to model the micro-features of in-

sects. Based on this observation, we present a novel pre-text

task to enhance the recognition ability of the model between

small features of the insect, as illustrated in Fig. 1.

Contributions of this Work: To contribute to the devel-

opment of the Insect Foundation Model in precision agri-

culture, we introduce a novel large-scale insect dataset,

i.e., Insect-1M , and a new Insect Foundation Model, i.e.,

Insect-Foundation, that can transfer to various downstream

insect-related applications, e.g., insect detection, insect

classification, insect vision-language understanding. Our

contributions can be summarized as follows. First, we

present a new rich and large-volume insect dataset, i.e.,

Insect-1M, that consists of 1 million images of insects with

dense identifications of taxonomy hierarchy from the ab-

stract level of taxonomy, e.g., Class, Order, to the detailed

level of taxonomy, e.g., Genus, Species. In addition, each

insect contains a detailed description that describes the de-

tails and features of insects. To the best of our knowledge,

our proposed Insect-1M dataset is 13× larger than the prior

published IP102 dataset [66]. Second, to model the micro

features of insects, we introduce a new self-supervised con-

trastive learning paradigm with a novel Patch-wise Relevant

Attention mechanism to model the feature correlations of

insect details. Third, to increase the modeling capability of

the Insect Foundation Model in learning insect details, we

introduce a new Description Consistency loss to learn the

detailed features of insects via the textual description. Fi-

nally, through our intensive experiments on the Insect Clas-

sification and Insect Detection benchmarks [66], we show

the effectiveness of our approach in insect modeling and

our superior performance compared to the prior methods.

2. Related Work

Insect Datasets. There are prior studies releasing insect

datasets on a small scale for recognition problems. [60]

presented a dataset consisting of 20 species with 10 samples
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Figure 2. Examples of Our Insect-1M Dataset. The left figure illustrates the samples of the four Subphylums, including Chelicerata,

Crustacea, Hexapoda, and Myriapoda. The right figure shows an example of hierarchical descriptions of the Aurantia Species.

for each species. Then, [67] introduced an insect dataset in-

cluding 1, 440 samples of 24 species. Several subsequent

studies have larger datasets for deep learning, e.g., [68] pro-

posed an insect dataset of 4, 500 images with 40 different

species for insect classification, and [28] proposed an in-

sect dataset with over 5, 000 samples for insect recognition

and localization. PestNet [25] and AgriPest [63] were in-

troduced for the small pest detection task. Recently, [66]

has presented IP102 as a large-scale dataset containing over

75K samples of insects with 102 species for classification

and detection tasks. Meanwhile, [59] proposed a large-scale

dataset including over 723K samples of Arthropoda phy-

lum with 2, 752 species. Although prior efforts promoted

the development of vision and machine intelligence in pre-

cision agriculture, no dataset has a large volume of sam-

ples and diverse species for insect-related foundation model

training. Therefore, this work introduces a novel dataset

that not only contains a large number of samples, i.e. 1M

images, but also has hierarchical labels from the high to the

low taxonomy level, including class, order, family, genus,

and species. Table 1 compares our proposed dataset with the

prior ones. In comparison with prior datasets, the number

of images in our proposed Insect-1M dataset is 13× higher

than the prior IP102 dataset, and the number of species is

335× higher than IP102 [66]. To preserve the rights of

datasets and authors of images, instead of publishing im-

ages, we only provide labels and links to download images.

Self-supervised Pre-training. Self-supervised pre-training

has become a popular strategy for solving visual recognition

problems, including classification, localization, segmenta-

tion, video recognition, tracking, and many other problems

[18, 33–38, 53, 54, 56–58]. SimCLR [8] learned the visual

representation of images via a contrastive learning frame-

work using different data augmentation operations. MoCo

[17] introduced momentum updating for the encoder while

learning the image representation via contrastive learning.

The MoCo framework was later used to improve the Sim-

CLR approach without requiring a large training batch size

[9]. MoCo-V3 [10] improved prior Momentum Contrastive

frameworks by eliminating the memory queue to stabilize

the training when the batch size is large. DINO [7] proposed

a self-supervised learning approach using knowledge distil-

lation with no labels. Later, it was extended to DINO-V2

[40] by stabilizing self-supervised learning when scaling

the size of models and data. BEiT [5] proposed a masked

image modeling task and used discrete visual tokens from

the original image as prediction targets. MAE [18] and

SimMIM [69] directly used a decoder to reconstruct pixel

values from masked regions. Jigsaw-ViT [11] presented

a pre-training task for transformer models by solving the

shuffled patches of images. This learning strategy was also

applied on the temporal dimension to improve the robust-

ness of video modeling [54]. Micron-BERT [36] studied

the micro-changing in facial videos by learning to detect

the minor differences in an image that has swapping regions

between two frames.

Joint Vision-Language Pre-training. Recent work in-

troduced joint vision-language pre-training. CLIP [43],

and ALIGN [19] addressed that dual-encoder models pre-

trained on image-text pairs in contrastive objectives can

learn strong representations of image and text for cross-

modal alignment and zero-shot image recognition prob-

lems. LiT [72] and BASIC [42] proposed zero-shot trans-

fer learning approaches by teaching the text model to learn

the representation of the pre-trained image model via con-

trastive losses with large-scale data. SimVLM [65], OFA

[62], and BLIP [22] trained an encoder-decoder model with

language generative losses and achieved high performance

in the vision-language benchmarks. CoCa [70] utilized con-

trastive learning and generative image captioning for global

representation learning and fine-grained image-text align-

ment. Later work [73] used sigmoid loss to compute the

image-text similarity for batch size scaling. LexLIP [31]

projected images into a lexicon space for image-text sparse

matching. Meanwhile, EQSIM [64] computed the similar-

ity by the image-text equivariant changing.
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Figure 3. The Distribution of Subphylum and Its Classes (Left) and The Distribution of Class and Its Orders (Right). Best viewed in color.

3. The Proposed Insect 1M Dataset

To contribute to establishing the insect foundation model,

the large-scale dataset of insects with diverse species is es-

sential. Therefore, we collect a new insect dataset with

dense labels of a hierarchical taxonomy. In particular, our

Insect-1M dataset contains 1 million insect images with

dense hierarchical labels with six main taxonomies, i.e.,

Subphylum, Class*, Order, Family, Genus, and Species.

The samples are in the Phylum Arthropoda and can be di-

vided into 4 Subphylums, which are Chelicerata, Crustacea,

Hexapoda, and Myriapoda as shown in Fig. 2. Compared

to prior datasets, our Insect-1M has more hierarchical levels

with large numbers of species and samples as in Table 1.

3.1. Data Collection Protocol

We utilize insect information containing insect data with

images and taxonomies collected by naturalists and ento-

mologists. Each insect sample has a corresponding im-

age and its taxonomic label. From the taxonomic label,

we crawl the identification description of the corresponding

taxonomy. Notice that the taxonomic labels are hierarchi-

cal. The description is written from high-level descriptions,

e.g., Subphylum and Class, to low-level descriptions, e.g.,

Species. Fig. 2 shows an example of an insect description.

3.2. Data Preprocessing and Statistic

Data Preprocessing. The raw data is stored in over 1 mil-

lion HTML files with predefined HTML structures. Then,

we parse the data structures to collect the insect images and

their labels. More than 2 million raw images and their corre-

sponding labels have been collected. However, the raw data

collected consists of a lot of noise, e.g., incorrect identifi-

cation of insects, corrupted images, and non-insect images.

Therefore, to filter these outliers, our entomology experts

must verify the images and their labels, i.e., insect identifi-

cation. Finally, our collected Insect-1M dataset consists of

*In this paper, we use the term “Class” as a biological taxonomic level.

1, 017, 036 clean images with dense labels of 34, 212 differ-

ent insect species.

Data Statistic Fig. 3 shows the sample distributions of the

Subphylums and their Classes. It is shown that the Class In-

secta has the majority of samples. Fig. 3 also illustrates the

distribution of the Orders in the major Classes. For each ma-

jor Class, the data distribution of Orders is well-balanced.

4. The Proposed Insect Foundation Model

4.1. Limitations of Prior Foundation Training Ap­
proaches

Limitations One of the issues in the visual insect under-

standing problem is the visual representation and discrim-

ination of the small and undistinguished features of the

insects. While MAE [18] reconstructs an image from a

masked image for visual representation learning, it focuses

Figure 4. Comparisons of Self-supervised Methods. MAE [18]

fails to reconstruct the details of the insect since it learns general

information about the image. Micron-BERT [36] hardly distin-

guishes the insect and background. Jigsaw-ViT [11] cannot correct

shuffled patches due to confusion between the background and the

object. Meanwhile, our approach can find separated patches be-

longing to the insect by scoring each patch. Best viewed in color.
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Figure 5. The Overview Framework of Our Proposed Approach to Insect Foundation Model.

on the context inside the image individually without real-

izing the small details to discriminate between the insects.

Meanwhile, Jigsaw solving methods [11, 39] correct the po-

sition of image patches to enhance the model robustness to

the image structure. This strategy needs more mechanisms

to focus on the small details of the image. Micron-BERT

[36] highlights the small changes in the image by swap-

ping the regions between two images with similar contexts.

However, the small changes in the insect image still pre-

serve the signature features representing the insect. Thus,

it makes the model collapse in detecting the small features

of insects. Therefore, to address these limitations, we in-

troduce a new approach that learns to recognize the tiny

features in the insect images. These features are distin-

guished from the background by discriminating the minor

differences between patches of images individually. Fig. 4

compares prior self-supervised methods [11, 18, 36] with

our approach.

Fig. 5 illustrates our insect foundation model. The model

is designed to capture the small differences in insect fea-

tures, i.e., textures or limbs, via our new self-supervised

pre-text task. Moreover, the model is pre-trained to learn

the fine-grained alignment between the insect description

and its visual features. Formally, given an input image I ,

we divide I into non-overlapping patches. Then, a subset

of patches Ps is sampled, and the remaining patches are put

into a pool of image patches Ppool. The sampling is pro-

cessed randomly in a uniform distribution. An image en-

coder is used to map Ip into latent vectors. Given an insect

description T of the image, a text encoder is presented to

extract information from T . A text decoder and joint image-

text contrastive learning module are introduced to map the

description into the image. Finally, a Patch-wise Relevant

Attention module is proposed for self-supervised learning

to enhance the discrimination robustness of the model.

4.2. Input Modeling

An input image I ∈ R
H×W×3 is divided into non-

overlapping patches P = {pis}
NP

i=1
where H,W are the

height and width of the input image, NP = HW/(sp)
2

is the number of patches. Each patch pis has a resolution of

sp × sp. The non-overlapping patches P are then randomly

sampled into a subset of patches Ps ⊂ P and put the other

patches into a pool of image patches Ppool. Note that Ppool

contains patches from multiple images in the training set.

4.3. Image Encoder

Each patch pis ∈ Ps is projected into a latent vector xi
s ∈ R

d

where d is the dimension of the latent vectors. A subset

patches Ps can be represented as follows:

Xs = concat[xi
s]

NPs

i=1
∈ R

NPs
×d

, x
i
s = αp(p

i
s) + ep(i) (1)

where αp and ep are the projection embedding and position

embedding.

Let an image encoder Eimage(Xs) be a stack of Le trans-

former blocks where each block contains multi-head self-

attention (MSA) and multi-layer perceptron (MLP).

X
′

l = Xl−1 + MSA(LN(Xl−1))

Xl = X
′

l + MLP(LN(X′

l))

X0 = Xs, 1 ≤ l ≤ Le

(2)

where LN is the layer normalization. Then, given Xs, the

output latent vector Zs is represented as follows:

Zs = Eimage(Xs), Zs ∈ R
NPs

×d
(3)

4.4. Insect Micro­feature Self­supervised Learning

The recognition of insects relies on the insect texture, eyes,

or limbs that are tiny to detect. To make the model robust

to the small features of insect images, we propose a self-

supervised learning strategy to spot these small features via

the small differences in the images. Notice that the insects

can be distinguished by detecting and discriminating the
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critical features in each part of those insects. To enhance

this ability for the model, a pre-text task is presented. In par-

ticular, after extracting global information from a masked

image of the insect, the vision model learns to find the re-

maining patches of the image by comparing image patches

of different insect species. Thanks to our learning mecha-

nism, the model learns the key features representing each

insect and discriminates the small features between differ-

ent species. As illustrated in Fig. 6, given a subset of

patches Ps from the image I and a pool of image patches

Ppool, we train the model to find the patches pt ∈ Ppool that

originally belong to the image I . Then, given latent vec-

tors Zs of Ps, a patch-wise relevant attention score (PRS) is

computed between Zs and each patch p ∈ Ppool. The score

can be defined as:

PRS = f(Zs, p) ∈ [0, 1] (4)

The higher the score is, the more possibility that p ∈ P .

Attention Pooling To compute the relevance between la-

tent vectors Zs from the image I and the patch p ∈ Ppool,

the latent vectors Zs should be aggregated to represent the

holistic information of I . Inspired by [70], we compute the

global information of I via attention pooling. Given a place-

holder contextual token z′ct as a query Qct and latent vectors

Zs as a key KZ and a value VZ , we compute an attention

map between Qct and KZ . Then, a contextual token zct
representing the global information of I is computed via

the attention map and the value VZ . The attention pooling

(Fig. 7) can be formulated as Eqn. (5).

Qct = Linear(z′ct) KZ = Linear(Zs) VZ = Linear(Zs)

zct = softmax

(

QctK
T
Z√

d

)

VZ

(5)

Patch-wise Relevant Attention Given zct as a contextual

token representing the information of I , we compute the

relevance between zct and p ∈ Ppool. From Eqn. (4), we

expand the attention score function f as in Eqn. (6).

PRS = f(Zs, p) = H(zct, zp) (6)

where zp = Eimage(αp(p)) is a latent vector representing

the patch p, H is a similarity function between two latent

Figure 6. Pool of Image Patches. A subset of patches of an image

is sampled for image encoding while the remaining patches are

placed into a pool of patches for the self-supervised pre-text task.

vectors. From Eqn. (6), we expand the score function into

a self-supervised loss function LPRS as follow:

Lrel = −y log(H(zct, zp))− (1− y) log(1−H(zct, zp)) (7)

where y = 1 if p ∈ P and y = 0 otherwise.

4.5. Fine­grained Insect Image­Text Alignment

Each species has an individual definition and description

that can be aligned to parts of the insect image. We adopt

a text decoder to generate the species descriptions from in-

sect images. Moreover, to capture the general information

of species, we utilize contrastive learning between global

features of the insect images and description. As a result,

the model can learn specific information from insect images

via insect descriptions.

Formally, an insect description text is tokenized into

T = {ti}
NT

i=1
where NT is the number of tokens of the

description. Each token ti ∈ T is embedded into a latent

vector wi ∈ R
d. The description can be represented as:

W = concat[wi]
NT

i=1
∈ R

NT×d
, wi = αw + ew(i) (8)

where αw and ew are the projection embedding and position

embedding.

Similar to the image encoder, let the text encoder

Etext(W) be a stack of L′

e transformer blocks containing

multi-head self-attention and multi-layer perceptron. The

output latent vector Z′ of the description is computed as

W
′ = Etext(W), Z

′ ∈ R
NT×d

(9)

We then use the latent vector Zs of the insect image and W′

of the description text for image-text contrastive learning

and multi-modal image description decoding.

Image-text Contrastive Learning. Inspired by the prior

language model frameworks [14, 21, 27, 44], a contextual

token wct representing the semantic information of the de-

scription is added at the beginning of W as in Eqn. 8. Then

the two encoders Eimage and Etext can be jointly optimized

via contrastive learning as follow:

Lcon =
−1

N

N
∑

i=1

[

log
exp(zTi wi)

∑N
j=1

exp(zTi wj)
+ log

exp(wT
i zi)

∑N
j=1

exp(wT
i zj)

]

(10)

Figure 7. Attention Pooling Module. The contextual token zct
represents the global information of the image I .
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Table 2. Effectiveness of our method on the IP102 Classifica-

tion. We evaluate approach with three different vision transformer

backbones, i.e., ViT-small/16, ViT-base/16, and ViT-large/16,

without or with Attention Pooling (Attn Pool), and three differ-

ent losses, i.e. Patch-wise Relevant Loss (Lrel), Image-Text Con-

trastive Loss (Lcon), and Description Loss (Ldesc).

Backbone Lrel
Attn

Pool
Lcon Ldesc

Acc@1

(%)

Acc@5

(%)

ViT-small/16

✓ 68.9 88.8

✓ ✓ 69.5 89.7

✓ ✓ ✓ 70.7 89.9

✓ ✓ ✓ ✓ 71.5 87.7

ViT-base/16

✓ 72.4 91.0

✓ ✓ 73.3 91.6

✓ ✓ ✓ 74.2 91.9

✓ ✓ ✓ ✓ 75.8 92.1

ViT-large/16

✓ 73.8 90.9

✓ ✓ 74.6 91.6

✓ ✓ ✓ 75.9 91.4

✓ ✓ ✓ ✓ 76.9 92.7

where zi and wi is the contextual token of the i-th insect

image and description.

Multi-modal Image Description Decoding. While image-

text contrastive learning represents the global semantic in-

formation between the image and description, the multi-

model image description decoding aims for the fine-grained

details by predicting the tokenized texts of T in an autore-

gressive manner, as shown in Eqn. (11).

Ldesc = −
NT
∑

t=1

logDmulti(wt|W0:t−1,Zs) (11)

where Dmulti is an autoregressive multi-modal text decoder.

5. Experimental Results

5.1. Foundation Model Pre­training

Our experiments use ViT-Base (ViT-B/16) [15] as the back-

bone. The images are resized and cropped randomly into

the resolution of 224 × 224. Then, each image is divided

into patches of 16 × 16, creating NP = 196 patches. The

patch sampling ratio is selected as 50%, and the remaining

patches are put into the pool of image patches. Each patch

is projected to latent space of d = 768 dimensions. The text

encoder and multi-modal text decoder are adopted from the

pre-trained BERT model [14]. The model is implemented in

PyTorch [41] and trained by 16×A100 GPUs. The learning

rate is initially set to 1.5 × 10−4 with the Consine learning

rate scheduler [29]. The model is optimized by AdamW

[30] with 200 epochs and a batch size of 64 per GPU.

5.2. Datasets and Benchmarks

IP102 Classification [66] provides 102 species of insects

and contains 45,095 training samples, 7,508 validation sam-

ples, and 22,619 testing samples. For each species, an im-

age might contain a single insect, multiple insects, or even a

Table 3. Classification results on IP102 Classification bench-

mark. Both proposed models pre-trained with and without the

insect descriptions outperform prior methods by a large margin.

Method Description
Pre-train

Data

Acc@1

(%)

Acc@5

(%)

ResNet [66] : ImageNet1K 49.4 -

EfficientNet [6] : ImageNet1K 60.7 -

DenseNet [32] : ImageNet1K 61.9 -

GAEnsemble [3] : ImageNet1K 67.1 -

ViT [15] : ImageNet1K 71.6 87.7

MoCo [17] : 1M-Insect 70.6 88.4

DINO [7] : 1M-Insect 71.5 91.4

MAE [18] : 1M-Insect 72.0 91.5

CoCa [70] 6 1M-Insect 72.8 91.1

Insect-Foundation : 1M-Insect 73.3 91.6

Insect-Foundation 6 1M-Insect 75.8 92.1

diseased crop caused by the species. The insects are in dif-

ferent forms for each class, e.g., egg, larva, pupa, and adult.

The performance of insect classification is evaluated by the

accuracy of Top 1 (Acc@1) and Top 5 (Acc@5).

IP102 Detection [66] includes 15,178 training images and

3,798 testing images of 102 different species. Following the

COCO benchmark [23], the insect detection performance is

measured by the Average Precision (AP) and Average Pre-

cision at IoU thresholds of 0.5 (AP.50) and 0.75 (AP.75).

5.3. Ablation Studies

Our ablation experiments study the effectiveness of our pro-

posed model and hyper-parameters on the IP102 Classifica-

tion Benchmark as shown in Table 2.

Effectiveness of Network Backbones Table 2 studies the

impact of different Vision Transformer backbone sizes, in-

cluding ViT-small/16, ViT-base/16, and ViT-large/16. As

shown in our results, the powerful backbone carries more

improvement. In particular, when changing the Transformer

backbone size from small to base, the accuracy score in-

creases by a large margin of 4.3% while the large Trans-

former backbone improves the accuracy score by 1.1%.

Effectiveness of Attention Pooling We evaluate the impact

of the attention pooling in the visual representation of the

insect images. As shown in Table 2, the Attention Pooling

has better representation than the standard classification to-

ken computed through transformer layers. In particular, the

top-1 accuracies for the three backbones, i.e., small, base,

and large, have been increased from 68.9% to 69.5%, from

72.4% to 73.3%, and from 73.8% to 74.6%.

Effectiveness of Image-Text Contrastive Loss As re-

ported in Table 2, the model can understand the insect im-

ages better when the model learns to match the images and

their descriptions. In detail, the accuracy scores have been

increased by 0.8%, 0.9%, and 1.3% for the three backbones

when applying the Image-Text Contrastive Loss.

Effectiveness of Description Loss The full configuration in

Table 2 shows the experimental results of our model using

the Description Loss. As shown in Table 2, the Description

Loss helps the model to well-align the information between

images and the details of descriptions. Hence, the model
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Figure 8. Attention Visualization. Compared to MAE [18], our

model is robust to small details of insect images. The model can

focus on the small textures of the insect, even if the texture is the

same as the background (bottom images). Best viewed in color.

can represent the fine-grained features of the insects better.

In particular, the accuracy scores have been improved from

70.7% to 71.5%, from 74.2% to 75.8%, and from 75.9% to

76.9% for ViT-small/16, ViT-base/16, and ViT-large/16.

5.4. Comparisons with Prior SOTA Methods

Insect Classification Tasks. We fine-tune the linear layer

with our pre-trained model on the IP102 dataset [66] for the

classification task. As shown in Table 3, our model outper-

forms deep learning models [15, 16, 20, 50, 52] pre-trained

on ImageNet [12] by a large margin. Compared to other

pre-training methods [7, 17, 18, 70] on the proposed 1M-

Insect dataset, our model shows better performance for both

training without and with insect descriptions of 73.3% and

75.8%, respectively. It is shown that the proposed approach

has a better visual representation of insect images than the

prior pre-training methods on the same dataset.

Visualization Results Fig. 8 visualizes the attention maps

of our model compared to MAE [18] pre-trained on the pro-

posed dataset. Since the textures are similar to the back-

ground, it is hard for MAE to focus on the small details of

the insect. On the contrary, our model can detect the key

features, i.e., the textures and the limbs, of the insects.

Zero-shot Insect Classification. We evaluate the perfor-

mance of our model on the IP102 dataset [66] in a zero-shot

manner. In detail, a description corresponds to each species

to make the text encoder extract more semantic informa-

tion about each species. Then, for each insect image, we

use the image encoder to extract global features and com-

pare them to each description feature to predict the insect

Table 4. Zero-shot classification results on IP102 Classifica-

tion benchmark. The proposed model outperforms prior vision-

language pretraining methods.

Method Pretrain Data Accuracy (%)

CLIP [43] 1M-Insect 41.1

LiT [72] 1M-Insect 43.6

CoCa [70] 1M-Insect 45.3

Insect-Foundation 1M-Insect 49.9

Table 5. Detection results on IP102 Detection benchmark. The

proposed model outperforms prior pre-training methods.

Method Backbone
Pre-train

Data

AP

(%)

AP.50

(%)

AP.75

(%)

FRCNN [47] VGG-16 [50] ImageNet1K 21.1 47.9 15.2

FPN [24] ResNet-50 [16] ImageNet1K 28.1 54.9 23.3

SSD300 [26] VGG-16 [50] ImageNet1K 21.5 47.2 16.6

RefineDet [74] VGG-16 [50] ImageNet1K 22.8 49.0 16.8

YOLOv3 [46] DarkNet-53 [46] ImageNet1K 25.7 50.6 21.8

FPN [24] ViT [15] ImageNet1K 32.8 54.7 35.0

FPN [24] MoCo [17] 1M-Insect 33.6 56.1 35.3

FPN [24] DINO [7] 1M-Insect 34.0 55.8 37.1

FPN [24] MAE [18] 1M-Insect 34.7 58.4 37.8

FPN [24] Insect-Foundation 1M-Insect 36.6 59.1 40.3

species. Table 4 reports the results of zero-shot classifica-

tion on the IP102 Classification benchmark. Our model out-

performs prior image-text pre-training methods [43, 70, 72]

at an accuracy of 49.9%. It shows that our model has well-

alignment between the insect image and its description.

Insect Detection Tasks. As shown in Table 5, we train a

Faster R-CNN model [47] on the IP102 Detection dataset

with the ViT backbone adapted for FPN [24]. Compared to

models pre-trained on ImageNet [12], our model achieves

SOTA results with an average precision of 36.6% and AP.50

of 59.1% higher than the same backbone pre-trained on

ImageNet [12] having AP of 32.8% and AP.50 of 54.7%.

Compared to other self-supervised methods [7, 17, 18], our

model achieves higher precision. Thus, our model focuses

on the features of insects better than prior methods.

6. Conclusions

This paper has introduced a new large-scale Insect-1M

dataset that supports the development of the Insect Founda-

tion Model in precision agriculture. Our proposed dataset

includes a large diversity of insect species and multi-level

labels of taxonomy. In addition, Insect-1M consists of de-

tailed descriptions of insects that support vision-language

insect model training. Then, to improve the micro-feature

modeling of our insect foundation model, we introduce

a new Patch-wise Relevant Attention mechanism and De-

scription Consistency loss to learn the details of insects. Our

experimental results have illustrated the effectiveness and

significance of our Insect-1M and Insect Foundation Model.

Limitations This study used a specific network design and

learning hyper-parameter to support our hypothesis. How-

ever, our approach potentially consists of several limita-

tions related to the design of our Patch-wise Relevant At-

tention mechanism, where the patches of background and

foreground are equally treated. It could result in difficulty

in learning the different features of insects. This limitation

will further motivate future research to improve the Insect

Foundation Model and Micro-feature Modeling.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In Pro-

ceedings of the IEEE/CVF international conference on com-

puter vision, pages 9650–9660, 2021. 1, 2, 3, 7, 8

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In International conference on ma-

chine learning, pages 1597–1607. PMLR, 2020. 3

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint arXiv:2003.04297, 2020. 1, 2, 3

[10] X Chen, S Xie, and K He. An empirical study of training

self-supervised vision transformers. in 2021 ieee. In CVF

International Conference on Computer Vision (ICCV), pages

9620–9629, 2021. 2, 3

[11] Yingyi Chen, Xi Shen, Yahui Liu, Qinghua Tao, and Jo-

han AK Suykens. Jigsaw-vit: Learning jigsaw puzzles in

vision transformer. Pattern Recognition Letters, 166:53–60,

2023. 3, 4, 5

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 1, 2, 8

[13] Limiao Deng, Yanjiang Wang, Zhongzhi Han, and Renshi

Yu. Research on insect pest image detection and recogni-

tion based on bio-inspired methods. Biosystems Engineer-

ing, 169:139–148, 2018. 1, 2

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018. 6, 7

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 1, 7, 8

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 8

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages

9729–9738, 2020. 1, 2, 3, 7, 8

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable

vision learners. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 16000–

16009, 2022. 2, 3, 4, 5, 7, 8

[19] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,

Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom

Duerig. Scaling up visual and vision-language representa-

tion learning with noisy text supervision. In International

conference on machine learning, pages 4904–4916. PMLR,

2021. 1, 2, 3

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems,

25, 2012. 1, 8

[21] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-

jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and

Luke Zettlemoyer. Bart: Denoising sequence-to-sequence

pre-training for natural language generation, translation, and

comprehension. arXiv preprint arXiv:1910.13461, 2019. 6

[22] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.

Blip: Bootstrapping language-image pre-training for uni-

fied vision-language understanding and generation. In In-

ternational Conference on Machine Learning, pages 12888–

12900. PMLR, 2022. 3

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings,

Part V 13, pages 740–755. Springer, 2014. 7

[24] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017. 8

[25] Liu Liu, Rujing Wang, Chengjun Xie, Po Yang, Fangyuan

Wang, Sud Sudirman, and Wancai Liu. Pestnet: An end-to-

end deep learning approach for large-scale multi-class pest

detection and classification. Ieee Access, 7:45301–45312,

2019. 2, 3

21953



[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In Computer

Vision–ECCV 2016: 14th European Conference, Amster-

dam, The Netherlands, October 11–14, 2016, Proceedings,

Part I 14, pages 21–37. Springer, 2016. 8

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar

Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

moyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019. 6

[28] Ziyi Liu, Junfeng Gao, Guoguo Yang, Huan Zhang, and

Yong He. Localization and classification of paddy field pests

using a saliency map and deep convolutional neural network.

Scientific reports, 6(1):20410, 2016. 2, 3

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016. 7

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 7

[31] Ziyang Luo, Pu Zhao, Can Xu, Xiubo Geng, Tao Shen,

Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang.

Lexlip: Lexicon-bottlenecked language-image pre-training

for large-scale image-text sparse retrieval. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 11206–11217, 2023. 3

[32] Loris Nanni, Gianluca Maguolo, and Fabio Pancino. Insect

pest image detection and recognition based on bio-inspired

methods. Ecological Informatics, 57:101089, 2020. 1, 7

[33] Xuan-Bac Nguyen, Guee Sang Lee, Soo Hyung Kim, and

Hyung Jeong Yang. Self-supervised learning based on spa-

tial awareness for medical image analysis. IEEE Access, 8:

162973–162981, 2020. 3

[34] Xuan-Bac Nguyen, Duc Toan Bui, Chi Nhan Duong, Tien D

Bui, and Khoa Luu. Clusformer: A transformer based clus-

tering approach to unsupervised large-scale face and visual

landmark recognition. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

10847–10856, 2021.

[35] Xuan Bac Nguyen, Apoorva Bisht, Hugh Churchill, and

Khoa Luu. Two-dimensional quantum material identification

via self-attention and soft-labeling in deep learning. arXiv

preprint arXiv:2205.15948, 2022.

[36] Xuan-Bac Nguyen, Chi Nhan Duong, Xin Li, Susan Gauch,

Han-Seok Seo, and Khoa Luu. Micron-bert: Bert-based

facial micro-expression recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1482–1492, 2023. 3, 4, 5

[37] Xuan-Bac Nguyen, Chi Nhan Duong, Marios Savvides,

Kaushik Roy, and Khoa Luu. Fairness in visual cluster-

ing: A novel transformer clustering approach. arXiv preprint

arXiv:2304.07408, 2023.

[38] Xuan-Bac Nguyen, Xin Li, Samee U Khan, and Khoa Luu.

Brainformer: Modeling mri brain functions to machine vi-

sion. arXiv preprint arXiv:2312.00236, 2023. 3

[39] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In Euro-

pean conference on computer vision, pages 69–84. Springer,

2016. 5

[40] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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