
Mining Supervision for Dynamic Regions in Self-Supervised Monocular
Depth Estimation

Hoang Chuong Nguyen1 Tianyu Wang1 Jose M. Alvarez2 Miaomiao Liu1

1Australian National University 2NVIDIA
{hoangchuong.nguyen, tianyu.wang2, miaomiao.liu}@anu.edu.au josea@nvidia.com

Abstract

This paper focuses on self-supervised monocular depth
estimation in dynamic scenes trained on monocular videos.
Existing methods jointly estimate pixel-wise depth and mo-
tion, relying mainly on an image reconstruction loss. Dy-
namic regions1 remain a critical challenge for these meth-
ods due to the inherent ambiguity in depth and motion es-
timation, resulting in inaccurate depth estimation. This pa-
per proposes a self-supervised training framework exploit-
ing pseudo depth labels for dynamic regions from training
data. The key contribution of our framework is to decou-
ple depth estimation for static and dynamic regions of im-
ages in the training data. We start with an unsupervised
depth estimation approach, which provides reliable depth
estimates for static regions and motion cues for dynamic re-
gions and allows us to extract moving object information at
the instance level. In the next stage, we use an object net-
work to estimate the depth of those moving objects assum-
ing rigid motions. Then, we propose a new scale alignment
module to address the scale ambiguity between estimated
depths for static and dynamic regions. We can then use the
depth labels generated to train an end-to-end depth estima-
tion network and improve its performance. Extensive exper-
iments on the Cityscapes and KITTI datasets show that our
self-training strategy consistently outperforms existing self-
/unsupervised depth estimation methods. Our code is avail-
able at https://github.com/HoangChuongNguyen/
mono-consistent-depth.git

1. Introduction

Estimating a dense depth map from a monocular image
is crucial for various applications, such as 3D reconstruc-
tion [23], autonomous driving [24], and augmented reality
[30]. Self-/unsupervised depth estimation using monocu-
lar video sequences is an effective way to bypass the need
for expensive depth labels [3, 8, 10]. Current methods mini-
mize the image reconstruction loss during training to jointly
estimate depth and camera pose [8, 10, 12, 13]. These meth-

1Dynamic regions indicate regions covered by moving objects.
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Figure 1. Depth predictions for an image. Areas with more intense
red color in the error maps represent higher error. Our method
produces more accurate depths for moving objects in the image.

ods suffer accuracy degradation in the presence of moving
objects, e.g, cars, as the reconstruction process does not
take motion into consideration. To address this limitation,
a few works infer the camera and pixel-wise object motion
in 3D, and the depth to reduce the image reconstruction er-
ror [15, 19]. Other approaches incorporate binary masks
for moving objects to improve the pixel-wise motion esti-
mation [3, 17]. Despite the accuracy improvement, as we
will show in Section 3, there are inherent ambiguities entan-
gling motion and depth estimation in dynamic regions that
can not be fully resolved using regularization terms or joint
optimization, i.e., enforcing sparsity on pixel-wise motion.
In contrast, we propose to exploit scale-consistent pseudo
depth labels for moving objects which we can then use to
train a monocular depth estimation network.

In contrast to existing methods, we propose to decou-
ple the depth estimation for static and dynamic regions in
images. We first leverage existing self-supervised depth
estimation frameworks to jointly estimate the depth, pixel-
wise object motion, and camera rigid motion [19]. We use
pixel-wise object motion to identify moving objects, e.g.,
the foreground, and their pixel-wise correspondences across
frames. For the rest of the image, the background, we di-
rectly use the inferred depth map as depth labels.

For the foreground, the goal is to obtain pseudo depth la-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10446

https://github.com/HoangChuongNguyen/mono-consistent-depth.git
https://github.com/HoangChuongNguyen/mono-consistent-depth.git


bels for each object that are scale-consistent with the back-
ground. We achieve this in two steps. First, we employ an
Object Network to estimate the depth label for the dynamic
regions for each frame in the sequence. This network takes a
pair of images with corresponding objects as input to jointly
estimate the relative camera motion, namely, rigid rotation
and translation, and depth map for the object in the refer-
ence frame via the image reconstruction loss. This can be
viewed as a dense structure-from-motion process that leads
to scaled depth and camera pose estimation. Second, we
propose a scale alignment network to resolve scale ambigu-
ities between each object in the foreground and the back-
ground. We then obtain scale-consistent depth pseudo la-
bels for the foreground that can be used as additional super-
vision signals for training depth estimation networks.

We demonstrate the benefits of using depth pseudo la-
bels obtained using our approach on several existing Self-
/unsupervised monocular depth estimation frameworks on
the KITTI and Cityscapes datasets. Our results show con-
sistent overall improvements over frameworks and datasets
with significant error reduction on dynamic regions. In
summary, our contributions are listed below.
• We introduce a new scale-alignment network to solve

scale-ambiguities among objects and the background.
• To the best of our knowledge, we are the first to extract

scale-consistent pseudo depth labels as supervision signal
to solve the scale-ambiguity problem commonly present
in monocular depth estimation for dynamic scenes.
Our approach consistently outperforms all previous self-
/unsupervised depth estimation methods by large mar-
gins for dynamic regions. Compared to prior works, we
achieve up to 52.6% and 14.4% error reduction on the
Cityscapes and KITTI datasets, respectively.

2. Related Work
Self-/unsupervised Learning from Stereo Images. To
avoid costly ground-truth data for training a depth network,
[6] introduces an approach under the unsupervised frame-
work for depth estimation using a synchronized stereo pair
as training data. [7] imposes a consistency constraint on the
predicted disparity when a stereo pair is adopted as a su-
pervision signal. Generative adversarial networks are also
explored for this task [1, 22]. [29] attempts to improve the
training signal by aligning the lighting condition of the input
images and modeling pixel photometric uncertainties. Re-
cently, [26] proposed to estimate a depth distribution based
on the concept of orthogonal planes in the 3D world. In this
work, we show that we can exploit reliable depth supervi-
sion signals from monocular video instead of stereo pairs
for practical applications.
Self-/unsupervised Learning from Monocular Video.
The monocular video provides a less constrained form
of self-/unsupervised learning. [32] firstly introduces a

promising framework that jointly learns depth and camera
ego-motion from consecutive frames in a video. Later on,
[8] improves the training signal by introducing the per-pixel
minimum reprojection loss to filter out occluded pixels from
the final image reconstruction loss. More robust geometric
constraints enforcing consistency between predicted point
clouds or predicted depth across consecutive frames are pro-
posed by [2, 21]. To further boost the performance, several
works propose new architectures for a depth estimation net-
work [10, 12, 13, 31]. More recently, cost volume-based ap-
proaches that predict depth from multiple images are intro-
duced [4, 11, 27]. Although significant improvements have
been achieved, all the mentioned methods tend to have in-
ferior performance in dynamic regions. The main challenge
arises from the presence of moving objects in the scene,
which does not satisfy the photometric consistency assump-
tion given no specific consideration for object motion.

To address the issues caused by moving objects, [3] pro-
posed a joint modelling of depth, camera motion, and object
motion. Specifically, a warped image is first obtained by re-
lying on the initially predicted depth and camera motion.
This warped image and its corresponding reference image
are then used to predict object rigid motion. [17] improves
this framework by applying forward warping to encourage
consistent geometry while modelling object motion. One
disadvantage of such methods stems from the ambiguity of
jointly predicting object depth and object motion. In partic-
ular, incorrect initial depth prediction could lead to incorrect
warped images, which in turn causes errors in the predicted
object motion. Nonetheless, there exist multiple combina-
tions of depth and object motion that result in the minimiza-
tion of the image reconstruction loss, namely the inherent
ambiguities due to insufficient constraints [3, 17]. In lieu
of predicting object rigid motion, [19] proposes to predict
pixel-wise motion. Inspired by previous work, [15, 18] in-
troduces a two-stage motion disentanglement, which is sim-
ilar to [3] but with pixel-wise motion prediction. Neverthe-
less, these approaches exacerbate the scale ambiguity issue
as there might be variations in the scale factor associated
with different pixels of the same moving object. In this
work, we propose to estimate high-quality scale-consistent
depth pseudo labels for the moving objects and static back-
ground in separate stages which are used further to improve
depth predictions for dynamic regions.

3. Preliminary
Scale-consistent Depth Estimation. Scale ambiguity is a
phenomenon often encountered in self-/unsupervised dy-
namic scene monocular depth estimation. This setup in-
volves two consecutive RGB frames, termed as reference
and source frame Ir, Is ∈ RH×W×3, from a monocular
video with known camera intrinsic matrix K but unknown
poses. For a static scene, the correspondence between pix-
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Figure 2. Our proposed framework. Left: How the pseudo depth label Dlabel
r is extracted and used to train the final depth network. Right:

How the DSA module is trained (training path) and utilized to produce Dlabel
r (inference path). The DSA is trained to predict a scale βo

that minimizes the difference between two depth predictions of the same static object. It is then used to align the depth scale of every
dynamic object to the depth scale of the static region. Dlabel

r is constructed from depth of static regions in Dscene
r and depth of dynamic

objects after alignment βoDo
r .

els in these frames can be established via

x′d′ = K(RK−1xd+T), (1)

where x and x′ is the homogeneous coordinate of a pixel in
Ir and Is respectively. d and d′ represent the depth values
for x and x′ in their respective frames. R, T specify (in-
ferred) relative camera pose that is shared across all pixels.
However, this mapping is not unique. One can scale both
sides of the equation with a constant c for all pixels at the
same time without violating the equality. That is,

x′(cd′) = K(RK−1x(cd) + cT). (2)

Thus, the estimated depth d for all pixels is at best one uni-
fied scale away from the ground truth as the scale c can not
be uniquely determined even with the correct correspon-
dence. We say such depth prediction with a unified scale
shared across all pixels is scale-consistent.

However, the presence of moving objects violates such
scale consistency. To capture object motions, we need to
introduce a translation vector tx that can vary from pixel to
pixel and establish the correspondence as

x′d′ = K(RK−1xd+T) + tx (3)

In this case, one can scale the depth of the pixel via an ar-
bitrary constant c and always find a tx to retain the corre-
spondence via

tx = d′x′ −K(RK−1x(cd) +T). (4)

Thus, two pixels undergoing different motions can have dif-
ferent depth scales, which will lead to depth values with ar-
bitrary differences. We refer to this phenomenon as scale
ambiguity and term a depth prediction without unified scale
as scale-inconsistent.

4. Method
Our goal is to estimate the depth map Dr from a monocular
image Ir, namely Dr = Θ(Ir) where Θ denotes the depth
estimation network. In particular, we aim to generate high-
quality scale-consistent pseudo depth labels Dlabel

r from a
monocular video for self-supervised learning of Θ. To this
end, we propose to estimate a decoupled representation

Dlabel
r = (1−Mr)⊙Dscene

r +Mr ⊙Ddyn
r , (5)

where Dscene
r , and Ddyn

r , and Mr represent depth label for
the background scene, the moving objects, and moving ob-
ject masks, respectively. An overview of our framework is
shown in Fig. 2. In the following, we introduce the modules
used to generate masks and depth labels employed above.

4.1. Scene Depth Estimation for Dscene
r

In this stage, we aim to obtain the scene depth Dscene
r for a

reference image Ir through unsupervised learning. At train-
ing time, given Ir, Is ∈ RH×W×3, from a monocular video
with known K, we formulate the problem as the minimiza-
tion of image reconstruction error using depth (Dscene

r ) and
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camera pose (Rcam,Tcam) as intermediate variables. To
handle moving objects, following [19], we further introduce
the pixel-wise object motion ∆r as an additional intermedi-
ate variable to generate a synthesized image Ir←s.

Instead of predicting these intermediate variables in par-
allel, we first adopt a depth network Θscene and a cam-
era pose network Φcam, following the pipeline design in
[17, 19], to predicate Dscene

r ∈ RH×W×1 and Rcam, Tcam

by Dscene
r = Θscene(Ir); Rcam,Tcam = Φcam(Ir, Is).

Given the camera relative pose, a pixel x in the reference
frame with depth d = Dscene

r (x) is mapped to x′ with depth
d′ in the source frame via the bijection τ defined as

x′d′ = τ(xd) := K(RcamK−1xd+Tcam). (6)

Given τ , we can compute a reconstruction of the source
view Ir→s from the reference view Ir via Ir→s =
FW(τ, Ir), where FW denotes the forward warping op-
eration. We then employ a network Ψ to predict a motion
map ∆r ∈ RH×W×3 taking Îr→s and Is as input,

∆r = FW(τ−1,Ψ(Ir→s, Is)). (7)

We get a refined correspondence τ ′ defined as

x′′d′′ = τ ′(xd) := τ(xd) + ∆r(x). (8)

τ ′ induces a reference image reconstruction Ir←s via

Ir←s = BW(τ ′, Is), (9)

where BW denotes the backward warping operation.
The loss function for training the networks above in-

cludes the reference image reconstruction loss Lp [8], depth
edge-aware smoothness loss Ls [7], and object-motion spar-
sity loss Lg [19]:

Lscene = Lp(Ir←s, Ir)+Ls(D
scene
r , Ir)+Lg(∆r), (10)

where Lg(·) encourages the predicted pixel-wise motion to
be zero at static background regions in the scene. As dis-
cussed in Sec. 3, the static regions of Dscene

r are scale-
consistent.

4.2. Dynamic Object Depth Estimation for Dlabel
r

At this stage, we focus on the scale-consistent depth estima-
tion for moving object regions. As discussed in the previous
section, we can obtain a pixel-wise motion map that leads to
the estimation of the object masks (see Sec. 4.3 for details).
Given the objects’ masks and images of the object region
only, we first estimate an initial object depth via unsuper-
vised learning by minimizing the image reconstruction loss.
Note that the estimated depth for moving objects is not scale
consistent with the static regions. We therefore introduce a
scale-alignment network to resolve the scale ambiguities.
Below we provide details for these two steps.

Self-supervised Object Depth Estimation. Similar to the
previous section, we treat depth and camera pose as the
intermediate variables for unsupervised learning. Given
the mask for object o in the reference view as Mo

r ∈
{0, 1}H×W×1, we can map it to the source view and obtain
the corresponding object mask as Mo

r→s = FW(τ ′,Mo
r).

We then estimate the depth and motion of the object o as

Do
r = Θobj(Mo

r ⊙ Ir), (11)

Ro,To = Φobj(Mo
r ⊙ Ir,M

o
r→s ⊙ Is). (12)

Ro and To represent view changes caused by both object
rigid motion and camera motion, ⊙ defines the element-
wise multiplication operation. By substituting Do

r, Ro, and
To into Eq. 6, we can solve for pixel correspondence τo

and synthesize the masked reference image Ior←s via

Ior←s = BW(τo,Mo
r→s ⊙ Is). (13)

The loss function used to train Θobj and Φobj is,

Lobj = Lp(I
o
r←s,M

o
r ⊙ Ir) + Ls(M

o
r ⊙Do

r,M
o
r). (14)

Depth Scale Alignment. In the previous stage, we unified
the depth scale within each object. However, the scales still
mismatch between different moving objects and static re-
gions in Dscene

r . To align the scales, we introduce the Depth
Scale Aligment (DSA) module. The right part of Fig. 2 de-
picts the training process and how this module is utilized to
address the scale ambiguity issue for moving objects.

The DSA module is designed based on three key obser-
vations. Obs. 1: In Dscene

r , depth values of pixels within
static objects exhibit a unified scale while moving objects
still exhibit pixel-level scale-inconsistency due to the pixel-
wise motion. By contrast, Θobj can predict depth values for
all the pixels at a unified scale within each static as well as
the moving object. Thus, for static object only, the depth
values predicated by Θscene and Θobj only differ by one
single scale whereas it does not hold for moving objects.
Obs. 2: The scale-consistent depths of objects should have
the similar range as the those of static regions they are sit-
uated on or close to. Thus, the objects’ depth scale ambi-
guity could be resolved based on the information from the
depth value of its nearby static regions. Obs. 3: Moving
objects are indistinguishable from static objects when only
one frame is observed, as the motion information is lost.
Thus, a single frame model trained to predict the scale ratio
between the inferred depth from Θscene and Θobj for static
object can be generalized to moving objects after training.

The above observations indicate that we are able to train
a DSA network Γ to predict a scale alignment ratio β ∈ R+

to align the depth of a static object inferred by Θobj to its
desired depth predicted by Θscene. In other words, ground
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truth of the aligned depth scale for static objects are known.
We thus only train the network Γ relying on static objects.
Below we describe the training of Γ.

We denote the set of static objects as Os and moving
objects as Od with O = Os ∪Od which are obtained based
on the segmentation method described in 4.3. As stated in
Obs. 1, we only consider static objects Os in training. For
each static object o ∈ Os, as suggested by Obs. 2, Γ takes
Ir, Do

r , and ground depth to infer scale alignment ratio βo:

βo = Γ(Ir,D
o
r,M

gnd
r ⊙Dscene

r ). (15)

The loss function computes the difference between the
depth predicted by Θobj and Θscene but after alignment as

Lscale =

∑
u,v|βoDo

r(u, v)−Mo
r(u, v)D

scene
r (u, v)|∑

u,v M
o
r(u, v)

,

(16)
where the scale alignment is done by multiplying depth pre-
diction Do

r(u, v) by βo.
After training, Obs. 3 indicates that we can perform the

inference of the DSA network on moving objects and ob-
tain the depth ratio between each moving object and the
static regions to achieve a dynamic region depth prediction
Ddyn

r =
∑

o∈Od βoMo
r⊙Do

r that share the same scale with
the static regions within the same image. We define the dy-
namic region mask as Mr =

∑
o∈Od Mo

r . Then, an im-
age depth prediction as the depth label Dlabel

r with a unified
scale is generated based on Eq. 5, The depth scale alignment
component is the key to achieving scale-consistent full im-
age depth prediction and improves depth prediction accu-
racy by a large margin as demonstrated in the experiment
section below.

4.3. Mask Generation Mo
r,M

gnd
r

The masks for objects and the ground in the image are
key components to obtain the scale-consistent depth esti-
mation. In principle, we can adopt existing instance seg-
mentation methods, a pre-trained segmentation model such
as SEEM [33] for objects and ground which leverages an-
notations, or build a self-supervised pipeline using existing
unsupervised approaches to discover the object and ground
masks. Below, we introduce self-supervised pipelines that
can discover object masks and ground masks, respectively,
to demonstrate that we can derive the segmentation masks
in a self-supervised manner.
Self-supervised Object Detection. We adopt the slot-
attention (SA) model [20] to obtain the pseudo moving ob-
ject masks from the object motion map and depth map we
obtained in Section 4.1. Given the extracted dynamic ob-
ject masks, we could train a MaskRCNN using these ob-
ject masks to discover all the object regions (Mo

r) including
static ones which are required in the scale-alignment pro-
cess. Details are provided in the Supplementary material.

Self-supervised Ground Segmentation. To obtain ground
pseudo masks, we follow the method introduced by [28] and
segment ground pixels according to their height in the 3D
world and surface normal. Then, we train a segmentation
model to predict the pseudo ground mask Mgnd

r with the
binary-cross entropy loss.

We show in Fig. 3 a qualitative comparison between the
pseudo label, self-supervised segmentation, and SEEM seg-
mentation results. Compared with the pseudo label, the
self-supervised model is able to discover both static and
dynamic moving objects with similar results using SEEM.
Please see supplementary for more details.

4.4. Final Depth Prediction Dr

Getting the scale-consistent depth prediction Dlabel
r in-

volves the evaluation of multiple networks. We propose
to train a depth network Θ with Dlabel

r to directly predict
scale-consistent depth from an RGB image in one go,

Dr = Θ(Ir). (17)

Although the loss function used to train this model can
be as simple as a regression loss between its predictions and
the pseudo label Dlabel

r , we find that loss terms employed in
the first stage prevent the model from learning the inaccu-
rate pseudo depth label (e.g., induced by inaccurate object
masks). The loss used to train the models is

Lfinal = Lp(Ir←s, Ir) + Ls(Dr, Ir)

+ Lg(∆r) + Ldepth(Dr,D
label
r ,Mr).

(18)

The first three terms in Eq. 18 are identical to Lscene with
Ldepth provides scale-consistent dynamic region supervi-
sion and is defined as

Ldepth =

∑
u,v Mr(u, v)|Dr(u, v)− αDlabel

r (u, v)|∑
u,v Mr(u, v)

,

(19)

α = Median

({
Dr(u, v)

Dlabel
r (u, v)

}
u,v

)
, (20)

where α is the median of the per-pixel depth ratio between
Dr and Dlabel

r used to align the scale of Dlabel
r to Dr, effec-

tively making Ldepth scale-invariant. The rationale behind
the design is that Dlabel

r , as a scale-consistent pseudo la-
bel, is itself one scale away from the ground truth depth. A
direct regression without α will force our network to pre-
dict depth at the specific scale. However, as the scale it-
self is arbitrary, there is no reason to prefer one scale over
the other. By applying α we allow the network to find its
own scale without introducing scale-inconsistency, lighten-
ing the learning burden.
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(a) Our pseudo mask (b) Our self-supervised segmentation (c) SEEM segmentation

Figure 3. Visualization of segmentation over the same image. Static cars (two in the middle, stopped by the traffic light) ignored by the
pseudo label are segmented out by both our self-supervised model as well as SEEM.

We initialize Θ with Θscene, i.e, instead of training from
scratch, we fine-tune Θscene. The camera pose network
Φcam and the pixel-wise motion network Ψ are also fine-
tuned at this stage.

5. Experiments
5.1. Implementation Details
Dataset and Evaluation Metrics We evaluate our method
on the Cityscapes and KITTI datasets. For Cityscapes, we
use 69,731 images for training and 1,525 images for testing.
For KITTI, we use 39,810 training images and evaluate our
method on 697 images from the Eigen split [5]. Addition-
ally, we manually annotate moving-object masks for test set
images for both datasets. The annotation allows us to eval-
uate performance on static and dynamic regions separately.

Tab. 1 reports the statistics on the number of dynamic
objects. The table reveals that the KITTI dataset primarily
consists of static scenes, making it less prone to scale ambi-
guity. On the other hand, the Cityscapes dataset features a
large amount of moving objects. For this reason, our exper-
iments mainly focus on the Cityscapes dataset. Regarding
evaluation metrics, we adopt the absolute relative error (Abs
Rel), square relative error (Sq Rel) and the accuracy metric
for depth prediction (δ < 1.25) as used in [8].

Dataset Dynamic objects/image % Dynamic pixels
KITTI 0.828 0.6%

Cityscapes 2.266 2.9%

Table 1. Average number of dynamic objects and percentage of
dynamic pixels in the Cityscapes and KITTI dataset.

Training and Network Details We perform the same data
augmentation strategy as that is in [27]. For our camera and
object pose networks, we adopt the network structure from
[8]. We use RAFT [25] as our pixel-wise motion network.
The DSA modules consist of a ResNet18 [14] backbone fol-
lowed by 3 fully connected (FC) layers. ReLU functions
are applied after each FC layer except for the last one. We
explore several depth network architectures in our experi-
ments. For each stage, we train models for 30 epochs with
Adam optimizer [16] with the learning rate set to 0.0002,
halved every 15 epochs. Exact forms of the loss function
Lp, Ls, Lg can be found in the supplementary material.

5.2. Results
Performance Improvements: Our method improves the
performance of various self-/unsupervised monocular depth
estimation networks, especially in dynamic regions, on the
Cityscapes dataset. Specifically, we apply our method to
a range of self-supervised monocular depth estimation net-
work backbones, starting from the simple ResNet18 (with
randomized layer normalization [9]) to the more recent ones
including PackNet [10], DiffNet [31] and BrNet [12]. The
performances of each network architecture under different
settings are reported in Tab. 2.

The quantitative results indicate that when the models
are trained using photometric loss only, errors in dynamic
regions are considerably large (the first rows of each back-
bone). Integrating pixel-wise object motion prediction im-
proves the performance; however, the depth predictions
for dynamic regions are not scale-consistent due to the
scale ambiguity (the second rows of each backbone). Our
pseudo depth label provides scale-consistent depth super-
vision, which further improves depth predictions across all
backbones (the third row of each backbone).

The introduction of our models leads to an average of
52.1% reduction in the square relative error for the dynamic
region, and 2.8% and 5.9% reduction for static and all re-
gions respectively. Note the performance of the network on
the static regions largely reflects the performance of the net-
work on all regions as the static regions occupy the majority
area of the input image. Therefore, the error reduction on
all-region is not as significant as that for dynamic regions
only. We further show that by applying our method in con-
junction with a pre-trained segmentation model, we reduce
the square relative errors by 55.8%, 4.0%, 7.6% on aver-
age in dynamic, static, and all regions, respectively (the last
rows of each backbone).
Baseline Comparison: In Table 3, we compare our pro-
posed framework against prior methods on the Cityscapes
and KITTI dataset quantitatively. For works with no official
pre-trained model release [8, 12, 19], we re-train the mod-
els with their official implementation and evaluate on static
and dynamic regions separately. For [13, 15] we only report
the all-region performance as there is no publicly available
implementation or pre-trained models. For the rest works,
we evaluate their pre-trained models directly. All models
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Dynamic region Static region All regionBackbone Pixel
motion

Pseudo
depth

Sematic
prior Abs Rel Sq Rel δ < 1.25 Abs Rel Sq Rel δ < 1.25 Abs Rel Sq Rel δ < 1.25

Resnet18 [9]

0.352 11.169 0.858 0.118 1.362 0.862 0.127 1.743 0.722
✓ 0.144 1.650 0.898 0.095 0.986 0.900 0.097 0.982 0.854
✓ ✓ 0.107 0.784 0.906 0.093 0.961 0.907 0.094 0.931 0.907
✓ ✓ ✓ 0.100 0.647 0.903 0.091 0.931 0.904 0.092 0.895 0.911

Packnet [10]

0.182 2.667 0.891 0.104 1.167 0.894 0.108 1.210 0.813
✓ 0.132 0.987 0.906 0.091 0.861 0.908 0.093 0.844 0.857
✓ ✓ 0.112 0.703 0.908 0.090 0.858 0.909 0.091 0.831 0.890
✓ ✓ ✓ 0.104 0.666 0.908 0.089 0.859 0.908 0.090 0.830 0.901

DiffNet [31]

0.233 4.369 0.893 0.103 1.109 0.896 0.107 1.187 0.771
✓ 0.152 1.646 0.912 0.087 0.831 0.917 0.090 0.833 0.828
✓ ✓ 0.113 0.657 0.916 0.083 0.775 0.919 0.085 0.753 0.889
✓ ✓ ✓ 0.105 0.692 0.919 0.082 0.781 0.921 0.083 0.757 0.893

BrNet [12]

0.224 3.440 0.883 0.105 1.052 0.889 0.106 1.124 0.707
✓ 0.168 2.041 0.914 0.082 0.747 0.920 0.087 0.780 0.809
✓ ✓ 0.119 0.670 0.918 0.080 0.736 0.922 0.084 0.722 0.872
✓ ✓ ✓ 0.106 0.577 0.921 0.080 0.717 0.923 0.081 0.696 0.892

Table 2. Results of training different depth estimation networks backbone under different settings. For each backbone, the best results are
in bold, the second best are underlined. With pixel-wise: The model is trained in our first stage only. With pixel motion and pseudo
depth: Our fully self-supervised pipeline is applied to train the model. With semantic prior: Objects and ground masks are produced by
a pre-trained segmentation model [33] instead of the self-supervised ones.

Method Dataset Sematic
prior

Dynamic region Static region All region
Abs Rel Sq Rel δ < 1.25 Abs Rel Sq Rel δ < 1.25 Abs Rel Sq Rel δ < 1.25

Monodepth2* [8]

C

0.286 6.036 0.716 0.119 1.461 0.877 0.127 1.678 0.872
Li et al.* [19] 0.188 1.654 0.735 0.118 1.198 0.835 0.119 1.186 0.833
InstaDM [17] ✓ 0.189 2.538 0.795 0.102 1.058 0.895 0.106 1.104 0.890
RMDepth [15] – – – – – – 0.100 0.839 0.895
DaCNN [13] – – – – – – 0.113 1.380 0.888

ResNet18 [9] + Ours

C

0.107 0.784 0.907 0.093 0.961 0.907 0.094 0.931 0.906
PackNet [10] + Ours 0.112 0.703 0.890 0.090 0.858 0.909 0.091 0.831 0.908
DiffNet [31] + Ours 0.113 0.657 0.889 0.083 0.775 0.919 0.085 0.753 0.916
BrNet [12] + Ours 0.119 0.670 0.872 0.080 0.736 0.922 0.084 0.722 0.918

PackNet [10]

K

0.213 2.820 0.762 0.108 0.814 0.883 0.110 0.834 0.881
DiffNet [31] 0.177 2.072 0.930 0.101 0.743 0.899 0.102 0.753 0.897
BrNet* [12] 0.183 1.715 0.760 0.104 0.702 0.885 0.106 0.711 0.884

RMDepth [15] – – – – – – 0.108 0.710 0.884
DaCNN [13] – – – – – – 0.099 0.661 0.897

DiffNet [31] + Ours

K

0.158 1.468 0.838 0.101 0.687 0.894 0.102 0.693 0.892
DiffNet [31] + Ours ✓ 0.143 1.191 0.845 0.099 0.658 0.895 0.100 0.662 0.894
BrNet [12] + Ours 0.160 1.273 0.812 0.103 0.690 0.889 0.103 0.692 0.888
BrNet [12] + Ours ✓ 0.162 1.207 0.812 0.102 0.673 0.889 0.103 0.675 0.888

Table 3. Comparison between the models trained with our method and previous works on Cityscapes (C) and Kitti (K) dataset. The best
results are in bold. Additionally, the performance of our methods is underlined if it is better than all previous works. (*) indicates results
reproduced using the official code. All methods are trained on monocular videos.

are evaluated following the process detailed in [27].

The results show that, in the Cityscapes dataset, our
models outperform all the previous methods on dynamic re-
gions by significant margins across all metrics. For the Sq
Rel metric, our models outperform the best baseline by a
margin of 0.870, that is, a 52.6% error reduction. By re-
solving scale ambiguity under the presence of moving ob-
jects, our models achieve new state-of-the-art performance
on the Cityscapes dataset. To be more specific, the model
with ResNet18 backbone achieves state-of-the-art on the
Abs Rel and Sq Rel metrics. Our other models outperform

all previous works in all metrics across different types of re-
gions. The improvement of the performance are even larger
when a pre-trained segmentation model is available. Figure
4 shows the qualitative results on the Cityscapes dataset.
Although [17] and [19] produce low-error predictions for
static regions, they fail to predict accurate depth for the
moving objects. In contrast, our methods are able to ac-
curately estimate depth for both static and dynamic regions.

For KITTI dataset, our models outperform all previous
works in dynamic regions and achieve a reduction of at least
14.4% in the Sq Rel metric. Due to a small number of mov-
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Figure 4. Qualitative results on Cityscapes. The error map is computed as the per-pixel relative absolute depth error. Red areas indicate
high errors. While the depth maps are not clearly distinguishable, the error maps indicate that both [17] and [19] fail to predict accurate
depth for moving objects in the images. In contrast, our models are able to predict the depth for these objects with smaller errors. Our
model, in conjunction with a pre-trained segmentation model SEEM [33], can achieve even better predictions.

(a) All region (b) Static region (c) Dynamic region

Figure 5. Depth prediction errors at different stage/self-training iteration. The largest performance gains are achieved while fine-tuning our
method with the pseudo label Dlabel

r . Their performance slightly improves through our iterative training strategy.

ing objects in the image, scale-consistent depth predictions
in dynamic regions result in marginal all-region improve-
ments. While our models do not outperform DaCNN[13]
in all-region2, we expect to achieve higher performance by
combining our training method with their network design.

5.3. Iterative Self-training
In this section, we investigate, as a natural extension to our
pipeline, a self-training setup where we use the depth pre-
diction from Θ as the pseudo depth label and finetune Θ
itself following the procedure described in Sec. 4.4. In Fig.
5, we visualize the change of errors of ours models at dif-
ferent stage/self-training iteration. In the figure, we use D′r
and D

′′

r to represent the depth prediction after one and two
self-training iterations. The figure shows that the largest
performance gain happens at fine-tuning with pseudo label
Dlabel

r . The performance of our models slightly improve at
the first iteration and remains stable after that.

2We cannot combine our training method with DaCNN [13] as is not
publicly available.

6. Conclusion
In this work, we proposed a fully self-supervised pipeline
that generates scale-consistent depth pseudo labels. Our de-
coupled depth estimation for static and dynamics regions
can lead to a high-quality pseudo depth labels. Such la-
bels have been used to improve the performance of a range
of self-supervised monocular depth estimation frameworks,
especially in regions with moving objects. Extensive exper-
imental results demonstrate that we achieve the new state-
of-the-art performance on the Cityscapes dataset, and con-
sistently outperform previous works in depth predictions
for dynamic regions on both KITTI and Cityscapes dataset.
One limitation of our method is its generalizability to in-
door scenes in which the main moving objects are humans
whose motion cannot be described by a single rigid motion.

Acknowledgement. This research was supported in
part by the Australia Research Council DECRA Fel-
lowship (DE180100628) and ARC Discovery Grant
(DP200102274)).
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