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Abstract

Robotics agents often struggle to understand and follow

the multi-modal prompts in complex manipulation scenes

which are challenging to be sufficiently and accurately de-

scribed by text alone. Moreover, for long-horizon manipu-

lation tasks, the deviation from general instruction tends to

accumulate if lack of intermediate guidance from high-level

subgoals. For this, we consider can we generate subgoal
images before act to enhance the instruction following in

long-horizon manipulation with multi-modal prompts? In-

spired by the great success of diffusion model in image gen-

eration tasks, we propose a novel hierarchical framework

named as CoTDiffusion that incorporates diffusion model

as a high-level planner to convert the general and multi-

modal prompts into coherent visual subgoal plans, which

further guide the low-level policy model before action ex-

ecution. We design a semantic alignment module that can

anchor the progress of generated keyframes along a coher-

ent generation chain, unlocking the chain-of-thought rea-

soning ability of diffusion model. Additionally, we propose

bi-directional generation and frame concat mechanism to

further enhance the fidelity of generated subgoal images

and the accuracy of instruction following. The experiments

cover various robotics manipulation scenarios including vi-

sual reasoning, visual rearrange, and visual constraints.

CoTDiffusion achieves outstanding performance gain com-

pared to the baselines without explicit subgoal generation,

which proves that a subgoal image is worth a thousand

words of instruction. The details and visualizations are

available at https://cotdiffusion.github.io.

1. Introduction
Embodied manipulation focuses on creating generalists that
can perceive, reason, and act within complex environments,
which sits at the intersection of robotics control, computer
vision, and natural language processing [11]. Recent ad-
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The task instruction is too complex to understand and execute ! 

Well…Decompose the multi-modal prompt into several sub- prompts in text:
First: Sweep the rainbow cube in the lower left corner inside the three-sided rectangle 

with yellow and green stripes, not to exceed the green and white line.          
Next, ….           Lastly, …

Sweep all
Without exceeding

Instructions

into

Initial Observation

Please follow the multi-modal instruction and finish the task!

The sub-prompts in text alone are too complex and redundant,
even more confusing to understand and ground !

I can act towards these subgoals images step-to-step !
A subgoal image is worth a thousand words of instructions !

Okay…I give you subgoal images sequence and follow these keyframes to plan: 

Figure 1. A motivation example of robotics manipulation tasks in
multi-modal instructions. The subgoal images are worth a thou-
sand words, inspiring us to propose a novel framework CoTDiffu-
sion to generate goal images step-by-step before act.

vances in vision-language model (VLM) such as CLIP [38],
BLIP [22], enable open-vocabulary visual recognition and
show promising potential of robotics closed-loop control
by endowing them with the ability to predict robot actions
in embodied robotics [5, 10, 18, 51]. However, robotics
agents still face significant challenges in following instruc-
tions for long-horizon manipulation tasks, especially when
the given general instructions are not progressive step-wise
prompts, but implicitly contain several subtasks to accom-
plish. Moreover, complex manipulation scenarios with rich
visual contexts are often challenging to be sufficiently and
accurately described through text-only prompts, requiring
multi-modal prompts to convey the instructions and inten-
tions accurately [21], further increasing the difficulty of in-
struction following and task completion.

For example in Fig. 1, now given a short multi-modal
prompt, the robot arm needs to follow the instructions and
accomplish the task. The multi-modal instruction is brief
but implicitly encapsulates long-horizon multi-step manip-
ulation steps. We have two pathways to solve this task ac-
cording to the recent embodied manipulation works. The
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first paradigm is directly leveraging the powerful VLM to
encode prompts and observations into tokens and predict
the entire action sequence with the subsequent decoder in
an end-to-end manner, like RT-2 [51] or VIMA [21]. How-
ever, the compounding small errors over long horizons will
lead to catastrophic deviations from the original task in-
structions due to the lack of intermediate guidance from
coherent subgoals. The second paradigm is to incorpo-
rate the large language models (LLMs) to explicitly decom-
pose the general prompts into several orderly subgoals with
step-wise text instructions, like SayCan [1]. Though LLMs
like ChatGPT [37] struggle to support the multi-modal
prompts beyond text-only modality, we can seek help from
the latest multi-modal LLMs such as LLaVA [25], Embod-
iedGPT [33]. Even if we idealistically assume (M)LLM-
based decomposition produces well-grounded and rational
plans, generated text-only prompts tend to be extremely re-
dundant and complex to accurately specify each subgoal in
complex manipulation scene, may even be more confusing
than the original general prompt and impose a heavy burden
on the robot agents to re-parse and re-understand again.

Considering the phrase ‘a picture is worth a thousand
words’, subgoal images could provide higher expressive ca-
pabilities for conveying subtasks compared to sub-prompts
with complex text. This motivates us to generate subgoal

images step-by-step before act to enhance long-horizon
instruction following. Fortunately, tremendous success
in text-to-image generation sheds light on the possibility
of directly translating multi-modal prompts into coherent
grounded visual subgoals step by step. Our key insight is to
propose a hierarchical framework CoTDiffusion that inte-
grates diffusion model as the high-level visual planner that
can understand multi-modal prompts and progressively gen-
erate chained subgoal images based on the current visual
observations in a chain-of-thought manner. The chained
subgoal images serve as visual milestones to anchor the exe-
cution of task, further fed into a low-level foundation model
for the specific step-wise action planning to achieve the pro-
vided goal scene. The subgoal images act as a unified inter-
face bridging the high-level visual planning and low-level
action planning, decoupling the instruction understanding
and action execution. The foundation module allows the
high-level diffusion model to focus solely on instruction un-
derstanding and subgoal visualization without overwhelm-
ing joint action prediction training. Conversely, the high-
level visual planner frees the low-level foundation model
from ambiguous prompt understanding and long-horizon
planning. By providing coherent subgoal images as visual
landmarks, the requirements for the foundation model are
reduced to basic single-object manipulation primitives.

The key challenge to enabling CoTDiffusion to progres-
sively generate subgoal images in a chain-of-thought man-
ner lies in tracking the generated subgoal’s progress on task

prompts. In other words, for coherent subgoal generation,
diffusion model needs to know ‘which step this subgoal im-
age has reached’ and ‘which step needs to reach in the next
subgoal image’ based on task prompts. For this, we design
a triple alignment module comparing the cross-frame visual
contrasts between the generated subgoal image and initial
observation, and align the progress back to prompts to an-
chor the stage of generation chains. Specifically, we use
a coarse-to-fine training pipeline. First, the aligned mod-
ule is coarsely pre-trained to predict residual mask patches
between subgoal images for aligning spatial semantics, fo-
cusing on salient differences rather than pixel details in tex-
tures or colors. The semantic alignment module is then inte-
grated into the diffusion model for step-wise image gener-
ation with fine-grained pixel reconstruction. Additionally,
bi-directional generation and frame concatenation mecha-
nism further enhance subgoal image fidelity and instruction
following. The contributions of this work are as follows:
• We propose a hierarchical framework CoTDiffusion that

the high-level diffusion model translates the multi-modal
prompts into coherent subgoal images in a chain-of-
thought manner as visual milestones to anchor the low-
level foundation model executing, enhance the instruction
following on long-horizon manipulation tasks.

• We design a semantic alignment module to capture the
semantic relevance between visual subgoals and prompt,
progressively tracking the progress of generated images
along the coherent generation chain to unlock the chain-
of-thought reasoning capability for multi-modal prompt.

• The experiments on various long-horizon manipulation
tasks empirically demonstrate that CoTDiffusion enjoys
outstanding performance gain than prior methods by ex-
plicitly generating goal images step by step before act.

2. Related Work
2.1. Diffusion Models for Text-to-Image Generation
Recently, diffusion models have emerged as a powerful
paradigm for high-fidelity text-to-image synthesis [9, 17,
35, 42, 45]. Models such as DALL-E 2 [39], Imagen [44]
and Stable Diffusion [43] have demonstrated impressive
success in generating realistic images from textual descrip-
tions. The text instructions are tokenized as specific con-
ditions and injected into the denoising process for con-
trollable image generation. Moreover, some recent works
have begun to explore image generation with multi-modal
prompts, incorporating diverse inputs beyond just text. Uni-
Diffuser [3] treats both image and text as sequential to-
ken streams for diffusion generations and Versatile diffu-
sion [49] employs a multi-flow design to tackle multi-modal
prompts. However, directly applying existing text-to-image
approaches to complex robotics manipulation poses chal-
lenges in instruction understanding and following. Prompts
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in manipulation tasks are often too high-level and general to
effectively ground and reason, making the generated images
struggle to accurately follow instructions and ground to the
given scenarios, not sufficient to serve as goal images to of-
fer fine-grained guidance for manipulation. Our work em-
ploys a semantic alignment module for multi-stage cross-
modal alignment to achieve better grounding of generated
images and unlock the chain-of-thought reasoning abilities
of diffusion model for long-horizon tasks.

2.2. Robotics Manipulation and Control

With the development of VLMs for robotics, such as
R3M [34], VIP [29], and LIV [30] pre-trained general
visual representations for robotic perception, RT-2 [51],
Gato [41] and PaLM-E [10] can convert instruction and ob-
servation into tokens and apply large transformers to predict
action tokens in an end-to-end manner for robot manipula-
tion tasks. While these works mostly focus on language-
conditioned manipulation, more complex manipulation sce-
narios with multi-modal prompts introduced by VIMA [21]
are also gaining increasing attention. Accurately instruction
following becomes more challenging with general multi-
modal prompts, especially in long-horizon manipulation
tasks. It is not trivial to directly borrow the recent works
like SayCan [1] and EmbodiedGPT [33] to utilize MLLMs
to decompose multi-modal instructions into step-wise text
prompts. Even if we assume step-wise instructions can be
rationally decomposed, they often require complex and re-
dundant language to accurately specify subtasks and may
be more confusing to understand. Inspired by the motto
‘show, don’t tell’, our work aims to translate the general
multi-modal prompts into coherent subgoal images instead
of text step by step, serving as visual landmarks to enhance
the instruction following in long horizon.

2.3. Chain-of-Thought Reasoning

Chain-of-Thought [48] reasoning refers to the general strat-
egy of solving multi-step problems by decomposing them
into a sequence of intermediate steps, showing great suc-
cess in guiding the model to think step-by-step for enhanc-
ing instructing following and reasoning accuracy. It has
recently been applied extensively in a variety of problems
such as mathematical reasoning [8, 24], program execution
[36, 40], commonsense or general reasoning [23, 48]. How-
ever, chain-of-thought visual reasoning has not been well
explored for robotics manipulation. Inspired by prior explo-
rations into CoT reasoning, we introduce the novel concept
of chaining conditional image generations step by step to
guide long-horizon manipulation. Our work employs a se-
mantic alignment module to anchor the generated subgoal
image in the entire reasoning chain, unlocking the chain-of-
thought reasoning capabilities for the diffusion model.

3. Method
We propose CoTDiffusion, a hierarchical framework that
integrates the diffusion model as the high-level module
to decompose multi-modal prompts in a chain-of-thought
manner and progressively generate chained subgoals im-
ages step by step to guide the underlying foundation model
for long-horizon tasks. Specifically, we first discuss the
overview pipeline of CoTDiffusion in Sec. 3.1, and then in-
troduce the pretraining of the coarse semantic alignment to
capture the step-wise spatial information in Sec. 3.2. Then
we discuss how to further fine-grain the CoT reasoning and
grounded generation capabilities of the diffusion model in
Sec. 3.3 and introduce the details of goal image conditioned
foundation model for action planning in Sec. 3.4.

3.1. Pipeline Overview

The overall pipeline of CoTDiffusion is presented in Fig. 2,
decoupling the visual planning and action planning. Given
the initial observation x0 and a multi-modal prompt P as
task instruction potentially needs to be reached by N sub-
goal steps, robots are required to learn a policy conditioned
on the prompt and accomplish the specified long-horizon
task. Our model is capable of understanding these general
instructions and leverages diffusion model implicitly to de-
compose them into subgoal images chain ⌧x = {xi}Ni=1.
The precisely generated goal images xi then guide the foun-
dation model’s planning for inferring the action sequences
⌧ ia = {ai,t}Tt=1 with the subgoal horizon length T . Let p⇥
model this hierarchical decision-making framework. With
bi-level modules, p⇥ can be factorized into visual planning
p�, and action planning p . Under the Markovian assump-
tion, the overall framework can be formulated as:

p⇥({⌧ i
a}Ni=1|P, x0) =

 
NY

i=1

p�(xi|P, x0)

!

| {z }
visual planning

 
NY

i=1

TY

t=1

p (ai,t|xi)

!

| {z }
action planning

(1)
The visual planning module consists of a multi-modal en-
coder to understand the complex task instructions and con-
ditioned diffusion model which implicitly decomposes the
task into progressive chained subgoals images. The stan-
dardized subgoal images serve as a unified interface bridg-
ing the visual planning and action planning modules. With
the decoupled foundation model for action prediction, high-
level visual planning focuses solely on comprehending in-
structions and visualizing subgoals without confusion from
joint action prediction training. Conversely, the visual plan-
ning module frees the action planning module from ambigu-
ous prompt parsing and long-horizon planning by providing
coherent keyframes as visual landmarks, further reducing
the capabilities requirements of the foundation model to ba-
sic single object manipulation skills.
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Figure 2. Method overview: CoTDiffusion consists of a multi-modal encoder and vision encoder V , semantic alignment module S,
conditional diffusion model E and foundation model F for action planning. The prompt and observation tokens are combined and fed
into the semantic alignment module to identify the current reasoning chain step, providing progressive guidance for the diffusion model
to generate the next subgoal image. The generated keyframes are further fed to the foundation model which predicts action sequences to
achieve the imagined goal scene and this recursive process repeats in a receding horizon control loop until the task is finished.

3.2. Pre-training Coarse Semantic Alignment
For the challenge of explicit decomposing step-wise sub-
prompts from multi-modal prompts, the diffusion model
struggles to generate sequentially coherent keyframes that
incrementally advance the prompt instructions and execu-
tion progress. The diffusion model fails to identify the stage
of current generated keyframes onto the whole chain-of-
thought progress and the generated sub-goals images may
exhibit repetitions, skipping, or even backtracking to visited
subgoals. To alleviate this dilemma, we design a semantic
alignment module to empower diffusion model to track the
progress of generated keyframes into the entire chain.

Triple Alignment Architecture Since explicit decompo-
sition for the multi-modal prompt is intractable, the initial
observation x0 and prompt P remain fixed across the pro-
gressive generation of diffusion model. Thus, tracking the
progress critically relies on extracting semantic information
from the generated subgoal xi. To this end, we design a
triple alignment module denoted as S(x0, xi,P) to com-
pare current generated subgoal xi against initial observation
x0 and prompts P , serving as an information bottleneck
to capture the key semantic cues about the subgoal-prompt
matching to locate the current chain stage and deliver to the
diffusion model for next subgoal generation. Specifically,
we first capture visual representation from both the initial
and current observation using a shared vision encoder V
and concatenate with prompt tokens P . Then they are
refined through fusion module which consists of several
self-attention blocks separately to obtain attention tokens z0
and zi aligned to the prompts. The cross-attention between
z0 and zi aggregates a contrast representation zicontrast and
then concatenated with prompt tokens into another fusion
module to capture the progress tokens ziprogress, including

rich context about the advancement and completion of the
prompted task between the two subgoals. Finally, ziprogress
and the current visual tokens xi and then fed into another
cross-attention pass, which visual tokens xi serve as keys
and progress tokens ziprogress as queries to infer the final
aligned tokens zialign. The aligned token encapsulates cues
about ‘which subgoal has reached now’ and ‘which subgoal
should reach next’, further injected into the diffusion model
as precise semantic guidance to steer the generation of
next subgoal. Through multi-stage cross-frame attention
mechanisms, the triple alignment module can capture the
cross-modal semantic correlation and achieve dynamic
grounding of generated subgoal image into the multi-modal
prompts to identify progress along the CoT reasoning chain.

Masked Patch Prediction It is not trivial to directly in-
tegrate the designed triple alignment module without pre-
training into the diffusion model for joint training from
scratch. Simultaneously optimizing semantic alignment and
pixel-level reconstruction such as texture, color, shape, and
spatial transformations overwhelms joint learning. Thus,
we propose a two-stage coarse-to-fine approach decoupling
semantic alignment pretraining from diffusion model fine-
tuning, illustrated in Fig. 3. First, we pre-train coarse se-
mantic alignment focused only on spatial correlations, with-
out pixel generation. Considering the adjacent keyframe
contrasts reveal object manipulations as mask residuals
patch m̂i = xi+1 � xi, we can utilize these cross-frame
spatial semantics to provide coarse alignment supervision.
Regions with no visual changes likely correspond to sta-
tionary background elements or objects not involved in the
current subtask operation. Contrastively, masked areas indi-
cate spatial layout modifications concluding the rich spatial
semantic information between keyframes. The sequence
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Figure 3. Two phase of coarse-to-fine alignment pipeline.

of mask residuals patch {m̂i}N�1
i=1 can be viewed as im-

plicitly decomposing the prompt into spatial manipulation
steps across visual frames that can be used for alignment.
So we fed the aligned tokens into a mask predictor D to
decode the mask region and set modeling mask predic-
tion as a pretext task. Mask prediction encourages the
model to infer these salient spatial semantics and changes
to incrementally track prompt completion and focus re-
gions. The process can be formulated as: {mi}Ni=1 =PN

i=1 D(mi|zialign)S(zialign|x0, xi,P).
By factorizing the alignment and generation objectives,

the alignment module can develop basic visual reasoning
skills through patch-level mask prediction before integrated
into the diffusion model for controllable image synthesis.

3.3. Fine-grained Diffusion Training
In the second stage, we integrate the pretrained coarse align-
ment module into the diffusion model training for fine-
grained image generation. To further enhance instruction
following, we design a bi-directional generation that recon-
structs the current frame from the aligned token, providing
an additional learning constraint. We also employ a frame
concatenation mechanism to enhance the consistency across
generated keyframes and the fidelity of generation.

Bi-directional Aligned Generation Building upon
coarse pretraining, we integrate the alignment module
into the diffusion model for fine-grained training with
the pixel-level supervision of ground truth keyframes,
illustrated in Fig. 3. Here we propose bi-directional aligned
generation, where the aligned token zialign not only guides
forward prediction but also reconstructs the current frame
through backward passing. In the forward pass, based on
current subgoal xi, zialign provides semantic conditioning
to generate the next subgoal image xi+1. In the backward
pass, the same aligned token can guide diffusion model to
reconstruct the current subgoal xi from the next subgoal
image xi+1, acting as an additional constraint. The training
objective can be formulated as:

L = Exi2D[kx̂i � E
⇣
xi�1, z

i
align ,P)

| {z }
Forward Generation

k+kx̂i�1 � E
⇣
xi, z

i
align,P)

| {z }
Backward Generation

k]

(2)

Bi-directional generation compels tighter instruction
grounding, as accuracy is required for both progressive
and reverse keyframe prediction. This dual-direction
linkage enhances visual coherence and sequence control-
lability compared to forward-only training, improving the
chain-of-thought capabilities of diffusion model.

Frame Concat Mechanism Generating consistent and
coherent subgoal images requires considering both seman-
tic guidance to match prompts and visual grounding into
observations. The aligned tokens zialign and image tokens
xi are both fused into the denoising process in a classifier-
free manner, as shown in Eq. (2). However, merely inject-
ing current observation tokens as condition into noise model
struggles to provide sufficient guidance to prevent distor-
tions conflicting with the current observation, which is criti-
cal for precisely grounded robotics manipulations. Inspired
by VDT[28], we employ frame concat mechanism to di-
rectly take current observation frame as the component of
input rather than only condition for the next subgoal im-
age generation, illustrated in Fig. 2. The current observa-
tion frame concatenated with the standard Gaussian noise
gives a strong visual continuity prior, then fed into diffu-
sion model to denoise altogether. For the training, we split
the corresponding frame from the denoising frame and su-
pervised it to the ground truth subgoal image. The rich vi-
sual context from the concated current frame enables co-
herent denoising in diffusion model further guarantees con-
sistency with grounded observation and enforces coherence
and smoothness across chain-of-thought visual planning.

3.4. Goal-conditioned Policy Model

The final component in our framework is the low-level pol-
icy model for action planning, generating an action trajec-
tory ⌧ ia when given observation trajectory ⌧ ix from visual
planning. The policy model can be parameterized as an
image-conditioned planner that infers the action ai,t given
the current observation xi,t and the generated subgoal im-
age gi: ⌧ ia = {ai,t}Tt=1 ⇠

QT
t=1 p (ai,t|xi,t, gi). The pol-

icy model is trained by imitation learning in an end-to-end
manner, using paired subgoal images and expert trajecto-
ries. Thanks to the explicit subgoal generation from high-
level visual planner, the low-level policy model does not
need to master complex multi-step manipulation skills in
long-horizon. Therefore, we simplify the policy model ar-
chitecture and implement it as a simple MLP to only possess
basic single-object manipulation primitives, which greatly
reduces the burden of policy model training. Although we
do not seek improvement through a more powerful policy
model in this paper, CoTDiffusion is flexible to incorporate
any goal-conditioned design like transformers or diffusion
policies. For more details of low-level policy model, please
refer to Appendix E.3.
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Figure 4. Visualization of CoTDiffusion in three typical long-horizon tasks with multi-modal prompts in VIMA-BENCH.

4. Experiments
4.1. Experiment Setup

Benchmark & Tasks We conduct evaluation on VIMA-
BENCH, a benchmark suite for multimodal robot learning,
which is built on the Ravens robot simulator [50]. VIMA-
BENCH supports extensible collections of objects and
textures to compose multi-modal prompts and to procedu-
rally generate a large number of tasks. VIMA-BENCH can
generate large quantities of expert trajectories via scripted
oracle agents, and the ground truth keyframes that can
leveraged for the training of CoTDiffusion. VIMA-BENCH
contains various tasks ranging from simple object manip-
ulation to multi-object manipulation and we select three
representative long-horizon manipulation tasks in VIMA-
BENCH- visual rearrangement, visual constraints, and
visual reasoning, which represent different levels of com-
plexity and requirements for embodied manipulation. These
tasks represent different levels of complexity and require-
ments for embodied manipulation and can test the ability to
understand spatial relationships and perform precise object
manipulations. For more details regarding the simulation
benchmark and tasks setting, please refer to Appendix A .

Evaluation Metric The evaluation metrics we use in the
experiments cover three aspects as following:

• Image Fidelity - measures the quality and realism of the
generated keyframe images. We choose Fréchet Inception
Distance (FID) [15] as a useful metric.

• Instruction Following - evaluates how well the step-
by-step keyframes cover the complex instructions. We use
CLIP-based text-image similarity scores [14] between the
prompt and keyframes to quantify instruction alignment.

• Task Completion - tests the end-to-end utility by exe-
cuting the embodied manipulation task. The final success
rate on long-horizon tasks can be a fair metric.

4.2. Baselines
There are several existing methods for constructing robot
manipulation policies conditioned on complex prompts,
which we use as baselines in our experiments:
• Gato[41], a generalist agent that can solve tasks from

multiple domains where tasks are specified by prompting
the model with the observation and action subsequence.
For fair comparisons, we provide the same conditioning
manner with multi-modal prompts.

• Flamingo[2], a vision-language model that learns to
generate textual completion in response to multimodal
prompts. We borrow the architecture in [21] which adapts
it to support decision-masking by replacing the output
layer with robot action heads.

• VIMA[21], the first transformer-based generalist robot
agent that processes manipulation tasks with multimodal
prompts. VIMA adpots an object-centric approach to flat-
ten all the observation and prompts into object tokens se-
quence and predicts motor actions autoregressively and
demonstrates SOTA performance on VIMA-BENCH.

• SuSIE[4], the concurrent work for visual planning in
manipulation tasks on the CALVIN [31], incorporating
pretrained image-editing model and the low-level goal-
conditioned policy. For fair comparison, we finetune the
model with the same oracle data with CoTDiffusion.

4.3. Quantitative Results of Success Rate
We begin by comparing the performance of CoTDiffusion
and baselines to solve long-horizon tasks in visual rear-
range, visual reasoning, and visual constraints. The per-
formance comparisons shown in Tab. 1 demonstrate CoT-
Diffusion significantly outperforms other baselines in suc-
cess rate. The baselines can be divided into two kinds of
planners, including abstract planner and visual planner.
Abstract planner like Gato, Flamingo and VIMA directly
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map general prompts to subsequent actions in an end-to-end
manner. Gato and Flamingo gets low success rates on long-
horizon tasks without explicit subgoal generation to correct
the accumulative deviation errors from the instructions. In
contrast, Visual planner like SuSIE and CoTDiffusion can
generate intermediate goal images to guide the action plan-
ning, which can enhance instruction following for long-
horizon tasks via visual planning. However, SuSIE lacks
intrinsic chain-of-thought reasoning capabilities, struggling
to generate logically progressing subgoal sequences as co-
herent plans from general prompts. To enable comparison,
we grant SuSIE the manually decomposed prompts into
privileged step-wise sub-prompts which are unavailable in
fair settings, denoted as ‘SuSIE + sub-prompts’. Nonethe-
less, its performance still lags CoTDiffusion, which can im-
plicitly align generated images with multi-modal prompts
through learned correspondence between visual signals and
language semantics. One more potential reason to restrict
the performance of SuSIE is that provided sub-prompts
are challenging to perfectly encapsulate complex instruc-
tions. In contrast, CoTDiffusion develops intrinsic chain-
of-thought reasoning and alignment for generated subgoal
images for flexible visual planning directly from the raw
multi-modal prompts, without the need for pre-decomposed
sub-prompts. The comparisons highlight the importance of
chain-of-thought capabilities in visual planning, especially
the role of implicit semantic alignment for instruction fol-
lowing long-horizon manipulation tasks.

Methodology Rearrange Reasoning Constraints Overall
Gato 6.4± 1.3 2.5± 0.4 25.2± 3.1 11.4± 1.6
Flamingo 17.5± 1.6 3.0± 0.5 36.1± 4.2 18.9± 2.1
VIMA 43.1± 3.3 38.2± 4.4 67.2± 5.2 49.5± 4.3

SuSIE 2.7± 0.3 3.1± 0.6 24.3± 5.9 10.0± 2.3
+sub-prompts 37.7± 6.2 39.0± 4.5 52.3± 7.0 43.0± 5.9

CoTDiffusion 59.0± 1.7 51.7± 2.6 83.1± 4.7 64.6± 3.0

Table 1. The evaluations of success rates on three typical long-
horizon tasks with multi-modal prompts.

4.4. Further Analysis
Robustness to Insufficient Perception Rich visual ob-
servations from diverse views are crucial for complex robot
manipulation tasks. Restricted perspectives limit rich repre-
sentations used for action planning, degrading performance
on long-horizon multi-object manipulation. We evaluate
different methods in single-view including the top and front
views provided from VIMA-BENCH. As shown in Tab. 2,
visual planning approach demonstrates greater robustness
to limited observations, with a smaller performance drop
in single-view compared to abstract methods. We attribute
this to two potential reasons: First, accurate and grounded
subgoal images generated in visual planners provide sup-
plemental visual context, which can partly compensate for
the insufficient perception to aid robustness under single-

Methodology Multi-View Single-View Performance Drop
Gato 11.4± 1.6 6.5± 1.6 4.9(42% #)
Flamingo 18.9± 2.1 12.0± 2.4 6.9(36.2% #)
VIMA 49.5± 4.3 34.9± 3.4 14.6(29.4% #)
SuSIE 10.0± 2.3 7.9± 2.0 2.1(21.0% #)
+sub-prompts 43.0± 5.9 35.6± 6.1 7.4(18.8% #)

CoTDiffusion 64.6± 3.0 56.0± 2.4 8.6(13.2% #)

Table 2. The evaluations of performance drop of different methods
on single-view and multi-view from VIMA-BENCH.

Table 3. Quantitative comparisons of FID betweeen methods on all
three tasks, including visual rearrange, reasoning and constraints.

Methodology Rearrange Reasoning Constraints
SuSIE [4] 19.7 18.3 23.2
- w/o finetune 38.4 " 33.0 " 52.7 "
- w/o stepwise prompt 32.6 " 28.1 " 34.7 "

CoTDiffusion (ours) 11.3 10.8 8.6
- w/o coarse pre-train 23.1 " 16.2 " 18.9 "
- w/o bi-direction align 18.7 " 15.0 " 15.8 "
- w/o frame concat 15.4 " 13.7 " 12.1 "

view. Second, by providing coherent subgoal images as
visual landmarks, the requirements for the low-level ac-
tion planner are reduced to basic single-object manipulation
primitives in short horizon, with less reliance on rich visual
perceptions. The experiments demonstrate that CoTDiffu-
sion enjoys better robustness to restricted perception than
abstract planners, highlighting the benefits of hierarchical
framework decoupled visual planning and action planning.

Fidelity of Image Generation Here we conduct further
analysis of visual planners by comparing goal image quality
against ground truth keyframes with FID as evaluation met-
rics. As Tab. 3 shows, CoTDiffusion still achieves much
better fidelity than SuSIE even though SuSIE has got im-
proved after fine-tuning on the same datasets in VIMA-
BENCH. Moreover, SuSIE can only understand short in-
structions of single-object manipulation tasks, struggling to
handle long-horizon instructions due to the lack of chain-
of-thought reasoning capabilities to handle multi-modal
prompts. With step-wise sub-prompts decomposed in ad-
vance, the performance of SuSIE gets largely raised but still
underperforms CoTDiffusion, which has no need to explic-
itly decompose the general prompts and can generate sub-
goal images in an implicit chain-of-thought manner. Addi-
tionally, ablating coarse pretraining and bi-directional gen-
eration degrades performance, validating their benefits. The
coarse-to-fine semantic alignment training training allows
developing spatial reasoning prior to synthesis. Frame con-
catenation further guides coherent denoising by providing
rich context information as visual priors to ground the cur-
rent observation and enhance the fidelity of generation.

Accuracy of Instruction Following We evaluate instruc-
tion following accuracy via CLIP similarity between gen-
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erated keyframes and general prompts, normalized by the
CLIP score between ground truth ultimate goal image and
prompts. The results in Fig. 5 demonstrate that CoT-
Diffusion enjoys better instruction following capabilities.
Without chain-of-thought reasoning abilities, SuSIE strug-
gles to follow instructions when given general multi-modal
prompts, let alone generate subgoal images with smooth
progressions. Progressively providing privileged prompts
step by step improves SuSIE in instruction following and
gradual advancement towards ultimate goals. However, text
prompts decomposed by rules are not always perfect to con-
vey the original multi-modal prompt, so the reliance on
these prompts restricts the performance of SuSIE. In con-
trast, the coarse alignment pretraining and bi-directional
generation can assist the diffusion model in tracking the
progress of generated keyframes throughout the entire chain
and generate sequenced keyframes incrementally advanc-
ing prompt instructions. Moreover, the implicit decomposi-
tion maintains semantic coherence between subgoals with-
out overly large jumps and the smoothness and continuity
between visual milestones make them more reachable by
downstream foundation models with just single-object ma-
nipulation capabilities. Additionally, we observe that the
bi-directional generation may impedes the diffusion model
training if without coarse semantic pretraining. As the ini-
tial observation and prompt remain fixed across different
generation steps, the align tokens at various stage tend to so
similar that may confuse simultaneous progressive genera-
tion and reconstruction training.

Generalization across Tasks We evaluate the generaliza-
tion ability in three levels with increasing difficulty: place-
ment generalization which randomizes the novel placement
of objects (L1), object generalization which provides the
objects with novel attributes (L2), and task combinato-
rial generalization which complexes the prompts with ex-
tra novel instruction (L3). As Fig. 6 shows, CoTDiffu-
sion exhibits strong zero-shot generalization on unfamiliar
objects, colors, and shapes at different placements by ex-
plicitly visualizing them into coherent subgoals grounded
on new concepts. This avoids re-grounding concepts from
multi-modal prompts in the low-level foundation model for

Figure 5. The normalized CLIP scores for each generation step,
reflecting the step-wise accuracy of instruction following.

Figure 6. The evaluation on various generalization levels.

the placement and object. For L3 generalization, taking an
example, we complex the prompt such as ‘rearrange ... then
rotate/twist/stack ...’ to demand extra tasks such as rotat-
ing, twisting degrees, or stacking objects. CoTDiffusion
achieves outstanding gain in the zero-shot performance of
combinatorial tasks. When CoTDiffusion visualizes novel
concepts into goal images, the foundation model can still
accomplish the stack by simply achieving the provided sub-
goal, with no need to inherently understand novel skills like
stack. This demonstrates the power of ‘a image is worth
a thousand words’ - the subgoal images facilitate the gen-
eralization of the foundation model to unseen objects and
novel combinatorial task while the foundation model sim-
ply achieves them with reuse of simple known primitives.

5. Conclusion

We presented CoTDiffusion, a hierarchical framework that
integrates diffusion model as high-level module to translate
the general multi-modal prompts into coherent subgoal im-
ages, serves as the visual milestones to anchor the low-level
foundation model to plan action sequences, termed as ‘gen-
erate subgoal images before act’. With the coarse-to-fine
training for semantic alignment module, CoTDiffusion can
identify the progress of generated subgoals images along
reasoning chains, unlocking the chain-of-thought reasoning
capabilities of diffusion model for long-horizon manipu-
lation tasks. The experiments cover various long-horizon
manipulation scenarios in VIMA-BENCH, and CoTDiffu-
sion show the strong instruction following and outstand-
ing performance gain compared to existed methods without
visual planning. Incorporating commonsense knowledge
from pre-trained MLLM like GPT-4V provides an avenue
for more generalizable and promising reasoning in CoTD-
iffusion, which leaves as our future work.
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