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Figure 1. Qualitative results trained on our synthetic DIV2K dataset with strong misalignments. Compared with LPIPS [41], and PDL [8],
the proposed method FDL yields clearer results with fewer artifacts. Zoom in to observe details.

Abstract

This paper aims to address a common challenge in deep
learning-based image transformation methods, such as im-
age enhancement and super-resolution, which heavily rely
on precisely aligned paired datasets with pixel-level align-
ments. However, creating precisely aligned paired images
presents significant challenges and hinders the advance-
ment of methods trained on such data. To overcome this
challenge, this paper introduces a novel and simple Fre-
quency Distribution Loss (FDL) for computing distribu-
tion distance within the frequency domain. Specifically, we
transform image features into the frequency domain using
Discrete Fourier Transformation (DFT). Subsequently, fre-
quency components (amplitude and phase) are processed
separately to form the FDL loss function. Our method is
empirically proven effective as a training constraint due to
the thoughtful utilization of global information in the fre-
quency domain. Extensive experimental evaluations, fo-
cusing on image enhancement and super-resolution tasks,
demonstrate that FDL outperforms existing misalignment-
robust loss functions. Furthermore, we explore the poten-
tial of our FDL for image style transfer that relies solely
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on completely misaligned data. Our code is available at:
https://github.com/eezkni/FDL

1. Introduction
Image transformation refers to the process of changing the
visual appearance or characteristics of images to achieve
specific goals or effects. Various studies [10, 15, 29, 31, 43]
have showcased impressive results by integrating deep neu-
ral networks into image transformation tasks. For exam-
ple, single image super-resolution (SISR) aims to enhance
the spatial properties of images, while image enhancement
strives to improve the quality, visibility, interpretability, etc.
However, a key limitation of these methods is the implicit
assumption of pixel-aligned training data, thereby restrict-
ing their scope of applicability. This assumption is prob-
lematic as not all image transformation tasks can access
perfectly aligned training data, particularly those involving
natural distortions. Besides, one prominent example is style
transfer, a task that involves optimizing the style distance
between images that lack content-related associations. The
misalignment of content in training data significantly chal-
lenges the effectiveness of these methods.

To mitigate this challenge, a considerable body of re-
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search has emerged focusing on the development of loss
functions to improve the performance of image transfor-
mation models, including element-wise loss [23, 28, 41]
and distribution-based loss [8, 11, 18]. Element-wise loss
functions are often ill-suited for geometric misaligned train-
ing data since even imperceptible misalignment can trigger
significant responses to these losses. Mechrez et al. [28]
tackled the problem of misaligned training data through
a patch-matching strategy, resulting in positive outcomes,
particularly in misaligned tasks such as semantic style trans-
fer. However, it often introduces artifacts under certain
conditions since the spatial structure is ignored [8, 42].
Distribution-based loss functions show promise in mitigat-
ing the interference of misaligned data, achieving better per-
ceptual quality, and producing more realistic predictions in
misaligned scenarios [8]. However, these distribution-based
loss functions often ignore spatial location, leading to po-
tential structural error in predicted results.

In this paper, we present a comprehensive analysis of
the distribution distance and propose solutions to address
its limitations in accurately capturing the structural in-
tegrity of images (as shown in Section. 3.2). Previous work
has demonstrated that the frequency domain contains more
global information [4, 20, 38, 45]. Our analysis shows that
computing distribution distances in the frequency domain,
as opposed to the spatial domain, can effectively leverage
global information. Consequently, when used as a training
constraint, this approach can reduce structural errors in the
predicted results. Furthermore, frequency components of
images possess various physical meanings [13, 33]. In this
work, we observe that the frequency components of image
features encompass multiple characteristics within the im-
age. Therefore, integrating information from various fre-
quency components in the loss function can better ensure
the overall quality of the predicted images.

As a result, we propose a novel Frequency Distribution
Loss (FDL) for image transformation models trained with
misaligned data, opening up new avenues for addressing the
broad issue of misalignment in image transformation tasks.
Specifically, we employ a pre-trained feature extractor to
transform images (i.e., predicted image and target image)
into the feature space. Subsequently, two frequency compo-
nents (amplitude and phase) are obtained individually from
the predicted image features and the target image features
using the Discrete Fourier Transform (DFT). Finally, we
employ Sliced Wasserstein Distance (SWD) to measure the
distribution distance between the frequency components of
predicted and target image features, respectively. We con-
duct extensive experiments across various image transfor-
mation tasks, including single-image super-resolution, im-
age enhancement, and style transfer, to demonstrate the ef-
fectiveness of FDL. FDL consistently achieves state-of-the-
art performance in all evaluated scenarios, showcasing re-

markable robustness to both models and tasks. As illus-
trated in Figure 1, FDL adeptly assesses the differences
among essential information for SISR, even in the presence
of strong geometric misalignment, ensuring the comprehen-
sive quality of the predicted image.

2. Related Work
Element-wise Losses for Image Transformation. These
loss functions calculate differences between pixels or fea-
tures of images using an element-wise approach (e.g., L1
or L2 norm, Cosine distance). In many image transfor-
mation tasks, this type of loss proves effective in reduc-
ing distortion in the predicted image and ensuring its de-
tail fidelity [23, 41, 44]. However, when dealing with mis-
aligned training data, even imperceptible small geometric
variations can result in significant responses in such loss
functions. This lack of robustness to misalignment can lead
to regression to the mean phenomenon in misaligned situa-
tions [8], posing challenges in ensuring the quality of pre-
dicted images. Therefore, several efforts have been made
to enhance the robustness of feature extractors to geomet-
ric misalignment, including techniques such as anti-aliasing
and max-pooling [16, 39, 40]. These improvements have
shown promise, particularly in image quality assessment
tasks. However, these modifications to models can lead to
information loss, which poses challenges when employing
them as loss functions in image transformation tasks. This
limitation hinders the assurance of maintaining the quality
of predicted images. Mechrez et al. proposed Contextual
Loss (CTX) by treating image features as a collection of
patches and assessing the similarity between two input im-
ages through the calculation of element-wise distances be-
tween each feature patch and its nearest neighbor [28]. The
CTX loss brings a simple solution to misaligned data, how-
ever, since CTX cannot effectively utilize the global struc-
tural information of the image, artifacts may still appear in
the predicted image [42].

Distribution-based Losses for Image Transformation.
These loss functions leverage distribution distances or dis-
parities, such as Wasserstein Distance (WD) [11, 30] or
Kullback–Leibler divergence (KLD) [7], to quantify the dif-
ferences between image datasets or instances. Initially used
in image generation tasks, these loss functions have gained
widespread application in transformation tasks. Empirical
evidence has shown a strong correlation between these met-
rics and the perceptual quality of images [2]. GAN loss
can be applied to completely misaligned data, it often in-
troduces artifacts in predicted images because GAN opti-
mizes the distance between two image set-level distribu-
tions [31, 32]. In contrast, Elnekave et al. [11] addresses
the preservation of quality in the predicted image by match-
ing the patch distribution of images. Similarly, PDL [8] cal-
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culates the distance between the distribution of image fea-
tures. These metrics based on spatial domain distribution
distance at the image level show robustness to misalignment
and can better ensure the quality of images. However, these
distribution-based measures only focus on distribution and
ignore spatial location information. Therefore, when using
distribution distance as the loss function, it is hard to pre-
serve structural accuracy in the predicted results.

3. Methodology
3.1. Overview

We aim to design a loss function tailored for image transfor-
mation tasks, capable of measuring the similarity between
misaligned images to ensure the overall quality. In Sec-
tion. 3.2, we conduct a comprehensive analysis of the merits
and challenges associated with distribution-based loss func-
tions for image transformation tasks involving misaligned
data. We empirically demonstrate that computing distri-
bution distances in the frequency domain can alleviate the
challenge of disregarding positional information when cal-
culating distribution distances in the spatial domain, thereby
preserving the structural integrity of the predicted results.
In Section. 3.3, we explore the diverse information inher-
ent in frequency components of image features. Specif-
ically, we demonstrate that two frequency components in
the image feature space (amplitude and phase) are related
to various characteristics of the image. Therefore, inte-
grating information in these frequency components is capa-
ble of ensuring the quality of the image in various aspects.
The overview of our proposed Frequency Distribution Loss
(FDL) is shown in Figure 2.

3.2. Frequency Distribution Distance

Wasserstein Distance (WD) has been widely used to opti-
mize neural networks by quantifying the dissimilarity be-
tween probability distribution. It completely ignores spa-
tial position information [24], making it robust to geomet-
ric misalignment because it focuses on estimating the dif-
ferences between the underlying distribution of the signals
rather than their spatial alignment. However, the disregard
for spatial information may lead to the inability of WD
to ensure the structural accuracy of the predicted results.
We argue that calculating WD in the spatial domain uti-
lizes only the local information while utilizing global in-
formation can help address this issue. Therefore, we an-
ticipate that computing WD in the frequency domain bet-
ter preserves the structural accuracy of predictions due to
the richer global information presented in the frequency do-
main [4, 22, 45].

To validate this hypothesis, we conduct a straightforward
toy experiment. Specifically, we generate a set of training
data containing multiple pairs of one-dimensional input sig-
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Figure 2. An overview of the proposed Frequency Distribution
Loss (FDL). A shared feature extractor network Φ is utilized to
project images into perceptual feature space. Subsequently, the
amplitude and phase of image features are obtained by Discrete
Fourier Transform (DFT). Then, the Sliced Wasserstein Distance
(SWD) [11], as an approximation of WD, is performed separately
for amplitude and phase, and the results are linearly combined.

nals and their corresponding targets, where each pair of in-
put and target signals has slightly different shapes (as shown
in Figure 3). Additionally, we introduce random shifts to the
target and input signals to induce misalignment within the
training pairs. We train a simple model M(·) to emulate the
mapping from source to target, which can be formulated as:

M(x) = f(x) + x, (1)

where f(·) represents a simple network, calculating the
residual between the target and the input single x.

In the one-dimensional scenario, the WD between distri-
bution has a closed-form solution. The loss function based
on spatial domain WD can be formulated as:

LSpa(M(x), y) = WD (M(x), y) , (2)

where x and y are the input and target signal, respectively,
WD(·, ·) represents the one-dimensional Wasserstein Dis-
tance between the distribution of the signals. To calculate
WD in frequency domain, we initially utilize the Discrete
Fourier Transform (DFT) to transform signals into the fre-
quency domain, obtaining frequency components (ampli-
tude and phase), which contain all the frequency domain
information. Next, the loss function based on frequency
WD can be formulated as:

LFreq(M(x), y) = WD
(
AM(x),Ay

)
+ WD

(
PM(x),Py

)
,

(3)
where As = |F ◦ s| is the amplitude of the spectrum of sig-
nal s, and Ps = ∠ (F ◦ s) is the phase, F denotes DFT. We
employ Mean Squared Error (LMSE), LSpa and LFreq as loss
function to train the mode respectively. And we conduct
training with both aligned and misaligned training data.

The comparison results in Figure 3 show that directly
using LMSE enables the model to effectively learn the map-
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Figure 3. In the one-dimensional scenario, different loss functions
are employed to train the same models with aligned and randomly
misaligned training data, respectively. lq is the input test signal,
and gt is the corresponding ground truth. Each column represents
the predicted results of models trained using different loss func-
tions, with the MSE between the predicted result and ground truth.

ping from input to target when there is no misalignment
in the training data. In contrast, when there is misalign-
ment in the training data, models trained with LMSE exhibit
a significant decrease in prediction accuracy compared to
perfectly aligned training data. Meanwhile, models trained
with LSpa and LFreq as loss functions show less change in
performance. This indicates that both LSpa and LFreq ex-
hibit shift robustness. However, LSpa completely disregards
spatial positional information, leading to the model output
having a similar distribution to the target but not guarantee-
ing the structural accuracy of the prediction. Therefore, we
turn to measure the WD of the frequency domain for better
structural accuracy.

3.3. Feature Frequency Components

In Section. 3.2, we empirically demonstrate the benefit of
calculating the distribution distance in frequency domain
using amplitude and phase. These frequency components
of the image possess specific physical meanings [13, 33],
thus we reckon that these frequency components of the im-
age feature are likely to be associated with certain image
characteristics. In this section, we further investigate the
information associated with amplitude and phase of image
features. We provide empirical analysis through a simple
experiment. Specifically, we first extract features from two
images denoted as Q and D using the encoder Φ(·) based
on VGG. Next, we obtain the amplitude and phase of these

(a) Q (b) D (c) res

Figure 4. Result of frequency components mixing. An encoder
(Φ) extracts features from Q and D. We mix the frequency compo-
nents using the amplitude of Φ(Q) and the phase of Φ(D). Then
the feature with mixed-frequency component is decoded into the
pixel domain.

two features through DFT respectively, and mix the ampli-
tude of Φ(Q) and the phase of Φ(D). Subsequently, we
project the mixed amplitude and phase back into the feature
domain through inverse DFT and adopt a decoder to trans-
form the feature obtained from the mixed frequency com-
ponents back into pixel space. The pretext process can be
expressed as:

res = Φ−1
(
F−1 ◦

(
AΦ(Q),PΦ(D)

))
, (4)

where Φ(·) and Φ−1(·) are the encoder and decoder respec-
tively. F−1 denotes the inverse DFT and res is the gener-
ated images.

Figure 4 shows the experimental results, where the im-
ages are sourced from the LOL [37] and HIDE [34] datasets.
By comparing the generated images with image Q and im-
age D, we can discern the information associated with fre-
quency components in the feature domain. Observation
shows that the resulting image’s texture-related attributes
like illumination and color resemble those of image Q,
which provides amplitude. Meanwhile, the structural ele-
ments such as object shapes and edges exhibit high similar-
ity between the result and image D. We therefore argue that
in the feature domain, the amplitude and phase component
is associated with information related to various character-
istics of the image. Therefore, we believe that incorporating
the information in these frequency components in the loss
function, allows for a comprehensive consideration of the
various characteristics within the image, thereby enhancing
the overall quality of the predicted results.

3.4. Overall Loss Function

We summarize the previous analysis and propose the Fre-
quency Distribution Loss (FDL) between the predicted im-
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age and the target image, which can be formulated as:

LFDL (U, V ) = SW
(
AΦ(U),AΦ(V )

)
+ λ · SW

(
PΦ(U),PΦ(V )

)
,

(5)
where U and V refer to predicted and target images, respec-
tively. Φ(·) refers to an arbitrary feature extractor. SW(·, ·)
represents the Sliced Wasserstein Distance (SWD) between
the distribution of two signals. Due to the absence of a
closed-form solution for WD in high-dimensional spaces,
following the Elnekave et al. [11], we employ the SWD as
an approximation of WD. As shown in Figure 5, FDL ex-
hibits strong shift invariance, making it suitable for various
scenarios with geometric misalignment.

4. Experiment
To demonstrate the superiority and generality of our
method, we adopt the proposed FDL into various image
transformation tasks, including image enhancement, single
image super-resolution, and style transfer. For each task, we
employ multiple representative baseline models and ensure
that each model is trained using only the proposed FDL or
the compared loss functions. Note that our focus is exclu-
sively on scenarios where training data is misaligned.

4.1. Experiment Settings

Baseline Models. To comprehensively validate the robust-
ness of our proposed FDL across different architectural
models, we select various baseline models for each task:
1) NAFNet [6] and SwinIR [26] for image enhancement; 2)
NLSN [29], NAFNet [6] and SwinIR [26] for single image
super-resolution (SISR); and 3) Gatys et al. [14] for style
transfer. The NAFNet, NLSN and Gatys et al. are convolu-
tional neural networks (CNN) based models, while SwinIR
is a Transformer [27] based model. These models have
shown impressive results in corresponding tasks and have
been recognized as representative models in recent years.
Baseline Datasets. For image enhancement, we choose the
DPED [21] dataset for both training and testing. DPED
exhibits significant geometric misalignment between the
low-quality images and the high-quality image pairs be-
cause these image pairs are captured by different devices
with the same scene. Despite employing alignment al-
gorithms and cropping the training images into smaller
patches to minimize the impact of misalignment, visually
noticeable misalignment still exists in this dataset. Ad-
ditionally, DPED contains a substantial amount of real-
world noise, posing challenges for both the models and the
loss functions. For SISR, we select the real-world SISR
datasets for training and testing by combing the RealSR [3]
and City100 [5] datasets. Furthermore, to examine the ca-
pability and generality of FDL in the presence of strong
misalignment, a dataset with significant misalignment is
synthesized based on the DIV2K dataset. We randomly

Figure 5. Shift response curves for different loss functions, in-
cluding FDL, LPIPS, and Mean Square Error(MSE). We randomly
shift the reference image for different pixels and calculate the dis-
crepancy between the shifted and reference image using different
metrics. The proposed FDL demonstrates strong shift robustness.

crop two images with noticeable geometric misalignment
from the high-resolution image and downsample one of the
cropped images to generate a low-resolution image. This
low-resolution image is paired with the other cropped high-
resolution image to train SISR models. This is done to sim-
ulate irregular displacements that may occur in real-world
scenarios.

Baseline Loss Functions. We compare our proposed
method with several state-of-the-art loss functions, includ-
ing CTX [28], PDL [8], and LPIPS [41]. CTX and PDL
are loss functions specifically designed for handling mis-
aligned data. LPIPS is a well-known and widely used per-
ceptual loss in various image restoration tasks. All the loss
functions follow the official settings for fairness compari-
son. Specifically, VGG19 [35] is used as the feature extrac-
tor for CTX and PDL, while AlexNet [25] is utilized as the
feature extractor for LPIPS.

Evaluation Metrics. We select PSNR, SSIM [36],
LPIPS [41], DISTS [9], and FID [19] as the evalua-
tion metrics for image enhancement and SISR. SSIM [36]
and PSNR can assess the fidelity of image details, while
DISTS [9], FID [19], and LPIPS [41] reflect the perceptual
quality of predicted images.

Implementation Details. In our work, we employ
VGG19 [35] as the feature extractor and compute FDL
on the Relu 1 1, Relu 2 1, Relu 3 1, Relu 4 1, and
Relu 5 1 layers. In different scenarios, we adjust the pa-
rameter λ to modulate the weight assigned to different fre-
quency components. Specifically, for super-resolution and
style transfer tasks, λ = 1, while for the image enhance-
ment task, λ = 0.01.
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(a) Input (b) LPIPS (c) PDL (d) CTX (e) FDL (Ours)

Figure 6. Qualitative results on DPED dataset [21] and NAFNet [6] compared with LPIPS, PDL, CTX. The red area is cropped from
different results and enlarged for visual convenient. Zoom in to observe details.

Model Loss PSNR↑ LPIPS↓ DISTS↓ SSIM↑ FID↓

NAFNet

CTX 22.256 0.126 0.148 0.778 74.553
LPIPS(Alex) 20.819 0.291 0.233 0.584 215.350

PDL 22.665 0.117 0.128 0.776 75.124
FDL (Ours) 23.048 0.114 0.121 0.811 37.501

SwinIR

CTX 20.800 0.134 0.152 0.734 64.093
LPIPS(Alex) 21.613 0.157 0.168 0.759 127.310

PDL 20.256 0.152 0.167 0.701 107.726
FDL (Ours) 21.488 0.128 0.136 0.786 29.877

Table 1. Quantitative comparison of image enhancement on the
DPED dataset [21]. The best and second best results are marked
in red and blue, respectively.

4.2. Image Enhancement

The quantitative comparison results presented in Table 1
demonstrate the superiority of our proposed FDL over all
compared loss functions across various evaluation criteria.
This indicates in the presence of significant geometric mis-
alignment in the dataset, our loss function not only pre-
serves fine details in the images but also achieves supe-
rior perceptual quality compared to existing misaligned loss
functions. Thus, the proposed FDL achieves a better per-
ceptual distortion tradeoff [2]. These advantages can be at-
tributed to the integration of frequency domain information
in our loss function. The visual comparison in Figure 6 pro-
vides several insightful observations. The element-wise loss
functions like CTX and LPIPS struggle to accurately cap-
ture differences in structured detail information, resulting
in noticeable artifacts. In contrast, distribution based loss

Model Loss PSNR↑ LPIPS↓ DISTS↓ SSIM↑ FID↓

NAFNet

CTX 24.615 0.245 0.105 0.833 15.977
LPIPS(Alex) 16.968 0.441 0.274 0.461 35.440

PDL 17.737 0.267 0.134 0.595 16.038
FDL (Ours) 24.865 0.265 0.100 0.834 15.233

SwinIR

CTX 35.249 0.093 0.101 0.964 66.114
LPIPS(Alex) 35.198 0.114 0.114 0.958 49.362

PDL 34.733 0.086 0.094 0.953 35.275
FDL (Ours) 35.771 0.085 0.088 0.965 23.299

Table 2. Quantitative comparison of SISR on the merged real-
world dataset [3, 5].

functions such as the proposed FDL and PDL can signifi-
cantly reduce artifacts. The limitations of PDL in accurately
measuring more global differences in structural information
arise from its calculation of distribution distances in the spa-
tial domain. Our proposed FDL addresses this limitation by
calculating distribution distance in the frequency domain,
which helps it successfully achieve excellent results in the
presence of strong geometric misalignment.

4.3. Super Resolution

We compare our proposed FDL against state-of-the-art loss
functions in real-world SISR. Table 2 presents the quan-
titative results of two representative models (i.e., NAFNet
and SwinIR), we can observe that our method outperforms
all competing methods almost on all evaluation metrics.
On the one hand, our method significantly outperforms the
PDL that computes distribution distance in the spatial do-
main, demonstrating the reasonability of the use of fre-
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(a) Input (b) LPIPS (c) PDL (d) CTX (e) FDL (Ours)

Figure 7. Qualitative comparison results using different loss functions on our synthetic DIV2K dataset [1] with strong misalignment.

quency components in our FDL. On the other hand, our
method eliminates the effects of misalignment by utiliz-
ing the global structural information in the frequency do-
main, which still outperforms the CTX. Furthermore, Ta-
ble 3 reports the comparison results of various loss func-
tions on our synthetic shifted DIV2K dataset with strongly
misaligned data. We can clearly observe that our proposed
FDL outperforms all competing loss functions by large mar-
gins over all four testing set. Compared with CTX, our
FDL achieves a substantial improvement in PSNR, increas-
ing from 25.14dB to 26.70dB on the Urban100 test set,
while also excelling in perceptual metrics such as LPIPS,
DISTS, and FID. This shows that our method achieves a
good trade-off between fidelity and quality by measuring
distribution distances in the frequency domain. Figure 7
shows the qualitative results of our FDL and the other state-
of-the-art methods on the synthetic DIV2K dataset. It is
clearly found that the quality of the prediction results of our
proposed method is significantly better than that of the com-
parison method because the results of our method contain
less noise and disordered structures.

4.4. Style Transfer

Style transfer aims to synthesize a new image that combines
the content of one image with the artistic or stylistic features
of another. The primary challenge of style transfer is finding
the right balance between preserving the content of the in-
put image and incorporating the stylistic features from the
reference style image. Following the pipeline of Gatys et
al. [14], we optimize the generated image with content loss
and style loss. Our proposed FDL is also capable of han-
dling this challenging task, since the use of distribution dis-

Test Set Loss PSNR↑ LPIPS↓ DISTS↓ SSIM↑ FID↓

Set5

CTX 30.023 0.095 0.092 0.933 5.550
LPIPS(Alex) 21.754 0.400 0.312 0.438 66.619

PDL 29.598 0.114 0.095 0.767 7.682
FDL (Ours) 32.478 0.092 0.093 0.950 3.853

Set14

CTX 27.836 0.156 0.105 0.938 7.220
LPIPS(Alex) 21.019 0.401 0.320 0.423 50.127

PDL 26.832 0.165 0.118 0.702 9.727
FDL (Ours) 29.526 0.152 0.103 0.957 5.853

B100

CTX 27.829 0.152 0.114 0.881 16.681
LPIPS(Alex) 22.041 0.367 0.299 0.390 91.150

PDL 27.231 0.159 0.123 0.645 17.308
FDL (Ours) 28.968 0.150 0.110 0.902 20.451

Urban100

CTX 25.138 0.143 0.104 0.850 8.582
LPIPS(Alex) 19.987 0.382 0.297 0.369 79.639

PDL 23.847 0.194 0.136 0.572 22.389
FDL (Ours) 26.702 0.137 0.098 0.887 7.903

Table 3. Quantitative comparison of NLSN [29] for SISR on our
synthetic shifted DIV2K dataset [1].

tance measurement in the frequency domain. Specifically,
we define content loss and style loss as follows:

Lstyle(R,S) = LFDL (R,S) , (6)

Lcontent(R, T ) = SW
(
PΦ(R),PΦ(T )

)
, (7)

where R is the generated image, S and T refer to style and
content image, respectively. We compare FDL with CTX
and perceptual losses in Gatys et al., and use their respective
official settings for fair comparison.

Visual comparison results are presented in Figure 8. It
can be observed that losses in Gatys et al. [14] only capture
the color information from the style image, resulting in poor
performance in transferring structured styles. On the other
hand, CTX focuses on local texture patterns in the style im-
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(a) Content (b) Style (c) Gatys et al. (d) CTX (e) FDL (Ours)

Figure 8. Qualitative comparison results compared with Gatys et
al. and CTX. Our FDL loss function can better retain the structural
information in style images.

Loss PSNR↑ LPIPS↓ DISTS↓ SSIM↑ FID↓
Lspatial 22.916 0.118 0.125 0.798 61.087
LFDL 23.048 0.114 0.121 0.811 37.501

Table 4. Ablation of calculating in the frequency domain.

age but fails to achieve style transfer at a more global and
structural level. In contrast, our method can effectively cap-
ture the structural information present in the style image.
This demonstrates the effectiveness of utilizing frequency
domain global information.

4.5. Ablation Study

We conduct a series of ablation experiments on the NAFNet
in the DPED dataset. Firstly, to validate the impact of com-
puting distribution distance in the frequency domain, we
calculate the SWD [11] as the loss function in the image
feature spatial domain, as follows:

Lspatial(U, V ) = SW (Φ(U),Φ(V )) . (8)

From Table 4, compared with Lspatial, we can observe that
the proposed FDL shows improvements across all metrics.
This observation suggests that computing the distribution
distance between global information in the frequency do-
main as a loss function can better ensure the overall quality
of the predicted results.

Next, we aim to further investigate the effect of dif-
ferent feature extractors on the final results. To achieve
this, we conducted experiments by using ResNet [17] and
EffNet [12] as feature extractors in our proposed loss. In
particular, we also remove the feature extractor in the pro-
posed loss function, thereby directly performing FDL loss

Loss Backbone PSNR↑ LPIPS↓ DISTS↓ SSIM↑ FID↓
LFDL(λ = 0.01) ResNet 22.415 0.139 0.146 0.763 79.812
LFDL(λ = 0.01) EffNet 20.389 0.196 0.178 0.578 173.891
LFDL(λ = 0.01) None 22.581 0.149 0.156 0.789 60.110
LFDL(λ = 100) VGG 22.134 0.131 0.141 0.787 67.766
LFDL(λ = 10) VGG 22.815 0.121 0.128 0.803 52.503
LFDL(λ = 1) VGG 22.810 0.117 0.124 0.806 55.629
LFDL(λ = 0.1) VGG 22.822 0.118 0.126 0.804 65.711
LFDL(λ = 0.01) VGG 23.048 0.114 0.121 0.811 37.501

Table 5. Ablation of backbone feature extractor and the weight of
SWD between phase component of features.

calculation on pixels (i.e., the ”None” in Table 5). The
quantitative results of different feature extractors are shown
in Table 5, and we can observe that VGG19 [35] yields the
best performance among all the results.

Finally, we aim to explore the impact of the weight as-
signed to the distribution distance between amplitude and
phase, by adjusting λ in Equation 5. Table 5 reports the
comparison results of different settings of λ, and we can ob-
serve that λ = 0.01 performs best among all settings. This
can be attributed to the fact that in the DPED [21] dataset,
the main difference between the input and target images lies
in the texture, which is highly correlated with the amplitude
of the image features. Therefore, assigning a higher weight
to the amplitude component in FDL helps the model achieve
better performance on the DPED dataset. This observation
suggests that in image transformation tasks with different
emphasis on different image characteristics, adjusting the
value of λ allows the model to allocate different priorities
to the characteristics of the predicted results.

5. Conclusion
This paper proposes a robust misalignment loss for image
transformation tasks. Our proposed FDL calculates the dis-
tribution distance in the frequency domain of image fea-
tures. Through experiments, we have demonstrated that
frequency domain components of image features contain
global information closely related to multiple image char-
acteristics. By utilizing the distance between the distribu-
tion of these global information as a loss function, we can
mitigate the limitation in spatial distribution distances, and
ensure the overall quality of the predicted results. In fu-
ture work, we hope to investigate the frequency components
of image features further and improve the performance of
FDL by assigning different attention weights to distinct fre-
quency domain regions.
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