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Abstract

Predictive learning models, which aim to predict future
frames based on past observations, are crucial to construct-
ing world models. These models need to maintain low-level
consistency and capture high-level dynamics in unanno-
tated spatiotemporal data. Transitioning from frame-wise
to token-wise prediction presents a viable strategy for ad-
dressing these needs. How to improve token representa-
tion and optimize token decoding presents significant chal-
lenges. This paper introduces PredToken, a novel predic-
tive framework that addresses these issues by decoupling
space-time tokens into distinct components for iterative cas-
caded decoding. Concretely, we first design a “decompo-
sition, quantization, and reconstruction” schema based on
VQGAN to improve the token representation. This scheme
disentangles low- and high-frequency representations and
employs a dimension-aware quantization model, allowing
more low-level details to be preserved. Building on this,
we present a “coarse-to-fine iterative decoding” method.
It leverages dynamic soft decoding to refine coarse tokens
and static soft decoding for fine tokens, enabling more high-
level dynamics to be captured. These designs make Pred-
Token produce high-quality predictions. Extensive experi-
ments demonstrate the superiority of our method on vari-
ous real-world spatiotemporal predictive benchmarks. Fur-
thermore, PredToken can also be extended to other visual
generative tasks to yield realistic outcomes.

1. Introduction
With human cognition evolving, granting us greater fore-
sight, equipping machines with this foresight remains a sig-
nificant challenge due to the world’s inherent chaos. Predic-
tive learning, an unsupervised method focused on predict-
ing future events based on past observations, plays a critical
role in the world models [11, 17, 47]. This approach, unlike
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Figure 1. (a) The illustration of our motivation highlights the crit-
ical importance of improving token representation and decoding
mechanisms for high-quality predictive learning. (b) The illustra-
tion of our pipeline includes the DQR-based VQ framework and
the coarse-to-fine iterative decoding method, ensuring low-level
consistency and high-level dynamics in spatiotemporal data.

supervised models that depend on annotated data, leverages
unannotated data to autonomously uncover complex spatial
and temporal patterns, holding the promise to revolutionize
domains where labeled data is scarce [16, 22, 33, 34].

Benefiting from the token-wise learning paradigm, re-
cent endeavors have provided valuable insight into predic-
tive learning. They attempt to simplify the issue by decom-
posing frame-level prediction into token-level prediction.
Walker et al. [38] leverage a vector quantized variational
autoencoder [37] (VQVAE) for compressing video into dis-
crete latent tokens, subsequently decoding via a prior model
PixelCNN [36] with an autoregressive manner. Gupta et al.
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[15] further enhances the discrete token representation by
utilizing VQGAN [8] and coupled with a bi-directional win-
dow Transformer for iterative token decoding. This parallel
decoding approach overcomes the time-consuming draw-
back of traditional autoregressive algorithms. Yu et al. [49]
advances this technique to diverse video generation tasks by
incorporating a 3D version of VQGAN and a novel token
masking strategy. These approaches typically involve train-
ing multiple independent and large models to tackle visual
tasks collaboratively. Specifically, their general pipeline of-
ten comprises two stages: (i) leveraging vector quantiza-
tion framework to represent visual data into discrete latent
codes during stage 1, and (ii) modeling the data distribution
via a prior model (e.g., CNN or ViT) in discrete space dur-
ing stage 2. Nonetheless, current architectures still strug-
gle to maintain low-level consistency and capture high-level
dynamics in intricate environments. We will explore this
framework from the following two aspects.

Firstly, in stage 1, learning discrete token representa-
tion is crucial for restoring low-level spatiotemporal de-
tails. Figure. 1(a) left shows that high-quality codes re-
tain more visual information than low-quality ones. Some
methods [12, 39] employ vector quantization techniques to
spatiotemporal data with vanilla VQGAN or 3D VQGAN.
Meanwhile, other approaches [3, 48] enhance token rep-
resentation by incorporating spatial attention mechanisms.
These efforts indicate that both improving the quantiza-
tion framework and refining the network architecture are
effective. Increasing resolution enriches visual detail in
frames, where prediction errors often emerge around high-
frequency features. This observation prompts the question
of whether a network can be trained to capture both low
and high-frequency details accurately. Therefore, we de-
signed a “decomposition, quantization, and reconstruction”
(DQR) schema coupled with a dimension-aware quantiza-
tion model to better preserve low-level visual details.

Secondly, in stage 2, the token decoding schema plays
a key role in capturing high-level spatiotemporal dynam-
ics. Figure 1(a) right illustrates a simple decoding exam-
ple where correct decoding benefits adjacent tokens. In
contrast, incorrect decoding negatively impacts nearby to-
kens in the spatiotemporal context, hindering the learning
of complex motion patterns. Current frameworks utilize ei-
ther autoregressive or non-autoregressive iterative methods
for decoding tokens. However, a decoding mistake in these
methods can negatively impact the decoding of nearby spa-
tiotemporal tokens. The vanilla iterative decoding suffers
from two problems: (i) the spatiotemporal decoding pro-
cess is irreversible, indicating that incorrect tokens cannot
be updated in later iterations. (ii) the sampling process does
not consider the correlation between tokens within the code-
book, e.g., tokens describing the same moving object should
interact with each other. Therefore, we introduce a mask
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Figure 2. The visualization of the coarse-to-fine iterative decoding
process. Green for coarse tokens, blue for fine tokens, and orange
box for tokens dynamically remasked by a mask discriminator.

discriminator and soft decoding to improve the token itera-
tive decoding process.

In this paper, we present PredToken, an innovative pre-
dictive approach that highlights the significance of both im-
proving token representation and optimizing token decod-
ing for superior predictions. First, we propose a “decom-
position, quantization, and reconstruction” schema based
on VQGAN to enhance the token representation, which
disentangles low- and high-frequency details via wavelet
transform and incorporates a dimension-aware quantization
model to retain more low-level information. Building on
this, we then propose a “coarse-to-fine iterative decoding”
strategy that guides the unknown or corrupted tokens to ac-
curate tokens. This strategy employs dynamic soft decoding
for coarse token refinement, which then cascades into static
soft decoding for fine token enhancement. Benefiting from
token-level spatiotemporal data modeling, PredToken alle-
viates the burden of handling millions of pixels. These de-
signs enable PredToken to not only excel in spatiotemporal
predictive benchmarks but also produce realistic outcomes
when extended to other visual generative tasks.

2. Related Work

Spatiotemporal Predictive Learning. Over time, many
recurrent-based models have provided significant insights
for predictive learning. ConvLSTM [28] seamlessly incor-
porates 2D convolution into the recurrent state transitions
of standard LSTM, proposing the convolutional LSTM unit.
PredRNN [40] further enhances convolutional LSTMs with
pairwise memory cells to capture long-term and short-term
patterns. Conv-TT-LSTM [32] introduces a higher-order
convolutional LSTM model with a novel convolutional
tensor-train decomposition for long-term prediction. E3D-
LSTM [42] extends LSTM with 3D convolution. SwinL-
STM [35] integrates the Swin Transformer [21] module
into LSTM for improving performance. In addition to the
recurrent-based models, recent literature [22, 45, 53] at-
tempts to build recurrent-free models that predict future
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sequences in parallel for efficiency. SimVP [10] utilizes
Inception modules with a UNet architecture to learn the
temporal evolution. TAU [33] proposes a temporal at-
tention unit to capture long-term temporal dependencies.
DMVFN [18] proposes a dynamic voxel flow network for
video prediction. Unlike the above models, PredToken fo-
cuses on maintaining low-level consistency and capturing
high-level dynamics in spatiotemporal data.

Vector-Quantized Generative Models. Inspired by
GPT [2], many pioneering works tokenize various types
of data (e.g., images, audio, and videos) into discrete to-
kens via vector quantization and train a prior model to gen-
erate content. In the image domain, VQVAE [37] con-
verts images into discrete tokens and models their pat-
terns with an autoregressive model. VQGAN [8] en-
hances image fidelity by introducing adversarial training
and perceptual loss. MaskGIT [4] introduces a novel
non-autoregressive generation paradigm with masked to-
ken modeling. Token-Critic [20] improves the sampling
quality of pretrained generative models by training an ad-
ditional network. StraIT [24] proposes image stratification
that obtains an interlinked token pair to improve genera-
tion capabilities. Vision ELECTRA [52] introduces ad-
versarial masked image modeling with a hierarchical dis-
criminator to improve reconstruction. CIM [9] employs
an auxiliary generator and an enhancer for image cor-
ruption and reconstruction for self-supervised pretraining.
In the video domain, Video VQ-VAE [38] compresses
videos into hierarchical discrete tokens and predicts future
frames with PixelCNN [36] models. VideoGPT [46] rep-
resents videos as tokens and generates them with GPT [2]
models. MaskViT [15] combines 2D VQGAN with a
bidirectional window Transformer for frame prediction.
MAGVIT [49] introduces a 3D VQGAN and a conditional
masked modeling strategy for multi-task video generation.
WorldDreamer [39] employs multimodal tokenizers and a
spatial-temporal patchwise Transformer for video genera-
tion. PredToken improves existing frameworks by enhanc-
ing the token representation and optimizing the token de-
coding for high-quality spatiotemporal prediction.

3. Proposed Method

The PredToken model comprises three stages: two training
stages and one inference stage. Stage I (Sec. 3.1) utilizes a
VQGAN-based “decomposition, quantization, reconstruc-
tion” framework for vector quantization learning. Stage
II (Sec. 3.2) involves training two prior models (coarse-
grained and fine-grained Transformers) and a mask discrim-
inator. Stage III (Sec. 3.3) adopts a “coarse-to-fine iterative
decoding” strategy for better token decoding. The details of
each stage will be explained below.

3.1. Stage I: Learning Vector Quantization

We design a VQGAN-based “decomposition, quantization,
reconstruction” framework to improve the token represen-
tation by disentangling frequency components, as shown in
Figure Stage I. Our approach involves three steps:
Step1: Decomposition. We introduce the discrete wavelet
transform (DWT) to improve the vector quantization frame-
work. For signal t, given the wavelet function ψj,k(t) =

2
j
2ψ

(
2jt− k

)
with scaling factor j and time factor k, and

scale function ϕj,k(t) = 2
j
2ϕ

(
2jt− k

)
, the decomposition

at level j0 is given by:

f(t) =
∑
j>j0

∑
k

dj,kψj,k(t) +
∑
k

cj0,kϕj0,k(t), (1)

where dj,k = ⟨f(t), ψj,k(t)⟩ and cj0,k = ⟨f(t), ϕj0,k(t)⟩
represent the detail and approximation coefficients, re-
spectively. The high-pass and low-pass filter are de-
noted with a⃗0[k] =

〈
1√
2
ϕ
(
t
2

)
, ϕ(t− k)

〉
and a⃗1[k] =〈

1√
2
ψ
(
t
2

)
, ϕ(t− k)

〉
. We extend it to 2D filters by vec-

tor outer products, which can be formulated as:

FLL = a⃗0 × a⃗0T , FLH = a⃗0 × a⃗1T , (2)

FHL = a⃗1 × a⃗0T , FHH = a⃗1 × a⃗1T , (3)

where the low-frequency filter FLL learns coarse-grained
tokens, while the combination of horizontal, vertical,
and diagonal high-frequency filters Cat(FLH,FHL,FHH)
learns fine-grained tokens.
Step2: Quantization. Previous works [4, 49] employ a
vision transformer with spatial global attention, overlook-
ing modeling in other dimensions, such as motion between
frames. To better model spatiotemporal data, we adopted
a dimension-aware quantization model that explores self-
attention mechanisms in time, space, and channel dimen-
sions. We reduce computational overhead through comput-
ing space and channel attention in restricted windows and
groups. For the encoded coarse and fine-grained embed-
dings ẑc, ẑf ∈ RT×C×H/f×W/f , the vector quantization
process is described as searching for the nearest code in the
learnable codebook Z = {zk}Kk=1, where zk ∈ RC denotes
the k-th discrete token, K and C is the codebook and di-
mension size, respectively. It can be formulated as:

zq = argmin
zk∈Z

∥ẑ − zk∥ , (4)

where the quantization process is non-differentiable due to
argmin operator, we adopt the straight-through gradient
estimator [8, 37], enabling end-to-end training using the
codebook-learning loss function:

LVQ = ∥sg(ẑc)− zqc∥22 + β · ∥ẑc − sg(zqc)∥22
+ ∥sg(ẑf )− zqf∥22 + β · ∥ẑf − sg(zqf )∥22,

(5)
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Figure 3. Overall architecture of PredToken. Stage I learns the discrete token representation through a “decomposition, quantization,
and reconstruction” (DQR) schema coupled with a dimension-aware quantization model, capturing inter-frame dynamics and intra-frame
static features by exploring self-attention mechanisms in time, space, and channel dimensions. In Stage II, CGT and FGT are trained
by predicting special masked [MASK] tokens on spatiotemporal sequences, while the mask discriminator is trained through adversarial
learning against CGT. Stage III involves decoding visual tokens via the “coarse-to-fine iterative decoding” method.

where sg(·) represents the stop-gradient operator and β =
0.25 is a weighting hyper-parameter to control the update
frequency of the codebook Z .
Step3: Reconstruction. The quantized coarse and fine-
grained embeddings zqc, zqf ∈ RT×C×H/f×W/f further
are decoded via the decoder and inverse discrete wavelet
transform (IDWT) for detailed reconstruction. We intro-
duce pixel-level L2 loss and a perceptual-level LP loss
that utilizes pretrained VGG [29] features to stabilize the
codebook-learning loss LVQ. To mitigate training insta-
bility due to increased resolution, the projected GANs dis-
criminator [26] Dθ is calculated to produce adversarial loss
LGAN. The total training loss is defined as follows:

L = min
E,D,Z

(
max
Dθ

(λLGAN) + L2 + LP + LVQ

)
, (6)

where λ is adaptive weight [8], E and D denote encoder
and decoder.

3.2. Stage II: Learning Discrete Token Prior

The learning of discrete tokens in prior models employs ei-
ther autoregressive or non-autoregressive methods, where
the former predicts the next token while the latter pre-
dicts special masked [MASK] tokens via the masked to-

ken modeling (MTM) task. In PredToken, the trainable net-
work comprises a coarse-grained Transformer (CGT), fine-
grained Transformer (FGT), and mask discriminator Dε.
Both CGT and FGT are trained using MTM on spatiotem-
poral sequences, while the mask discriminatorDε is trained
through adversarial learning against CGT. Notably, adver-
sarial training is conducted solely at the coarse level, as this
level predominantly captures spatiotemporal information.

Given the discrete token sequences zqc, zqf from VQ-
GAN tokenizer, as illustrated in Figure Stage II, the masked
sequences zmqc, z

m
qf are created by uniformly sampling and

replacing ⌈γ(u) · N⌉ tokens in zqc, zqf with the [MASK]
token. The number of masked tokens is determined by the
masking scheduler γ(r) = cosine(uπ/2) ∈ (0, 1], where u
is a scalar from 0 to 1. The CGT and FGT aim to recon-
struct the original token sequences zqc, zqf based on those
visible within the corrupted token sequences zmqc, z

m
qf . The

objective of coarse- and fine-level reconstruction is to min-
imize the cross-entropy loss between the predicted and the
original tokens at each masked position:

LRec = −E

∑
i∈c,f

∑
zm
ij=[MASK]

log pi(zij | zmi )

 , (7)

where omitting subscript q for simplicity. The mask dis-
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criminatorDε aims to differentiate whether the correspond-
ing token is masked or unmasked. It is optimized using an
adversarial training procedure:

LGAN = E [logDε(zc) + log (1−Dε(ẑc))] , (8)

where ẑc denotes the reconstruction output of CGF. The to-
tal training loss can be formulated as:

L = min
C,F

(max
Dε

(αLGAN) + LRec), (9)

where α controls the relative importance. C and F represent
CGT and FGT, respectively.

3.3. Stage III: Coarse-to-Fine Iterative Decoding

During inference, we employ models from stage I and II
for the “coarse-to-fine iterative decoding” algorithm. This
includes two levels: coarse-level dynamic soft decoding
(DSD) and fine-level static soft decoding (SSD). For clar-
ity, we will first detail the static soft decoding.
Static Soft Decoding. The discrete tokens from vector
quantization are interrelated and should be considered col-
lectively. Unlike previous methods [4, 49] that sample to-
kens from a categorical distribution, we employ soft sam-
pling for iterative decoding, as shown in Figure 4. This
method computes a weighted average of tokens based on
predicted probabilities, thus preserving token correlations.
Moreover, using probability values as scores is suboptimal
because it neglects the overall distribution. Instead, we uti-
lize the negative information entropy of the predicted distri-
butions as a score to decide which tokens to retain or update.
In the t-th iteration, SSD follows three steps:

(i) Non-Autoregressive Prediction. Given the masked se-
quences zmi at the current iteration, the model predicts the
probabilities pi ∈ RB×T×N×K in parallel.

(ii) Soft Probability Sampling. For each masked location
i, we compute soft embeddings ei by weighted average ek
according to the probability distribution, with correspond-
ing scores si calculated using negative information entropy:

ei =

K−1∑
k=0

pkek, si =

K−1∑
k=0

pk log(pk). (10)

where ek denotes the k-th embedding in the codebook. This
concept can be utilized in the VQGAN detokenizer. The
scores of the masked tokens range from − log2(K) to 0,
while unmasked tokens receive positive scores.

(iii) Mask Scheduling and Updating. Based on the mask
scheduling function γ, determine the number of tokens to
mask or update n = ⌈γ( t

T )N⌉ and retain n = (N−n) each
iteration. Following score-based sorting, the last n tokens
are masked for updating in the next iteration.
Dynamic Soft Decoding. The static iterative decoding re-
lies on the probability distribution of prior models, which

 (a) Hard Iterative Decoding

(b) Soft Iterative Decoding

Weighted average

Categorical Sampling

Masked Token

Updated Token

Transformer

Masked Token

 It
er

at
io

n 
T

Figure 4. Overview of two static iterative decoding methods: (a)
hard iterative decoding and (b) soft iterative decoding. The thresh-
old τ is obtained as the ⌈γ( t

T
)N⌉-th smallest score after sorting.

makes updating each token independent and static, mean-
ing that tokens sampled incorrectly will not be corrected in
subsequent iterations. The mask discriminator Dε obtained
in stage II elegantly addresses this issue by outputting a
score between 0 and 1 for each token, dynamically correct-
ing any tokens that were decoded incorrectly, as shown in
Figure 2(a). Unlike the GAN discriminator [14, 19], used
only during training, the mask discriminator not only boosts
performance during training but also serves as a “guidance
network” to enhance token decoding during inference. The
pseudocode is detailed in Algorithm 1.

The overall inference process is shown in Figure 3.2
Stage III, dynamic soft decoding for coarse-grain token re-
finement, which then cascades into static soft decoding for
fine-grain token refinement. In practice, the coarse level re-
quires more iterations than the fine level.

Algorithm 1 Dynamic Soft Decoding

Input: input tokens z, mask m, steps K, temperature T
Output: output decoding tokens ẑ

1: zmt ←mask(z,m)
2: for t← 0, 1, . . . ,K − 1 do
3: k ←

⌈
γ
(
t+1
K

)
·N

⌉
4: ẑi ∼ Soft(pθ(zi | zmt ))
5: si ← pε(m

i
t | ẑ) + T (1− t+1

K )Gumbel(0, 1)
6: On non-mask indices of zm: si ← 1
7: τ ← The k-th smallest value of s
8: mi

t+1 ← True if si < τ, False
9: zmt+1 ←mask(ẑ,mt+1)

10: end for
11: return ẑ = [ẑ1, ẑ2, · · · , ẑN ]

4. Experiments

In this section, we qualitatively and quantitatively evalu-
ate our method with prior works across diverse real-world
benchmarks for predictive learning, including TaxiBJ [51],
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Figure 5. Qualitative results on the KTH (10 → 20), Kitti&Caltech (10 → 1) and TaxiBJ (4 → 4) datasets, where error plot =
|ground truth − prediciton| denotes the differences between the ground truth frames and their corresponding predicted frames.

WeatherBench [25], KTH [27], Kitti&Caltech [7, 13],
UCF101&DAVIS [23, 31], and SJTU4K [30]. The detailed
statistics of benchmark datasets are in Table 1.
Implementation Details. We implement the proposed
method with the PyTorch framework and trained on 4
NVIDIA A100 GPUs. The model is trained with a mini-
batch of 16 video sequences, utilizing the Adam optimizer,
a learning rate of 0.01, a weight decay of 0.05, a dropout
rate of 0.1, and a shared codebook size of 16,384. The CGF
and FGT are a stack of L1 and L2 blocks, where we use
learnable spatiotemporal positional embeddings. The de-
tails of hyperparameters can be found in our appendix.

Table 1. The detailed statistics of each benchmark dataset.

Dataset Size Seq. Len. Img. Shape Intervaltrain test in out H ×W × C

TaxiBJ [51] 20,461 500 4 4 32 × 32 × 2 30 min
WeatherBench [25] 2,167 706 12 12 32 × 64 × 1 1 hour

KTH [27] 4,940 3,030 10 20 128 × 128 × 1 Frame
Kitti&Caltech [7, 13] 3,160 3,095 10 1 128 × 160 × 3 Frame

UCF101&DAVIS [23, 31] 9,537 30 4 4 480 × 480 × 3 Frame
SJTU4K [30] 3,873 445 4 4 2160 × 3840 × 3 Frame

4.1. Comparison to State-of-the-Arts

In our evaluation, we benchmark our proposed PredToken
against state-of-the-art spatiotemporal predictive models,
including competitive recurrent-based architectures, e.g.,
ConvLSTM [28], PredRNN [40], E3D-LSTM [42], Pre-
dRNNv2 [44], SwinLSTM [35] and recurrent-free architec-
tures, e.g., SimVP [10], TAU [33], DMVFN [18].

Predicting real-world traffic flow and forecasting
weather are critical for public safety and scientific research.
The TaxiBJ [51] and WeatherBench [25] evaluate these
models on a macro scale, yet they exhibit lower frequen-
cies compared to other tasks. Therefore, predictive models
must detect subtle changes, with quantitative outcomes pre-

ConvLSTM MAU SwinLSTM

Ground Truth SimVP TAU PredToken (Ours)

Figure 6. The visualization of (t+4)-th frame results between our
PredToken and the state-of-the-art methods on the DAVIS17-Val.

sented in Table 2. Qualitative visualizations can be found in
Figure 5(c) and Figure 7. Notably, our PredToken method
outperforms others by generating the sparsest error plot,
demonstrating superior capability in capturing traffic and
climate patterns.

Table 2. Quantitative results on the TaxiBJ (4 → 4 frames)
and WeatherBench (12 → 12 frames) datasets, higher SSIM and
PSNR, lower MAE and RMSE indicate better results.

Method TaxiBJ WeatherBench

SSIM↑ PSNR↑ MAE↓ RMSE↓

ConvLSTM (NIPS’2015) [28] 0.978 37.38 0.7949 1.233
PredRNN++ (ICML’2018) [41] 0.977 38.71 0.7883 1.278
MIM (CVPR’2019) [43] 0.971 38.71 0.8716 1.336
E3D-LSTM (ICLR’2019) [42] 0.979 38.75 0.8059 1.233
SimVP (CVPR’2022) [10] 0.982 39.17 0.7037 1.113
PredRNNv2 (PAMI’2022) [44] 0.983 39.38 0.7986 1.243
TAU (CVPR’2023) [33] 0.982 39.50 0.6810 1.106
SwinLSTM (ICCV’2023) [35] 0.977 38.71 0.7220 1.130
Ours 0.985 39.79 0.6347 1.042

Predicting human motion and driving dynamics is chal-
lenging due to the significant variability in individual be-
haviors and actions. Following the standard settings [33],
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Figure 7. Qualitative results on the WeatherBench (12 → 12) for global temperature forecasting at 5.625◦ resolution (32 × 64 grid points).
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Figure 8. The visualization of more visual generative tasks on
ImageNet [6], Physion [1], Sky Time-lapse [50], and KITTI [13].

we employ the KTH [27] and Kitti&Caltech [7, 13] to
evaluate the performance of the models in these scenar-
ios. The quantitative results are reported in Table 3. Pred-
Token achieves state-of-the-art results, notably in LPIPS
with a reduction from 0.2394 to 0.1265 compared with
TAU [33] on the KTH. In Figure 5(a), PredRNN++ [41]
predicts accurate position but blurs around the human body,
and DMVFN [18] produces a sharp body but deviates in
position and action from the ground truth. Our PredToken
excels in precise position predictions, sharp visual represen-
tations, and faithful actions. Furthermore, as illustrated in
Figure 5(b), our method produces clearer predictions in ve-
hicle dynamics and lane lines compared to other methods.

Table 3. Quantitative results on the KTH (10 → 20 frames) and
Kitti&Caltech (10 → 1 frames) datasets, higher PSNR, lower MSE
and LPIPS indicate better results.

Method KTH Kitti&Caltech

PSNR↑ LPIPS↓ MSE↓ PSNR↑

ConvLSTM (NIPS’2015) [28] 23.58 0.5128 139.6 27.46
PredRNN (NIPS’2017) [40] 27.55 0.4621 130.4 27.81
PredRNN++ (ICML’2018) [41] 28.47 0.4724 129.6 27.89
E3D-LSTM (ICLR’2019) [42] 29.31 0.4835 200.6 25.45
SimVP (CVPR’2022) [10] 33.72 0.2649 160.2 26.81
DMVFN (CVPR’2023) [18] 32.15 0.1284 183.9 26.78
TAU (CVPR’2023) [33] 34.13 0.2394 131.1 27.83
Ours 35.11 0.1265 118.9 28.81

Table 4. Quantitative results on the UCF101&DAVIS (4 → 4
frames) and SJTU4K (4 → 4 frames) datasets.

Method
UCF101&DAVIS SJTU4K

SSIM ×10−2 ↑ LPIPS ×10−2 ↓ PSNR ↑ LPIPS ×10−2 ↓
t+1 t+3 t+1 t+3 t+1 t+3 t+1 t+3

ConvLSTM [28] 68.81 55.97 23.42 34.51 22.74 17.91 67.81 86.84
PredRNN [40] 78.78 70.26 13.12 21.56 23.25 18.20 66.60 87.04
SimVP [10] 83.96 74.35 10.31 17.21 24.57 20.17 56.42 66.03
TAU [33] 84.81 75.05 9.41 16.24 25.68 21.03 55.84 65.21
SwinLSTM [35] 83.76 74.13 10.44 17.78 24.37 19.77 57.12 66.68
Ours 88.47 78.34 7.52 13.38 28.71 23.89 51.41 61.37

High-resolution prediction in the real world is notably
challenging due to the complexity of textures and mo-
tions. Following the established settings [5, 18], we uti-
lized the UCF101&DAVIS and SJTU4K datasets. For
UCF101&DAVIS, PredToken, trained on UCF101 [31] and
evaluated on DAVIS17-Val [23], surpasses other methods,
setting new benchmarks as indicated in the Table 4. For the
SJTU4K, PredToken significantly improves PSNR (21.03
→ 23.89) and reduces LPIPS (65.21 → 61.37) at (t+3)-th
frame compared with TAU [33]. We provide qualitative
visualization examples in Figure 6 and Figure 9. PredTo-
ken excels in capturing the intricate dynamics of scenes, es-
pecially in predicting human and vehicle motions, offering
sharp visuals and strong generalization.

4.2. More Visual Generative Tasks

To explore the versatility of PredToken in diverse visual
generative tasks, we conducted class-conditional image
editing, frame inpainting, frame outpainting, and frame in-
terpolation tasks, as illustrated in Figure 8. For image edit-
ing, we treat an image as a single-frame video for PredTo-
ken, conducting category-based edits via specific masked
areas. For frame inpainting and outpainting, we apply
masks outside and inside the frame, respectively, and for
frame interpolation, masks are positioned between frames.
The experimental outcomes show that PredToken can adapt
to diverse generative tasks, producing realistic results.

4.3. Ablation Study

Tokenizer Reconstruction Quality. We indirectly evalu-
ate the learned token representation through tokenizer re-
construction experiments. Table 5 shows quantitative re-
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Ground Truth SwinLSTM (ICCV'2023) TAU (CVPR'2023) PredToken (Ours)

Figure 9. The visualization of (t+1)-th frame results on the SJTU4K dataset (4 → 4 frames) at a resolution of 2160× 3840 pixels.

Ground Truth w/ DQRw/o DQR (VQGAN)

Figure 10. The visualization of tokenizer reconstruction quality
for 8 frames on DAVIS17 dataset (480 × 480 resolution).

Table 5. Ablation studies of tokenizer reconstruction quality on
DAVIS17 and iterative decoding method on KTH.

Reconstruction Quality Iterative Decoding

DQR DQM SC SSIM↑ PSNR↑ SD MD SSIM↑ PSNR↑

✗ ✗ ✗ 80.4 28.1 ✗ ✗ 87.8 31.97
✓ ✗ ✗ 89.3 (+8.9) 30.9 (+2.8) ✓ ✗ 88.5 (+0.7) 32.48 (+0.51)
✓ ✓ ✗ 89.7 (+9.3) 31.5 (+3.4) ✗ ✓ 89.4 (+1.6) 32.94 (+0.97)
✓ ✓ ✓ 89.8 (+9.4) 31.7 (+3.6) ✓ ✓ 89.8 (+2.0) 33.03 (+1.06)

sults. Compared to the baseline VQGAN, it is evident that
using our proposed “decomposition, quantization, and re-
construction” (DQR) framework results in significant im-
provements in reconstruction quality, which highlights the
effectiveness of learning from disentangled low- and high-
frequency representations. We also observe performance
gains by adding a dimension-aware quantization module
(DQM) ahead of the codebook. The shared codebook
(SC) also contributes to model performance. Further-
more, We visualized 8-frame reconstruction examples on
the DAVIS17 dataset, as shown in Figure 10, noting the
vanilla VQGAN without DQR (w/o DQR) misses key de-
tails, e.g., head details and textures or fish eyes.
Iterative Decoding Method. We evaluate the proposed it-
erative decoding methods on the KTH. The models predict
40 future frames from 10 past observations. Table 5 de-
tails their impact during the coarse-level token generation

stage. Compared to the original iterative decoding, incorpo-
rating soft decoding (SD) can enhance performance during
inference. The mask discriminator (MD), unlike previous
discriminators, dynamically guides the token decoding pro-
cess, resulting in notable gains. We also explored the order
of static soft decoding (SSD) and dynamic soft decoding
(DSD), as shown in Figure 11. The results indicate the com-
bination of DSD for the coarse level and SSD for the fine
level is most effective. While using DSD + DSD is theo-
retically optimal, its extra training objectives slow down the
overall loss convergence. We also presented comparisons
with other methods for long-term prediction tasks, high-
lighting that while the performance of other methods de-
clines rapidly with increasing frame numbers, our approach
exhibits a slower decline. This demonstrates the superior
long-term predictive capability of PredToken.
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Figure 11. Ablation studies of decoding methods combination and
quantitative comparison with prior work [18, 28, 41] on KTH.

5. Conclusion
This paper presents PredToken, an innovative spatiotem-
poral predictive framework that highlights low-level
consistency and high-level dynamics. First, we introduce a
“decomposition, quantization, and reconstruction” schema
based on VQGAN to enhance token representation, ef-
fectively separating frequency components and utilizing a
dimension-aware quantization model to preserve intricate
details. Second, we propose a “coarse-to-fine iterative
decoding” method to improve token decoding, which
leverages dynamic and static soft decoding for coarse
and fine tokens, respectively, enabling more high-level
dynamics to be captured. Extensive experiments show
the superiority of our method in various real-world
predictive benchmarks, and PredToken can be adapted
for other visual generative tasks to yield realistic results.
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