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Abstract

Recently, high-fidelity scene reconstruction with an op-

timized 3D Gaussian splat representation has been intro-

duced for novel view synthesis from sparse image sets. Mak-

ing such representations suitable for applications like net-

work streaming and rendering on low-power devices re-

quires significantly reduced memory consumption as well

as improved rendering efficiency. We propose a compressed

3D Gaussian splat representation that utilizes sensitivity-

aware vector clustering with quantization-aware training

to compress directional colors and Gaussian parameters.

The learned codebooks have low bitrates and achieve a

compression rate of up to 31× on real-world scenes with

only minimal degradation of visual quality. We demonstrate

that the compressed splat representation can be efficiently

rendered with hardware rasterization on lightweight GPUs

at up to 4× higher framerates than reported via an opti-

mized GPU compute pipeline. Extensive experiments across

multiple datasets demonstrate the robustness and rendering

speed of the proposed approach.

1. Introduction

Novel view synthesis aims to generate new views of a 3D

scene or object by interpolating from a sparse set of images

with known camera parameters. NeRF [16] and its variants

have proposed the use of direct volume rendering to learn

a volumetric radiance field from which novel views can be

rendered. However, expensive neural network evaluations

prohibit efficient training and rendering. Recent research

utilizes explicit scene representations such as voxel-based

[24] or point-based structures [29] to enhance rendering ef-

ficiency. The use of 3D voxel grids on the GPU in com-

bination with a multiresolution hash encoding of the input

[17] significantly reduces the operations needed and permits

real-time performance.

While achieving excellent reconstruction quality and

speed, many NeRF-style approaches require exhaustive
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31× Compression

Figure 1. Our method achieves a 31× compression at indiscernible

loss in image quality and greatly improves rendering speed com-

pared to [13]. Framerates in grey and white, respectively, are taken

on NVIDIA’s RTX 3070M and RTX A5000 at 1080p resolution.

memory resources. This affects both the training and ren-

dering times and often prohibits the use of such represen-

tations in applications like network streaming and mobile

rendering. To overcome these limitations, dedicated com-

pression schemes for the learned parametrizations on reg-

ular grids have been proposed, including vector quantized

feature encoding [15], learned tensor decomposition [3] or

frequency domain transformations[20, 32].

Recently, differentiable 3D Gaussian splatting [13] has

been introduced to generate a sparse adaptive scene repre-

sentation that can be rendered at high speed on the GPU.The

scene is modeled as a set of 3D Gaussians with shape and

appearance parameters, which are optimized via differen-

tiable rendering to match a set of recorded images. The

optimized scenes usually consist of millions of Gaussians

and require up to several gigabytes of storage and mem-

ory. This makes rendering difficult or even impossible on

low-end devices with limited video memory, such as hand-

helds or head-mounted displays. Gaussians are rendered us-

ing a specialized compute pipeline, which shows real-time

performance on high-end GPUs. This pipeline, however,

cannot be seamlessly integrated into VR/AR environments

or games to work in tandem with hardware rasterization of

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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polygon models.

We address the storage and rendering issue of 3D Gaus-

sian splatting by compressing the reconstructed Scene pa-

rameters and rendering the compressed representation via

GPU rasterization. To compress the scenes, we first analyze

its components and observe that the SH coefficients and the

multivariate Gaussian parameters take up the majority of

storage space and are highly redundant. Inspired by previ-

ous work on volumetric radiance field compression[15, 25]

and deep network weight quantization, we derive a com-

pression scheme that reduces the storage requirements of

typical scenes by up to a factor of 31×. Our compression

scheme consists of three main steps:

• Sensitivity-aware clustering: We derive a sensitivity mea-

sure for each scene parameter by calculating its contribu-

tion to the training images. Color information and Gaus-

sian parameters are encoded into compact codebooks via

sensitivity-aware vector quantization.

• Quantization-aware fine-tuning: To regain information

that is lost during clustering we fine-tune the scene pa-

rameters at reduced bit-rates using quantization-aware

training.

• Entropy encoding: 3D Gaussians are linearized along

a space-filling curve to exploit the spatial coherence of

scene parameters with entropy and run-length encoding.

Further, we propose a renderer for the compressed scenes

using GPU sorting and rasterization. It enables novel view

synthesis in real-time, even on low-end devices, and can

be easily integrated into applications rendering polygonal

scene representations. Due to the reduced memory band-

width requirements of the compressed representation and

the use of hardware rasterization, a significant speed-up is

achieved over the compute pipeline by Kerbl et al. [13].

We show the state-of-the-art quality of novel view ren-

dering on benchmark datasets at significantly reduced mem-

ory consumption and greatly improved rendering perfor-

mance (Fig. 1). The compressed scenes can be used in

applications requiring network streaming, and they can be

rendered on low-end devices with limited video memory

and bandwidth capacities. We perform a number of exper-

iments on benchmark datasets to empirically validate our

method across different scenarios. The contribution of each

individual step is demonstrated with an ablation study.

2. Related Work

Our work builds upon previous works in novel view synthe-

sis via differentiable rendering and scene compression.

Novel View Synthesis Neural Radiance Fields (NeRF)

[16] use neural networks to model a 3D scene. They rep-

resent the scene as a density field with direction-dependent

colors that are rendered with volume rendering. The field is

reconstructed from a set of images with known camera pa-

rameters using gradient-based optimization of the volume

rendering process.

To speed up training and rendering efficiency, a number

of different scene models have been proposed. Most often,

structured space discretizations like voxel grids [10, 24, 28],

octrees [6] or hash grids [17] are used to represent the scene.

To avoid encoding empty space, point-based representa-

tions have been proposed. Xu et al. [29] perform nearest

neighbor search in a point cloud to aggregate local features,

and Rückert et al. [21] render a point cloud with deep fea-

tures and use deferred neural rendering to generate the final

image.

More recently, differentiable splatting [7, 13] has been

positioned as a powerful alternative to NeRF-like ap-

proaches for novel view synthesis. In particular, 3D Gaus-

sian Splatting [13] offers state-of-the-art scene reconstruc-

tion, by using a scene model consisting of an optimized set

of 3D Gaussian kernels that can be rendered efficiently. Dif-

ferentiable rendering on a set of training images is used to

adaptively refine an initial set of Gaussian kernels and opti-

mize their parameters.

NeRF Compression While grid-based NeRF variants

achieve high rendering performance due to GPU ray-

marching, in particular, the use of full spatial grids intro-

duces considerable storage costs. Tensor decomposition

[3, 26], frequency domain transformation [20, 32] and voxel

pruning [4] have been proposed to reduce the memory con-

sumption of grid-based NeRFs. Takikawa et al. [25] per-

form vector quantization during training with a learnable

index operation. Li et al. [15] compress grid-based radiance

fields by up to a factor of 100× using post-training vector

quantization. The use of a hash encoding on the GPU in

combination with vector quantization of latent features re-

duces the required memory and permits high rendering per-

formance [17].

A number of works have especially addressed memory

reduction during inference, to make grid-based scene rep-

resentations more suitable for low-end devices with limited

video memory [19, 27]. To our knowledge, our approach

is the first that aims at the compression of point-based ra-

diance fields to enable high-quality novel view synthesis at

interactive frame rates on such devices.

Quantization-Aware Training Rastegari et al. [18] sim-

ulate weight quantization during training to reduce quanti-

zation errors when using low-precision weights for infer-

ence. The use of quantization-aware training has been ex-

plored for neural scene representations [8] and voxel-based

NeRFs [12], demonstrating effective weight quantization

with negligible loss in rendering quality.

To reduce the size and latency of neural networks, vari-

ous approaches for weight quantization have been explored

[8, 11, 12, 18]. These methods rely on the observation that

in most cases a lower weight precision is required for model
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Figure 2. Proposed compression pipeline. Input is an optimized 3D Gaussian scene representation. First, a sensitivity measure is computed

for the Gaussian parameters, and color and shape information is compressed into separate codebooks using sensitivity-aware and scale-

invariant vector clustering. Next, the compressed scene is fine-tuned on the training images to recover lost information. Finally, the

Gaussians are sorted in Morton order and further compressed using entropy and run-length encoding. The shown scene is from [2].

inference than for training (e.g., 8-bit instead of 32-bit). In

post-training quantization, the model weights are reduced

to a lower bit representation after training. In quantization-

aware training, the quantization is simulated during training

while operations are performed at full precision to obtain

numerically stable gradients. For storage and inference, the

low precision weights can then be used with minor effects

on the output.

3. Differentiable Gaussian Splatting

Differentiable Gaussian splatting [13] builds upon EWA

volume splatting [34] to efficiently compute the projections

of 3D Gaussian kernels onto the 2D image plane. On top of

that, differentiable rendering is used to optimize the num-

ber and parameters of the Gaussian kernels that are used to

model the scene.

The final scene representation comprises a set of 3D

Gaussians, each described by a covariance matrix Σ ∈
R

3×3 centered at location x ∈ R
3. The covariance matrix

can be parameterized by a rotation matrix R and a scaling

matrix S. For independent optimization of R and S, Kerbl

et al. [13] represent the rotation with a quaternion q and

scaling with a vector s, both of which can be converted into

their respective matrices. In addition, each Gaussian has

its own opacity α ∈ [0, 1] and a set of spherical harmonics

(SH) coefficients to reconstruct a view-dependent color.

The 2D projection of a 3D Gaussian is again a Gaussian

with covariance

Σ′ = JWΣWTJT , (1)

where W is the view transformation matrix and J is the

Jacobian of the affine approximation of the projective trans-

formation. This allows to evaluate the 2D color and opacity

footprint of each projected Gaussian. A pixel’s color C is

then computed by blending all N 2D Gaussians contribut-

ing to this pixel in sorted order:

C =
∑

i∈N

ciαi

i−1
∏

j=1

(1− αj). (2)

Here, ci and αi, respectively, are the view-dependent color

of a Gaussian and its opacity, modulated by the exponential

falloff from the projected Gaussian’s center point.

The position x, rotation q, scaling s, opacity α, and SH

coefficients of each 3D Gaussian are optimized so that the

rendered 2D Gaussians match the training images. For more

details on the reconstruction process, we refer to the original

paper by Kerbl et al. [13].

4. Sensitivity-Aware Scene Compression

We compress a set of optimized 3D Gaussian kernels as fol-

lows: First, sensitivity-aware vector clustering is used to

cluster the Gaussian appearance and shape parameters into

compact codebooks (Sec. 4.1). Second, the clustered and

other scene parameters are fine-tuned on the training im-

ages to recover information lost due to clustering. We use

quantization-aware training in this step to reduce the scene

parameters to a lower bit-rate representation (Sec. 4.2). By

linearizing the set of 3D Gaussians along a space-filling

curve, entropy and run-length encoding can exploit the spa-

tial coherence of Gaussian parameters to further compress

the scene (Sec. 4.3). An overview of the proposed compres-

sion pipeline is shown in Fig. 2.

4.1. Sensitivity­Aware Vector Clustering

Inspired by volumetric NeRF compression [15, 25], we uti-

lize vector clustering for compressing 3D Gaussian kernels.

We use clustering to encode SH coefficients and Gaussian

shape features (scale and rotation) into two separate code-

books. As a result, each Gaussian can be compactly en-

coded via two indices into the codebooks stored alongside.
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Parameter Sensitivity: The sensitivity of the recon-

struction quality to changes of the Gaussian parameters is

not consistent. While a slight change in one parameter of a

Gaussian can cause a significant difference in the rendered

image, a similar change in another parameter or the same

parameter of another Gaussian can have low or no effect.

We define the sensitivity S of image quality to changes

in parameter p with respect to the training images as

S(p) =
1

∑N

i=1 Pi

N
∑

i=1

∣

∣

∂Ei

∂p

∣

∣. (3)

N is the number of images in the training set used for scene

reconstruction, and Pi is the number of pixels in image i. E

is the total image energy, i.e., the sum of the RGB com-

ponents over all pixels. The sensitivity of E to changes

in p is considered via the gradient of E with respect to p,

i.e., a large gradient magnitude indicates high sensitivity to

changes in the respective parameter. With this formulation,

the sensitivity to every parameter can be computed with a

single backward pass over each of the training images.

Sensitivity-aware k-Means: Given a vector x ∈ R
D,

we define its sensitivity as the maximum over its compo-

nent’s sensitivity:

S(x) = max
d∈[1..D]

S(xd). (4)

The sensitivity measure is then used for sensitivity-aware

clustering, i.e., to compute codebooks C ∈ R
K×D with K

representatives ck ∈ R
D (so-called centroids).

We define the weighted distance between a vector x and

a centroid ck as

D(x, ck) = S(x)∥x− ck∥
2
2. (5)

A codebook is then obtained by using k-Means clustering

with D as a similarity measure. The codebooks are initial-

ized randomly with a uniform distribution within the min-

imum and maximum values of each parameter. The cen-

troids are computed with an iterative update strategy: In

each step, the pairwise weighted distances between the vec-

tors x and the codebook vectors ck are calculated, and each

vector is assigned to the centroid to which it has the mini-

mum distance. Each centroid is then updated as

ck =
1

∑

xi∈A(k)

S(xi)

∑

xi∈A(k)

S(xi)xi (6)

Where A(k) is the set of vectors assigned to centroid ck.

For performance reasons, a batched clustering strategy is

used [23]. In each update step, a random subset of vectors is

picked and used to compute the update step. Then, the cen-

troids are updated using the moving average with a decay

factor λd.

Color Compression: Each Gaussian stores SH coeffi-

cients to represent the direction-dependent RGB color (e.g.,

48 coefficients in [13]). We treat SH coefficients as vectors
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Figure 3. Histograms of maximum sensitivity to changes of SH

coefficients for different scenes. Only SH coefficients of a tiny

fraction of all Gaussians strongly affect image quality.

and compress them into a codebook using sensitivity-aware

vector clustering.

For volumetric NeRF models, Li et al. [15] have shown

that only a small number of voxels contribute significantly

to the training images. Thus, they propose to keep the color

features that contribute the most and only compress the re-

maining features with vector clustering. We observe a sim-

ilar behavior for 3D Gaussians, as shown for some bench-

mark scenes in Fig. 3. For a small percentage of all SH co-

efficients (< 5%), the sensitivity measure indicates a high

sensitivity towards the image quality. Thus, to keep the in-

troduced rendering error low, we do not consider the SH

vectors of Gaussians with a sensitivity higher than a thresh-

old βc in the clustering process. These vectors are added to

the codebook after clustering.

Gaussian Shape Compression: A 3D Gaussian kernel

can be parameterized with a rotation matrix R and a scaling

vector s. We observe that for typical scenes, the shapes of

the Gaussians are highly redundant up to a scaling factor.

Thus, we re-parameterize the scaling vector s = ηŝ, where

η = ∥s∥2 is the scalar scaling factor and ŝ = η−1
s is the

normalized scaling vector. With Ŝ = diag(ŝ), the normal-

ized covariance matrix is

Σ̂ = (RŜ)(RŜ)T =
1

η2
Σ. (7)

Clustering is then performed using the normalized co-

variance matrices, and each Gaussian stores, in addition to

a codebook index, the scalar scaling factor η. We com-

pute the sensitivity to each of the matrix entries and perform

sensitivity-aware vector quantization to compress them into

a codebook. The sensitivity plots for Gaussian shape pa-

rameters look mostly similar to the SH plots shown in

Fig. 3. As for SH coefficients, Gaussians with a maximum

sensitivity over a threshold βg are not considered for clus-

tering and are added to the codebook.

Note that k-Means clustering of normalized covariance

matrices results in covariance matrices that are again nor-

malized. However, due to floating point errors, clustering

can lead to non-unit scaling vectors. To counteract this

problem, we re-normalize each codebook vector after each
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update step by dividing it through the trace of the covariance

metric. In the appendix, we prove both the normalization

preserving properties of k-Means and re-normalization.

After clustering, each codebook entry is decomposed

into a rotation and scale parameter using an eigenvalue

decomposition. This is required for quantization-aware

training since direct optimization of the matrix is not

possible[13]. In the final codebook, each matrix’s rotation

and scaling parameters are encoded via 4 (quaternion) plus

3 (scaling) scalar values.

We observe that a notable number of splats (up to 15%)

do not impact the training images. These particular splats

exhibit zero sensitivity in the color parameters. Conse-

quently, we opt to prune these splats from the scene.

4.2. Quantization­Aware Fine­Tuning

To regain information that is lost due to parameter quan-

tization, the parameters can be fine-tuned on the training

images after compression [15, 30]. To do so, we use the

training setup described by Kerbl et al. [13]. We optimize

for the position, opacity, and scaling factor of each Gaus-

sian as well as the color and Gaussian codebook entries.

For the two codebooks, the incoming gradients for each en-

try are accumulated and then used to update the codebook

parameters.

For fine-tuning, we utilize quantization-aware training

with Min-Max quantization (k-bit Quantization [18]) to rep-

resent the scene parameters with fewer bits. In the for-

ward pass, the quantization of a parameter p is simulated

using a rounding operation considering the number of bits

and the moving average of each parameter’s minimum and

maximum values. The backward pass ignores the simulated

quantization and calculates the gradient w.r.t. p as without

quantization. After training, the parameters can be stored

with only b-bit precision (e.g., 8-bit), while the minimum

and maximum values required for re-scaling are stored at

full precision (e.g., 32-bit float).

Quantization of opacity is applied after the sigmoid ac-

tivation function. Quantization of the scaling and rotation

vector is applied before the respective normalization step.

For the scale factor parameter, the quantization is applied

before the activation (exponential function) to allow for a

fine-grained representation of small Gaussians without los-

ing the ability to model large ones. We quantize all Gaus-

sian parameters despite position to an 8-bit representation

with the Min-Max scheme. 16-bit float quantization is used

for position, as a further reduction decreases the reconstruc-

tion quality considerably.

4.3. Entropy Encoding

After quantization-aware fine-tuning, the compressed scene

representation consists of a set of Gaussians and the code-

books storing SH coefficients and shape parameters. Indices

into the codebooks are stored as 32-bit unsigned integers.

The data is then compressed using DEFLATE [5], which

utilizes a combination of the LZ77 [33] algorithm and Huff-

man coding. In the reconstructed scenes, many features,

such as color, scaling factor, and position, are spatially co-

herent. By ordering the Gaussians according to their posi-

tions along a Z-order curve in Morton order, the coherence

can be exploited and the effectivity of run-length encoding

(LZ77) can be improved. The effect on the compressed file

size is analyzed in the ablation study in Sec. 6.4. Note that

entropy encoding reduces the two codebook indices to their

required bit-length according to the codebook sizes.

5. Novel View Rendering

Kerbl et al. [13] propose a software rasterizer for differen-

tiable rendering and novel view synthesis. To render 3D

Gaussian scenes fast especially on low-power GPUs, our

novel view renderer utilizes hardware rasterization.

Preprocess: In a compute pre-pass, Gaussians whose

99% confidence interval does not intersect the view frustum

after projection are discarded. For the remaining Gaussians,

the direction-dependent color is computed with the SH co-

efficients. The color, the Gaussian’s opacity, projected

screen-space position, and covariance values are stored in

an atomic linear-append buffer. The covariance values indi-

cate the orientation and size of the 2D Gaussian into which

a 3D Gaussian projects under the current viewing transfor-

mation [34]. As in [13], Gaussians are then depth-sorted

to enable order-dependent blending. We use the Onesweep

sorting algorithm by Adinets and Merrill [1] to sort the

Gaussians directly on the GPU. Due to its consistent per-

formance, the implementation is well suited for embedding

into real-time applications.

Rendering: Gaussians are finally rendered in sorted or-

der via GPU rasterization. For each Gaussian, one planar

quad (a so-called splat) consisting of two triangles is ren-

dered. A vertex shader computes the screen space vertex

positions of each splat from the 2D covariance information.

The size of a splat is set such that it covers the 99% confi-

dence interval of the projected Gaussian. The vertex shader

simply outputs the color computed in the pre-pass and the

2D splat center as input to the pixel shader. The pixel shader

then discards fragments outside the 99% confidence inter-

val. All remaining fragments use their distance to the splat

center to compute the exponential color and opacity falloff

and blend their final colors into the framebuffer.

6. Experiments

6.1. Datasets

We evaluate our compression and rendering method on the

Mip-Nerf360[2] indoor and outdoor scenes, two scenes

from the Tanks&Temples[14] and Deep Blending [9]
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Method 3D Gaussian Splatting Ours

Dataset PSNR ↑ SSIM ↑ LPIPS ↓ SIZE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ SIZE ↓ Compression Ratio ↑
Synthetic-NeRF [16] 33.21 0.969 0.031 69.89 32.936 0.967 0.033 3.68 19.17
Mip-NeRF360 [2] 27.21 0.815 0.214 795.26 26.981 0.801 0.238 28.80 26.23
Tanks&Temples [14] 23.36 0.841 0.183 421.90 23.324 0.832 0.194 17.28 23.26
Deep Blending [9] 29.41 0.903 0.243 703.77 29.381 0.898 0.253 25.30 27.81
average* 26.58 0.853 0.213 640.31 26.560 0.844 0.238 23.73 25.77

Table 1. Quantitative comparison to 3D Gaussian Splatting. Size is measured in Megabytes. *Synthetic scenes are excluded.

dataset, and NeRF-Synthetic[16]. For Mip-Nerf360,

Tanks&Temples and Deep Blending the reconstructions

from Kerbl et al. [13] were used. We generated the 3D

Gaussian representation for NeRF-Synthetic ourselves.

6.2. Implementation Details

We use a decay factor λd = 0.8 for batched clustering with

800 update steps for the Gaussians and 100 for the SH co-

efficients. A batch size of 218 is used for the color fea-

tures, and 220 for the Gaussian parameters. We use 4096

as the default codebook size in all our experiments and set

βc = 6 · 10−7 and βg = 3 · 10−6. We perform 5000 opti-

mization steps of quantization-aware fine-tuning.

The renderer is implemented with the WebGPU graph-

ics API in the Rust programming language. Thus, it can

run in a modern web browser on a large variety of devices.

More details about the implementation can be found in the

supplementary material. The source code is available at

https://github.com/KeKsBoTer/c3dgs.

6.3. Results

We use the scenes reconstructed by 3D Gaussian Splatting

[13] and compress them using the proposed method. For

all scenes, we evaluate the PSNR, SSIM, and LPIPS [31]

before and after compression. Tab. 1 shows the results for

different datasets.

Our compression method achieves a compression ratio of

up to 31× with an average of 26× at the indiscernible loss

of quality (0.23 PSNR on average) for real-world scenes.

Here, it should be noted that a difference of 0.5 PSNR is

considered indistinguishable for the human eye [22]. For

some of the scenes, Fig. 5 compares training images to the

renderings of the uncompressed and compressed scenes.

Fig. 4 shows close-up views of uncompressed and com-

pressed synthetic scenes. More comparisons and results are

given in the supplementary material.

Image Quality Loss Fig. 5 shows that it is almost im-

possible to spot the difference between the uncompressed

and the compressed scenes. We also analyze the images

from all test sets with the largest drop in PSRN. The image

which could be reconstructed least accurately is shown in

Fig. 6. We observe that the loss is mainly due to very subtle

color shifts below what can be perceived by the human eye.
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Figure 4. 3D Gaussian splatting of synthetic scenes [16]. Uncom-

pressed (Baseline) vs. compressed scene.

Compression Runtime The compression process takes

about 5-6 minutes and increases the reconstruction time by

roughly 10%. The timings of each individual steps are given

in the supplementary material.

Rendering Times We see a significant increase of up to

a factor of 4× in rendering speed (see Tab. 2). Roughly a 2x

increase can be attributed to the compressed data’s reduced

bandwidth requirements, hinting at the software rasterizer’s

memory-bound performance by Kerbl et al. [13]. The ad-

ditional speedup is achieved by the hardware rasterization-

based renderer, which pays off on low- and high-end GPUs.

Timings of the different rendering stages are given in the

supplementary material.

6.4. Ablation Study

In a number of experiments we evaluate the components of

our compression pipeline. This includes a detailed analysis

of the influence of the hyper-parameters.

Loss Contribution Tab. 3 indicates that the most sig-

nificant loss increase comes from the compression of the

SH coefficients, which, on the other hand, gives the high-
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Bicycle

Train

Playroom Ground Truth Baseline Ours

Figure 5. Ground truth images from the test set, results of Kerbl et al. [13] (Baseline), results using the compressed representation (Ours).

a) Ground Truth b) Baseline (35.90 PSNR) c) Ours (34.15 PSNR) d) Mean Absolute Error
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Figure 6. Test image with the highest drop in PSNR in all scenes used in this work. d) Per pixel mean absolute error between Kerbl et al.

[13] b) and our approach c).
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NVIDIA

RTX A5000

NVIDIA

RTX 3070M

Intel UHD

Graphics 11

AMD Radeon

R9 380

B
ic

y
cl

e Kerbl et al. [13] 93 54 - -

Ours 215 134 9 41

Compressed 321 211 16 83

B
o
n
sa

i Kerbl et al. [13] 184 122 - -

Ours 414 296 23 76

Compressed 502 380 28 128

Table 2. Rendering performance at 1080p resolution in frames per

second, averaged over all training images. Bicycle consists of 6.1
million 3D Gaussians, Bonsai of 1.2 million 3D Gaussians.

PSNR ↑ SSIM ↑ LPIPS ↓ SIZE ↓
baseline 27.179 0.861 0.115 1379.99
+ Pruning 27.083 0.856 0.118 1217.25
+ Color Clustering 25.941 0.818 0.178 278.41
+ Gaussian Clustering 25.781 0.811 0.186 164.15
+ QA Finetune 26.746 0.844 0.144 86.69
+ Encode 26.746 0.844 0.144 58.40
+ Morton Order 26.746 0.844 0.144 46.57

Table 3. Losses introduced and regained by individual stages of

the compression pipeline. Experiments were performed with the

garden scene from Mip-Nerf360[2]

PSNR ↑ SSIM ↑ LPIPS ↓ SIZE ↓

Color

1024 26.95(-0.67) 0.80(-0.02) 0.24(+0.03) 28.47
2048 26.95(-0.62) 0.80(-0.02) 0.24(+0.03) 28.65
4096 26.98(-0.63) 0.80(-0.02) 0.24(+0.03) 28.80
8192 27.00(-0.58) 0.80(-0.02) 0.24(-0.03) 28.92

Gaussian

1024 26.95(-0.79) 0.80(-0.02) 0.24(+0.03) 28.14
2048 26.97(-0.80) 0.80(-0.02) 0.24(+0.03) 28.45
4096 26.98(-0.63) 0.80(-0.02) 0.24(+0.03) 28.80
8192 26.97(-0.60) 0.80(-0.02) 0.24(+0.03) 29.06

Table 4. Average reconstruction error over the test images for

different codebook sizes, including the maximum deviation from

the baseline (+/−). Rows marked grey indicate the default con-

figurations. Experiments were performed on the Mip-Nerf360[2]

dataset.

est memory reduction. Quantization of shape parameters

can additionally reduce the memory by about 60%, only

introducing a slight loss in image quality. Quantization-

aware fine-tuning can regain much of the information that

is lost due to quantization and further reduces the memory

by about 50%. Entropy and run length encoding in combi-

nation with Morton order layout saves an additional 50% of

the memory.

Codebook Sizes SH coefficients and Gaussian shape

parameters are compressed into codebooks of predefined

sizes. Tab. 3 shows the effects of different codebook sizes

on image quality. Errors were averaged over all test images,

with the difference to the maximum error given in brack-

ets. It can be seen that the codebook size has little effect on

the average reconstruction error, independent of the scene.

Nevertheless, larger codebooks reduce the maximum error

with only minimal memory overhead.

Sensitivity Thresholds The sensitivity thresholds βc

and βg are used to decide whether to consider SH coeffi-

PSNR ↑ SSIM ↑ LPIPS ↓ SIZE ↓
baseline 26.976 0.801 0.238 28.80

βc

6.0 · 10−8 27.22(−0.25) 0.81(−0.00) 0.22(+0.00) 56.50

3.0 · 10−7 27.09(−0.41) 0.80(−0.01) 0.23(+0.02) 33.00

6.0 · 10−7 26.98(−0.63) 0.80(−0.02) 0.24(+0.03) 28.80

1.2 · 10−6 26.87(−0.75) 0.80(−0.02) 0.24(+0.04) 27.02

6.0 · 10−6 26.74(−0.94) 0.80(−0.02) 0.25(+0.04) 25.97

- 26.55(−1.47) 0.79(−0.03) 0.25(+0.05) 25.65

βg

3.0 · 10−7 27.05(−0.41) 0.80(−0.01) 0.23(+0.03) 33.90

1.5 · 10−6 27.00(−0.62) 0.80(−0.02) 0.24(+0.03) 29.95

3.0 · 10−6 26.98(−0.63) 0.80(−0.02) 0.24(+0.03) 28.80

6.0 · 10−6 26.91(−0.77) 0.80(−0.02) 0.24(+0.03) 28.08

3.0 · 10−5 26.86(−0.72) 0.80(−0.02) 0.24(+0.04) 27.30

- 26.80(−0.83) 0.80(−0.02) 0.25(+0.04) 27.10

Table 5. Sensitivity threshold ablation study. βc and βg are the

sensitivity thresholds for controlling which SH vectors and shape

parameters are clustered. The average error and in brackets the

maximum deviation from the baseline are reported. The last row

shows the results when no threshold is considered. The rows

marked grey are the default configurations. Experiments were per-

formed with Mip-Nerf360 [2] dataset.

cients and shape parameters for clustering. They offer a

trade-off between quality and compression rate. The influ-

ence of these values is analyzed in Tab. 5, showing in par-

ticular the sensitivity of image quality to the quantization of

SH coefficients.

6.5. Limitations

As the main limitation for making the proposed compres-

sion and rendering pipeline even more powerful, we see

the current inability to aggressively compress the Gaus-

sians’ positions in 3D space. We performed experiments

where positions were quantized to a lattice structure, and we

even embedded these positional constraints into the Gaus-

sian splatting training process. Unfortunately, we were not

able to further compress the positions without introducing a

significant error in the rendering process.

7. Conclusion

We have introduced a novel compression and rendering

pipeline for 3D Gaussians with color and shape parameters,

achieving compression rates of up to 31× and up to a 4×
increase in rendering speed. Our experiments with differ-

ent datasets have shown that the compression introduces an

indiscernible loss in image quality. The compressed data

can be streamed over networks and rendered on low-power

devices, making it suitable for mobile VR/AR applications

and games. In the future, we aim to explore new approaches

for reducing the memory footprint during the training phase,

and additionally compressing positional information end-

to-end. We also believe that 3D Gaussian splatting has the

potential for reconstructing volumetric scenes, and we will

investigate advanced options for compressing and rendering

the optimized representations.
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