
Unsupervised Universal Image Segmentation

Dantong Niu*† Xudong Wang*† Xinyang Han* Long Lian Roei Herzig Trevor Darrell
Berkeley AI Research, UC Berkeley

Code: https://github.com/u2seg/U2Seg

AP50 AR100

18.5

11.8
9.39

CutLER

U2Seg

Unsup. Semantic Seg. Unsup. Instance Seg. Unsup. Panoptic Seg

mIoU PixelAcc

63.9

30.2

56.9

28.2

STEGO

U2Seg

PQ SQ

52.7

17.6

36.1

12.4

CutLER + STEGO U2Seg

AP (w/ 1%) AP (w/ 2%)

22.6

19.2 18.8

14.8

CutLER

U2Seg

Label-Efficient Learning

Benchmark 

Results

Sample  

Results

Tasks Unsupervised Semantic Segmentation Unsupervised Instance Segmentation Unsupervised Panoptic Segmentation

+2.0

+7.0
+9.2

+1.9
+5.2

+16.6
+4.4

+3.8

24 2 10 13

Cityscapes

PQ SQ

71.1

16.1

64.9

12.4

+3.7

+6.2

COCO COCOCOCOCOCO

Figure 1. We present U2Seg, a unified framework for Unsupervised Universal image Segmentation that consistently outperforms previous
state-of-the-art methods designed for individual tasks: CutLER [60] for unsupervised instance segmentation, STEGO [24] for unsupervised
semantic segmentation, and the naive combination of CutLER and STEGO for unsupervised panoptic segmentation. We visualize instance
segmentation results with “semantic label” + confidence score and semantic predictions with “semantic label”. Zoom in for the best view.

Abstract

Several unsupervised image segmentation approaches
have been proposed which eliminate the need for dense
manually-annotated segmentation masks; current mod-
els separately handle either semantic segmentation (e.g.,
STEGO) or class-agnostic instance segmentation (e.g., Cut-
LER), but not both (i.e., panoptic segmentation). We
propose an Unsupervised Universal Segmentation model
(U2Seg) adept at performing various image segmentation
tasks—instance, semantic and panoptic—using a novel uni-
fied framework. U2Seg generates pseudo semantic labels
for these segmentation tasks via leveraging self-supervised
models followed by clustering; each cluster represents dif-
ferent semantic and/or instance membership of pixels. We
then self-train the model on these pseudo semantic labels,
yielding substantial performance gains over specialized
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methods tailored to each task: a +2.6 APbox boost (vs. Cut-
LER) in unsupervised instance segmentation on COCO and
a +7.0 PixelAcc increase (vs. STEGO) in unsupervised se-
mantic segmentation on COCOStuff. Moreover, our method
sets up a new baseline for unsupervised panoptic segmenta-
tion, which has not been previously explored. U2Seg is also
a strong pretrained model for few-shot segmentation, sur-
passing CutLER by +5.0 APmask when trained on a low-data
regime, e.g., only 1% COCO labels. We hope our simple yet
effective method can inspire more research on unsupervised
universal image segmentation.

1. Introduction

The field of image segmentation has witnessed significant
advancements in the recent years [4, 5, 12, 20, 26, 35,
38, 40]. Nonetheless, the effectiveness of these segmen-
tation methods heavily depends on the availability of exten-
sive densely human-labeled data for training these models,
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which is both labor-intensive and costly and thus less scal-
able. In this paper, our objective is to explore the extent
to which unsupervised image segmentation can be achieved
without relying on any human-generated labels.

Several recent works such as CutLER [60] and
STEGO [24] have emerged as promising approaches for
unsupervised image segmentation. CutLER leverages the
property of the self-supervised model DINO [8] to ‘dis-
cover’ objects without supervision, and learns a state-of-
the-art localization model on pseudo instance segmenta-
tion masks produced by MaskCut [60] (based on Normalize
Cuts [45]). Similarly leveraging DINO [8], STEGO [24]
introduces a novel framework that distills unsupervised fea-
tures into discrete semantic labels. This is achieved using a
contrastive loss that encourages pixel features to form com-
pact clusters while preserving their relationships across the
corpora [24]. However, these methods have limitations:
• The output of unsupervised instance segmentation meth-

ods such as CutLER [60] comprises class-agnostic seg-
ments for “things”, ignoring the “stuff” categories that
represent pixel semantics. Moreover, CutLER often treats
several overlapping instances as one instance, especially
when these instances belong to the same semantic class.

• On the other hand, unsupervised semantic segmentation
methods such as STEGO [24] focus on the segmentation
of semantically coherent regions, lacking the capability to
distinguish between individual instances.

• Unsupervised panoptic segmentation has not been ad-
dressed. Supervised panoptic segmentation methods [12,
29, 31] predict both “stuff” and “things” classes simulta-
neously; to the best of our knowledge there has not been
work on unsupervised panoptic segmentation heretofore.
To address these limitations, we propose U2Seg, a

novel Unsupervised Universal image Segmentation model.
U2Seg offers comprehensive scene understanding–instance,
semantic and panoptic–without relying on human annota-
tions, segmenting semantically meaningful regions in the
image as well as identifying and differentiating between in-
dividual instances within those regions.

U2Seg is comprised of three steps. First, we create high-
quality, discrete semantic labels for instance masks obtained
from MaskCut and DINO, by clustering semantically sim-
ilar instance masks into distinct fine-grained clusters, as in
Sec. 3.2. Next, we amalgamate the semantically pseudo-
labeled “things” pixels (from the first step) with “stuff” pix-
els (from STEGO) to produce pseudo semantic labels for
each pixel in the image. Lastly, a universal image segmen-
tation model is trained using these pseudo-labels, result-
ing in a model capable of simultaneously predicting pixel-
level (i.e., semantic and class-agnostic instance segmenta-
tion) and instance-level semantic labels, detailed in Sec. 3.3.

Despite the inherent noise in these pseudo-labels, self-
training the model with them yields substantial performance

gains over specialized methods tailored to each task: U2Seg
achieves a +2.6 APbox boost (vs. CutLER) in unsuper-
vised instance segmentation on COCO and a +7.0 PixelAcc
increase (vs. STEGO) in unsupervised semantic segmen-
tation on COCOStuff. Moreover, our method sets up a
new baseline for unsupervised panoptic segmentation. We
also find that the multi-task learning framework and learn-
ing unsupervised segmentor with semantic labels enable
our model to generate a more discriminative feature space,
which makes it a superior representation for downstream
supervised detection and segmentation tasks. When trained
on a low-data regime, such as 1% COCO labels, U2Seg sur-
passes CutLER by +5.0 APmask.
Contributions. Our main contribution is the first universal
unsupervised image segmentation model that can tackle un-
supervised semantic-aware instance, semantic and panoptic
segmentation tasks using a unified framework. We establish
a suite of benchmarks on unsupervised semantic-aware in-
stance segmentation and panoptic segmentation, areas pre-
viously unexplored. Despite using a single framework, we
demonstrate that U2Seg surpasses previous methods spe-
cialized for each task across all experimented benchmarks
(instance, semantic, panoptic, etc.) and datasets (COCO,
Cityscapes, UVO, VOC, etc.).

2. Related Work
Self-supervised Representation Learning focuses on fea-
ture learning from a large amount of unlabeled data with-
out using human-made labels. Contrastive Learning-Based
Methods [9, 27, 43, 62] learn representation by comparing
similar instances or different versions of a single instance
while separating dissimilar ones. Similarity-Based Self-
Supervised Learning [10, 23] mainly reduces differences
between different augmented versions of the same instance.
Clustering-Based Feature Learning [2, 7, 55, 63, 65] finds
natural data groups in the hidden space. Masked Autoen-
coders [3, 18, 28] learn by masking and then reconstructing
masked parts of the image.
Unsupervised Object Detection and Instance Segmenta-
tion. DINO [8] shows that self-supervised learning (SSL)
Vision Transformers (ViT) [19] can reveal hidden seman-
tic segmentation in images, which is not obvious in super-
vised counterparts [8, 66]. Extending this, LOST [46], To-
kenCut [61] and MaskDistill [50] use DINO’s patch fea-
tures to identify main objects in images. FreeSOLO [58]
performs unsupervised class-agnostic instance segmenta-
tion by creating coarse masks first, which are later improved
through self-training. Meanwhile, CutLER [59] introduces
the MaskCut method, which aims to identify multiple in-
stances in a single image. Yet, MaskCut frequently consoli-
dates overlapping instances into a single segment and lacks
the capability to assign semantic labels to each instance.
Unsupervised Semantic Segmentation. IIC [30] maxi-
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mizes mutual information for clustering, while PiCIE [14]
uses invariance to photometric effects and equivariance to
geometric transformations for segmentation. MaskCon-
trast [49] learns unsupervised semantic segmentation by
contrasting features within saliency masks. STEGO [24]
refines pretrained SSL visual features to distill correspon-
dence information embedded within these features, thereby
fostering discrete semantic clusters.
Universal Segmentation has been introduced to deliver in-
stance, semantic and panoptic segmentation tasks using a
unified architecture [6, 11–13, 29, 33, 34, 37, 52, 64]. In
this work, we propose U2Seg to tackle this challenging task
without relying on human-annotated data.
Unsupervised Image Classification methods mainly fo-
cus on providing a semantic label for each query image
that can be mapped to ground truth classes by hungarian
matching. SCAN [48] proposes a three-stage pipeline that
includes representation learning, deep clustering, and self-
labeling. NNM [16] enhances SCAN by incorporating lo-
cal and global nearest neighbor matching. RUC [44] further
improves SCAN using a robust loss as training objective.
However, these approaches only provide one classification
prediction per image, whereas our method provides classifi-
cation per-instance for instance segmentation and per-pixel
for semantic segmentation.

3. Unsupervised Universal Segmentation

3.1. Preliminaries

We first explain the previous Unsupervised Instance Seg-
mentation method CutLER [60], and Unsupervised Seman-
tic Segmentation method STEGO [24].
CutLER [60] exploits self-supervised learning models like
DINO [8] to ‘discover’ objects and train a state-of-the-art
detection and segmentation model using a cut-and-learn
pipeline. It first uses MaskCut to extract multiple initial
masks from DINO [8] features. MaskCut first generates
a patch-wise affinity matrix Wij =

KiKj

∥Ki∥2∥Kj∥2
using the

“key” features Ki for patch i from DINO’s last attention
layer. Subsequently, the cut-based clustering method Nor-
malized Cut [45] is employed on the affinity matrix by find-
ing the eigenvector x that corresponds to the second small-
est eigenvalue. A foreground instance mask Ms is derived
through bi-partitioning of the vector x, enabling segmenta-
tion of individual objects in the image. For multi-instance
segmentation, MaskCut iteratively refines the affinity ma-
trix by masking out already segmented objects, allowing for
subsequent extractions

W t
ij=

(Ki

∏t
s=1 M

s
ij)(Kj

∏t
s=1 M

s
ij)

∥Ki∥2∥Kj∥2
(1)

and repeating above steps by N times. CutLER then refines

detection and segmentation through a loss-dropping strat-
egy and iterative self-training.
STEGO [24] harnesses the semantically rich feature corre-
lations produced by unsupervised methods like DINO [8]
for segmentation. It trains a segmentation head to re-
fine these correlations within an image, with its K-Nearest
Neighbors (KNNs), and across randomly chosen images.
Specifically, STEGO distills DINO’s unsupervised features
into distinct semantic labels by optimizing a correspon-
dence loss. This loss function measures the feature corre-
spondences FSC between image feature pairs generated by
DINO and the feature correspondence Shwij derived from
a trainable, lightweight segmentation head [24]:

Lcorr(x, y, b) = −
∑
hwij

(FSC
hwij − b)max(Shwij , 0) (2)

3.2. Unsupervised Instance Segmentation

Although CutLER [60] provides high-quality instance seg-
mentation masks without human annotations, the predicted
masks are class-agnostic, and thus do not include semantic
labels for each instance. Our method addresses this issue by
grouping the detected instances with a clustering method. In
this way, instances assigned to the same cluster are associ-
ated with identical or closely related semantic information,
while instances residing in separate clusters exhibit seman-
tic dissimilarity.
Pseudo Semantic Labels. To train a detection and in-
stance segmentation model, we vector quantize the model
targets (pseudo semantic labels) by clustering the instance-
level features of the entire dataset, under constraints derived
from self-supervision. Specifically, our approach starts with
the generation of instance segmentation masks using Mask-
Cut [60]. Subsequently, we utilize the efficient K-Means
clustering method as implemented in USL [57] to cluster all
segmentation masks into semantically meaningful clusters.

We employ K-Means clustering to partition n instances
into C(≤ n) clusters, where each cluster is represented by
its centroid c [22, 41]. Each instance is assigned to the clus-
ter with the nearest centroid. Formally, we conduct a C-
way node partitioning, denoted as S = S1, S2, . . . , SC , that
minimizes the within-cluster sum of squares [36]:

min
S

C∑
i=1

∑
V ∈Si

|V − ci|2 = min
S

C∑
i=1

|Si|Var(Si) (3)

This optimization process is carried out iteratively using
the EM algorithm [42], starting from selecting random sam-
ples as initial centroids. As a result, this process assigns
pseudo semantic labels, denoted as yi, to each instance i,
with yi falling within the range of [1, C].

The resulting semantic labels serve multiple purposes: 1)
Semantic-aware copy-paste augmentation, which signifi-
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Figure 2. Overview of the training and inference pipeline for the proposed Unsupervised Universal Segmentation model (U2Seg) adept at
performing various image segmentation tasks—instance, semantic and panoptic—using a novel unified framework.
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Figure 3. Pipeline overview for generating masks and their semantically meaningful pseudo labels in semantic-aware instance segmenta-
tion. We first use MaskCut to generate class-agnostic instance masks, which are then grouped into semantically meaningful clusters. These
pseudo semantic labels are used for training a semantic-aware instance segmentor.

cantly improves CutLER’s capability to differentiate over-
lapping instances, especially when they share similar se-
mantic information. 2) Training instance segmentation
models: They serve as pseudo ground-truth labels for train-
ing a non-agnostic instance segmentor.
Semantic-aware Copy-Paste Augmentation. In cluttered
natural scenes, previous unsupervised instance segmenta-
tion model often fail to distinguish instances from the same
semantic class. This results in multiple instances being cap-
tured in the same mask. To distinguish multiple overlapping
objects and small objects in existing unsupervised detec-
tors, we employ semantic-aware copy-paste augmentation,
which includes several steps:

1) We begin by randomly selecting two instances, de-
noted as I1 and I2, both belonging to the same pseudo-
category (or group/cluster). 2) One of these instances un-
dergoes a transformation function T , which randomly re-
sizes and shifts the associated pseudo-masks. 3) The re-
sized instance is then pasted onto another image, creating
synthetic overlapping cases using the following equation:

I3 = I1 · (1− T (Mc)) + I2 · T (Mc) (4)

where · denotes element-wise multiplication.
Learning Unsupervised Instance Segmentor. Tradition-
ally, unsupervised segmentation community focused pri-
marily on class-agnostic instance segmentation [58, 60, 61],
whose outputs lack class labels. However, by incorporating
clustering information obtained from pseudo-labels on Im-
ageNet, as discussed above, our method allows the model to
predict not only the location and segmentation of an object
but also its pseudo semantic labels.

As observed by [60], “ground-truth” masks may miss
instances. However, a standard detection loss penalizes

predicted regions ri that do not overlap with the “ground-
truth”. Therefore, following [60], we drop the loss for
each predicted region ri that has a maximum overlap of
τ IoU with any of the ‘ground-truth’ instances: Ldrop(ri) =
1(IoUmax

i > τ IoU)Lvanilla(ri), where IoUmax
i denotes the

maximum IoU with all ‘ground-truth’ for ri and Lvanilla is
the vanilla loss function of detectors. Ldrop encourages the
exploration of image regions missed in the “ground-truth”.

3.3. Unsupervised Universal Image Segmentation

Pseudo Labels for Panoptic Segmentation. For each
pixel (i, j) in the image, we vector quantize pixels with
different semantics or instance membership, generating
pseudo semantic labels for panoptic segmentation. We as-
sign each pixel a semantic label based on “stuff” or “things”
identity. This results in an instance label (I(i, j)) for
“things” or a semantic label (S(i, j)) for “stuff”. The criti-
cal challenge in this process is distinguishing between pix-
els associated with “things” (countable, often foreground)
and ”stuff” (uncountable, usually background) [1].

To resolve this problem, our method unfolds in three
steps: 1) Semantic Labeling for “Things”: Utilizing the
class-agnostic instance segmentation capabilities of Cut-
LER [60], we first identify “things” within an image, gener-
ating class-agnostic instance masks. These masks then un-
dergo deep clustering to attribute a semantic label IC(i, j)
to each instance, detailed in Sec. 3.2. 2) Semantic Labeling
for “Stuff”: For “stuff” pixels, we deploy the unsupervised
semantic segmentation model STEGO [24], which distills
DINO’s unsupervised features into discrete semantic labels,
as outlined in 3.1. This step assigns a “stuff” semantic label
to all pixels, including those of “Things” identified earlier.
3) Integrating Labels for “Things” and “Stuff”. We deter-
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Task → Agn Instance Seg. Instance Seg. Semantic Seg. Panoptic Seg.
Datasets → COCO COCO VOC UVO COCO COCO Cityscapes
Metric → APbox APbox

50 APbox
50 ARbox

100 APbox
50 ARbox

100 APbox
50 ARbox

100 PixelAcc mIoU PQ SQ RQ PQ SQ RQ
FreeSOLO [58] 9.6 4.2 - - - - - - - - - - - - - -
TokenCut [61] 5.8 3.2 - - - - - - - - - - - - - -
DINO [8] - - - - - - - - 30.5 9.6 - - - - - -
PiCIE + H [14] - - - - - - - - 48.1 13.8 - - - - - -
STEGO [24] - - - - - - - - 56.9 28.2 - - - - - -
CutLER [59] 21.9 12.3 - - - - - - - - - - - - - -
CutLER+ - - 9.0 10.3 26.8 27.2 10.6 11.8 - - - - - - - -
CutLER+STEGO - - - - - - - - - - 12.4 64.9 15.5 12.4 36.1 15.2
U2Seg 22.8 13.0 11.8 21.5 31.0 48.1 10.8 25.0 63.9 30.2 16.1 71.1 19.9 17.6 52.7 21.7
vs.prev.SOTA +0.9 +0.7 +2.8 +11.2 +4.2 +20.9 +0.2 +13.2 +7.0 +2.0 +3.7 +6.2 +4.4 +5.2 +16.6 +6.5

Table 1. With a unified framework, U2Seg outperforms previous state-of-the-art methods tailored for individual tasks across vari-
ous datasets, including CutLER for unsupervised instance segmentation, STEGO for unsupervised semantic segmentation, and Cut-
LER+STEGO for unsupervised panoptic segmentation. “Agn Instance Seg” denotes class-agnostic instance segmentation.

mine a pixel’s classification as “things” or “stuff” using the
following logic:

I(i, j) =


IC(i, j), if IC(i, j) ̸=0

SS(i, j), if IC(i, j)=0 & SS(i, j) ̸=0

0, otherwise
(5)

This process merges the semantic labels, assigning priority
to “things” labels over “stuff” where applicable. We then
train a universal segmentation model on these pseudo-labels
for instance, semantic and panoptic segmentation tasks.
Learning Unsupervised Universal Image Segmentor. Af-
ter we obtain the pseudo labels for panoptic segmentation,
following [33], we construct an unsupervised universal im-
age segmentation model, that has two branches: instance
segmentation branch and semantic segmentation branch, to
address corresponding segmentation tasks. The model is
trained jointly for both branches, employing the following
loss function: L = λi(Lc + Lb + Lm) + λsLs, where Lc

represents the classification loss, Lb is the detection loss,
Lm is the segmentation loss, and Ls signifies the semantic
loss. The Ls is computed as a per-pixel cross-entropy loss
between the predicted and ground-truth labels. The hyper-
parameters λi and λs balance these two parts.

4. Experiments and Results

4.1. Experimental Setup

Training Data. Our model is trained on 1.3M unla-
beled images from ImageNet [17] and is evaluated di-
rectly across various benchmarks, unless otherwise noted.
For unsupervised semantic segmentation comparisons with
STEGO [24], we additionally fine-tune our model using
MSCOCO’s unlabeled images, following STEGO [24].
Test Data. For unsupervised instance segmentation, we
test our model on COCO val2017, PASCAL VOC
val2012 [21] and UVO val [53]. For unsupervised

panoptic segmentation, we evaluate our model on COCO
val2017 and Cityscapes val [15].
Evaluation Metrics. We use AP, AP50, AP75 and AR100

to evaluate the unsupervised instance segmentation; Pix-
elAcc and mIoU for unsupervised semantic segmentation;
PQ, RQ, SQ for unsupervised universal image segmenta-
tion. After predicting the instance with its semantic labels,
we use Hungarian matching to map the semantic labels to
class names in the real dataset (details in B). It evaluates
the consistency of the predicted semantic segments with the
ground truth labels, remaining unaffected by any permuta-
tions in the predicted class labels.
Implementation Details. Following [32], we employ
Panoptic Cascade Mask R-CNN [4, 32] with a ResNet50
backbone [25]. Following CutLER’s training recipe [60],
our model, initialized with DINO pre-trained weights, is
trained on unlabeled ImageNet for two epochs. It starts
with an initial learning rate of 0.01, which then decreases
after the first epoch to 5 × 10−5, with a batch size of 16
for all models. For unsupervised panoptic segmentation,
we maintain the same training schedule as unsupervised in-
stance segmentation for zero-shot evaluation. In non-zero-
shot scenarios, the models undergo training on a combina-
tion of unlabeled COCO and ImageNet datasets, beginning
with a learning rate of 0.01 over 90k steps.

4.2. Unsupervised Universal Image Segmentation

To the best of our knowledge, U2Seg represents the first
effort in addressing unsupervised semantic-aware instance,
semantic and panoptic segmentation, all unified under a sin-
gle framework. Due to the absence of benchmarks for unsu-
pervised semantic-aware instance segmentation and panop-
tic segmentation, we establish comprehensive benchmarks
and baselines for both tasks.

In Tab. 1, we demonstrate that U2Seg, utilizing a uni-
fied framework, significantly outperforms all previous ap-
proaches across various benchmarks and datasets. For
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Metric APbox APbox
50 APbox

75 ARbox
100 APmask APmask

50 APmask
75 ARmask

100

CutLER+ 5.9 9.0 6.1 10.3 5.3 8.6 5.5 9.3
U2Seg 7.3 11.8 7.5 21.5 6.4 11.2 6.4 18.5
∆ +1.4 +2.8 +1.4 +11.2 +1.1 +2.6 +0.9 +9.2
Table 2. The results for zero-shot unsupervised object detection
and instance segmentation on COCO val2017. The model is
trained on ImageNet with a cluster number of 800. We compare it
with CutLER+, a combination of CutLER and offline clustering.

Methods APbox APbox
50 APbox

75 ARbox
100

CutLER+ 17.1 26.8 18.1 27.2
U2Seg 19.0 31.0 19.5 48.1
∆ +1.9 +4.2 +1.4 +20.9

Table 3. The results for zero-shot unsupervised object detection
on PASCAL VOC val2012. The model is trained on ImageNet
with a cluster number of 800. We compare it with CutLER+, a
combination of CutLER and offline clustering.

Metric APbox APbox
50 ARbox

100 APmask APmask
50 ARmask

100

CutLER+ 6.3 10.6 11.8 6.0 9.0 10.4
U2Seg 6.8 10.8 25.0 6.2 9.5 21.0
∆ +0.5 +0.2 +13.2 +0.2 +0.5 +10.6

Table 4. The results for zero-shot unsupervised object detection
and instance segmentation on UVO val. The model is trained
on ImageNet with a cluster number of 800. We compare with
CutLER+, a combination of CutLER and offline clustering.

class-agnostic unsupervised instance segmentation, our
method achieves an increase of +0.9 in APbox compared
to CutLER [60]. This improvement is largely attributed to
our novel semantic-aware copy-paste augmentation, as de-
tailed in Sec. 3.2. For unsupervised semantic-aware in-
stance segmentation, we benchmark against the advanced
baseline CutLER+, derived from CutLER, and record a sub-
stantial gain of over 11.2% in AR. A more comprehen-
sive analysis of these results is provided in Sec. 4.3. For
unsupervised semantic segmentation, our approach sur-
passes the state-of-the-art STEGO with impressive margins
of +7.0 in PixelAcc and +2.0 in mIoU. Lastly, for unsu-
pervised panoptic segmentation, we compare against the
strong baseline of CutLER+STEGO, a hybrid of CutLER+
and STEGO, and observe performance gains of over 6.2%
in SQ on MSCOCO and a notable 16.6% improvement in
SQ on Cityscapes. Further comparisons and discussions on
this task are elaborated in Sec. 4.4.

4.3. Unsupervised Instance Segmentation

We performed extensive experiments for zero-shot unsu-
pervised instance segmentation. Given that prior meth-
ods [51, 58, 60, 61] are limited to class-agnostic instance
segmentation, we developed CutLER+, a strong baseline for
unsupervised semantic-aware instance segmentation, build-
ing upon the current state-of-the-art CutLER [60]. Cut-
LER+ operates in two steps: it first uses the pre-trained

Methods Pretrain PQ SQ RQ
zero-shot methods

U2Seg IN 15.7 46.6 19.8
non zero-shot methods

CutLER+STEGO COCO 12.4 36.1 15.2
U2Seg COCO 15.4 51.5 19.0
U2Seg COCO+IN 17.6 52.7 21.7
∆ +5.2 +16.6 +6.5

Table 5. Unsupervised Panoptic image segmentation on
Cityscapes val. We show PQ, SQ and RQ on zero-shot and non-
zero shot settings with the cluster number of 800. We compare
with CutLER+STEGO, a combination of CutLER+ and STEGO.

Methods Pretrain PQ SQ RQ
zero-shot methods

U2Seg IN 11.1 60.1 13.7
non zero-shot methods

CutLER+STEGO COCO 12.4 64.9 15.5
U2Seg COCO 15.3 66.5 19.1
U2Seg COCO+IN 16.1 71.1 19.9
∆ +3.7 +6.2 +4.4

Table 6. Unsupervised Panoptic image segmentation on COCO
val2017. We show PQ, SQ and RQ on zero-shot and non-zero
shot settings. We use CutLER+STEGO, a combination of Cut-
LER+ and STEGO, as a strong baseline.

CutLER to generate class-agnostic instance masks, and sub-
sequently assigns semantic labels to all instance masks
through offline clustering.

Tab. 2 demonstrates that U2Seg markedly improves
performance in both unsupervised object detection and
instance segmentation on MSCOCO, delivering a +2.8
boost in APbox

50 and a +2.6 rise in APmask
50 over CutLER+.

Additionally, our method sees a substantial increase of
approximately +10.0 in AR100. Results on PASCAL
VOC val2012 and UVO val are detailed in Tab. 3 and
Tab. 4, respectively. Notably, we achieve gains exceeding
+20% in AR for PASCAL VOC and +10% for UVO.

4.4. Unsupervised Panoptic Segmentation

For unsupervised panoptic/universal image segmentation,
our experiments span two scenarios. In the zero-shot set-
ting, the model is trained exclusively on unlabeled Ima-
geNet images. For non-zero-shot (in-domain) scenarios, we
train on unlabeled COCO images or a mix of COCO and
ImageNet. With no existing benchmarks for unsupervised
panoptic segmentation, we establish a new baseline by inte-
grating the state-of-the-art unsupervised semantic segmen-
tation from STEGO [24] with semantic-aware instance seg-
mentation from CutLER+ (discussed in Sec. 4.3), which are
then merged to create panoptic/universal segmentation out-
comes, referred to as CutLER+STEGO.

Tab. 6 presents the PQ, SQ, and RQ scores of U2Seg
on COCO val2017. U2Seg surpasses the strong baseline
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Figure 4. Universal image segmentation visualization in COCO val2017. We present the results with cluster IDs predicted by U2Seg,
categorizing athletes playing hockey (left columns) as “139”, those playing badminton (middle columns) as “52” and gentlemen (right
columns) as “132”. After Hungarian matching, the IDs are automatically matched to the category “person” for quantitative evaluations.

Raw Image U2Seg Ground-Truth Pseudo-Labels

Figure 5. Visualizations of U2Seg’s unsupervised Panoptic seg-
mentation results on COCO val2017 (after Hungarian match-
ing). The pseudo label is the naive combination of previous state-
of-the-art instance segmentation, i.e. CutLER [60], and semantic
segmentation, i.e., STEGO [24], results.

Raw Image U2Seg Ground-Truth Pseudo-LabelsOriginal Images Prediction Ground Truth Pseudo Label

person 65%

person 53%

vegetable

sky

building

person 51%

person 64%

person 56%

road

wall

building

car 89%

building

trafic sign 43%

road

sky

vegetable

bus 98%

building
building

car 98%

car 98%

road

sky
sky

vegetable vegetable

person 43%

wall

road

vegetable

sky

person 43%

car 98%

road

car 94% car 90%
car 70% vegetable

building

sky
trafic sign 75%

sky vegetable
vegetable

building

trafic sign 38%

trafic sign 54%

car 90%

building

Figure 6. Qualitative results of U2Seg’s Panoptic image segmen-
tation results on Cityscapes val (after Hungarian matching).

CutLER+STEGO with a +3.5 improvement in PQ and an
increase of over +4.0 in RQ. Qualitative results of U2Seg’s
performance is provided in Fig. 4, with the predicted seman-

tic labels visualized. The qualitative results suggest that an
over-clustering strategy in pseudo-label generation, e.g. set-
ting the number of clusters to 300 or 800, leads to highly
granular model predictions. For instance, as in Fig. 4, the
model distinctly categorizes hockey players as “139”, bad-
minton players as “52”, and gentlemen in suits as “132”,
showcasing its potent discriminative capabilities.

To quantitatively measure the quality of segmentation
masks and their corresponding semantic labels, we use
Hungarian matching (detailed in Appendix B) to align se-
mantic labels with the category names from the test dataset;
for instance, all three sub-clusters depicted in Fig. 4 are as-
signed to the ”person” category. The qualitative outcomes
post-Hungarian matching are shown in Fig. 5, where our
model demonstrates superior panoptic segmentation mask
quality. For instance, while the baseline tends to segment
parts separately (as seen with the man’s head and torso be-
ing treated as separate entities in the third row), our model
correctly identifies them as parts of a single object. This
level of recognition is also evident with the “trunks of the
motorcycle” example in the second row. For additional re-
sults, please see Appendix D. We also present results of the
more challenging dataset Cityscapes in Tab. 5 and Fig. 6.

4.5. Efficient Learning

Specifically, for object detection and instance segmentation,
we employ our unsupervised instance segmentation model,
with cluster count set to 300, to initialize the model weights.
We adopt the recipe from [56, 59] for model fine-tuning
across various annotation splits. For label-efficient panoptic
segmentation, we fine-tune the model initialized with our
zero-shot unsupervised framework on the same data splits.

The results are depicted in Fig. 7, where our model’s in-
stance segmentation performance is benchmarked against
MoCo-V2, DETReg, and CutLER. Our model consistently
surpasses the state-of-the-art with consistent gains in both
APbox and APmask. In scenarios with panoptic image seg-
mentation as the downstream task, we contrast our results
with MoCo-V2 and CutLER in terms of PQ, SQ, and RQ
metrics. The results illustrate a remarkable improvement,
effectively doubling the performance boost from MoCo-V2
to CutLER, especially in few-shot contexts with limited an-
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Figure 7. We evaluate the label-efficient learning performance on 3 different tasks: object detection (the left), instance segmentation (the
second left) and panoptic image segmentation (the last three).

Figure 8. U2Seg learns features that are more discriminative than
those learned by CutLER. The t-SNE [47] visualization of the fea-
tures from the model’s FC layer. We color-code each dot based on
its ground-truth category.

# Cluster COCO UVO VOC
APbox

50 ARbox
100 APbox

50 ARbox
100 APbox

50 ARbox
100

300 9.3 20.1 9.8 22.6 29.6 45.7
800 11.8 21.5 10.8 25.0 31.0 48.0
2911 13.3 22.1 15.1 25.8 31.6 48.3

Table 7. Over-clustering can improve the model performance. We
show results on different datasets for the unsupervised object de-
tection using different cluster numbers.

notations (1% or 2% labeled samples). This highlights the
practical value of our approach in real-world unsupervised
learning applications, where annotations are often scarce.

We attribute the performance gains primarily to the dis-
criminative features our model learns, as in Fig. 8, obtaining
effective model initialization for few-shot learning.

4.6. Ablation Studies

In this section, we conduct ablation study on U2Seg.
Numbers of clusters. The choice of cluster quantity sig-
nificantly affects the model’s representation granularity.
Our ablation study on various cluster counts, as detailed
in Tab. 7, reveals their impact on model performance. Over-
clustering generally leads to a finer level of detail, prompt-
ing the model to learn more discriminative features.

conf # matched APbox
50 ARbox

100

0.9 109 10.9 13.1
0.7 225 11.6 18.0
0.6 282 11.8 19.7
0.4 389 11.8 21.5
0.2 513 11.3 21.8
0.0 718 8.6 18.4

(a) Conf’s effect on accuracy.

IoU # matched APbox
50 ARbox

100

0.9 295 10.8 19.7
0.8 348 11.4 20.7
0.4 414 11.5 21.6
0.2 450 11.5 21.1
0.0 494 9.2 17.7
0.6 389 11.8 21.5

(b) IoU’s effect on accuracy.
Table 8. Impact of Confidence and IoU on Hungarian Matching
Performance: The left table illustrates the outcomes at a fixed IoU
of 0.6 while varying the confidence scores. Conversely, the right
table displays the results with a constant confidence of 0.4, altering
the IoU values. The cluster number is 800.

Hungarian matching. As our trained model could pre-
dict the instance with corresponding semantic labels, we
are able to go further beyond unsupervised class-agnostic
instance segmentation. To quantitatively evaluate the per-
formance, Hungarain matching is employed to match the
predicted semantic labels to the ground-truth dataset cate-
gories. See Appendix B for details of the adopted Hungar-
ian matching used in our evaluation. As shown in Tab. 8,
the two parameters conf threshold and IoU threshold also
affect the precision and recall.

5. Summary
We present U2Seg, a novel Unsupervised Universal Image
Segmentation model, adept at performing unsupervised in-
stance, semantic, and panoptic segmentation tasks within
a unified framework. Evaluated on extensive benchmarks,
U2Seg consistently outperforms previous state-of-the-art
methods designed for individual tasks. Additionally, U2Seg
achieves the new state-of-the-art for label-efficient panoptic
segmentation and instance segmentation. We anticipate that
U2Seg, free from the constraints of human annotations, will
demonstrate enhanced performance when scaled up with
more training data, representing an important direction for
our future research.
Acknowledgement: Trevor Darrell, Dantong Niu and
Xudong Wang were funded by DoD including DARPA
LwLL and the Berkeley AI Research (BAIR) Commons.
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