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Abstract

Recent advances in unsupervised learning have demon-
strated the ability of large vision models to achieve promis-
ing results on downstream tasks by pre-training on large
amount of unlabelled data. Such pre-training techniques
have also been explored recently in the remote sensing do-
main due to the availability of large amount of unlabelled
data. Different from standard natural image datasets, re-
mote sensing data is acquired from various sensor technolo-
gies and exhibit diverse range of scale variations as well
as modalities. Existing satellite image pre-training meth-
ods either ignore the scale information present in the re-
mote sensing imagery or restrict themselves to use only a
single type of data modality. In this paper, we re-visit trans-
formers pre-training and leverage multi-scale information
that is effectively utilized with multiple modalities. Our
proposed approach, named SatMAE++, performs multi-
scale pre-training and utilizes convolution based upsam-
pling blocks to reconstruct the image at higher scales mak-
ing it extensible to include more scales. Compared to
existing works, the proposed SatMAE++ with multi-scale
pre-training is equally effective for both optical as well
as multi-spectral imagery. [Extensive experiments on six
datasets reveal the merits of proposed contributions, lead-
ing to state-of-the-art performance on all datasets. Sat-
MAE++ achieves mean average precision (mAP) gain of
2.5% for multi-label classification task on BigEarthNet
dataset. Our code and pre-trained models are available at
https://github.com/techmn/satmae_pp.

1. Introduction

Remote sensing employs a wide range of sensor technolo-
gies to acquire data for earth observation and monitoring
through satellites and aircrafts. The acquired data may dif-
fer in terms of Ground Sample Distance (GSD) based on
sensor technology and altitude. GSD refers to the distance
between the two adjacent pixels measured on ground i.e.,

GSD of 0.3 meter in an image means adjacent pixels in the
image are 0.3 meter apart on the ground. Accordingly, an
image with size of 10 x 10 pixels may span over the city
depending on the GSD of the image. Therefore, scale of the
objects may vary considerably within a single image. In ad-
dition, multi-spectral (Sentinel-2) data captured from satel-
lite utilize different sensors to acquire data. Consequently,
multi-spectral data may possess different GSDs within the
single image. Various bands combination in multi-spectral
data can be used to highlight different information. For ex-
ample, short wave and near infrared bands combination may
be used for crop and agriculture monitoring. Therefore, it is
desired to utilize the multi-scale information from various
sensor’s data for remote sensing tasks.

Even though the utilization of pre-trained models on
large volume of data for remote sensing applications are in-
creasingly popular, multi-scale information in remote sens-
ing data is scarcely exploited by the vision community.
Recently, self supervised learning on remote sensing data
is widely explored [2, 16-18]. SatMAE [5] demonstrate
the effectiveness of pre-training the transformers on large
amount of data for various downstream remote sensing
tasks. However, SatMAE [5] does not exploit the multi-
scale information present in the remote sensing satellite im-
agery and is not able to generalize over domains having im-
ages with multiple scales. ScaleMAE [20] is a newly in-
troduced framework that proposes a strategy to encode the
multi-scale information present in optical remote sensing
data. The authors propose a GSD based positional encod-
ing (GSDPE) to inform the model about the position and
scale of the patch tokens. However, the proposed GSDPE
is constrained to be utilized with the RGB (optical) images
only. As multi-spectral (Sentinel-2) images have different
GSD resolutions for different channels (see Tab. 1 for more
description) and ScaleMAE requires image channels to be
stacked together [20], therefore, GSDPE cannot be utilized
with multi-spectral data. Additionally, ScaleMAE intro-
duced a sophisticated Laplacian pyramid based decoder en-
abling the model to learn multi-scale representations. Al-
ternatively, SatMAE shows that the standard sinusoidal po-
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sition encodings can be easily extended for multi-spectral

data. We argue that the MAE can still learn better multi-

scale representations without using GSDPE and sophisti-

cated Laplacian based decoder. To this end, we propose a

framework SatMAE++ that uses the standard position en-

coding and reconstruct the image at multiple scale levels by
utilizing convolution based upsampling blocks. In general,
our contributions are:

* We empirically demonstrate that the standard position en-
codings along with multi-scale reconstruction encourage
the model to learn better feature representations.

* Based on our observations, we propose a simple yet
effective multi-scale pre-training approach, named Sat-
MAE++, that achieves impressive performance on both
optical as well as multi-spectral satellite imagery.

* We perform extensive experimentation on six datasets to
validate the efficacy of our multi-scale pre-training frame-
work. Our SATMAE++ sets a new state-of-the-art on all
six datasets. On the downstream task of land cover clas-
sification, our SatMAE++ achieves an absolute gain of
3.6% over the baseline [5].

2. Related Work
2.1. Representation Learning for Satellite Imagery

Recently, self-supervised learning has been widely utilized
as pre-training step for various remote sensing tasks en-
abling the model to learn rich feature representation from
unlabelled data. GASSL [2] and SeCo [16] employ the con-
trastive learning strategy to demonstrate the effectiveness
of pre-training on different downstream tasks. Neumann
et. al. [18] explore the idea of in-domain representation
learning for remote sensing imagery. Mendieta et. al. [17]
investigated the continual learning strategy and mask im-
age modeling technique in their work. SatMAE [5] utilized
the mask image modeling for multi-spectral, temporal and
optical remote sensing data. ScaleMAE [20] introduces a
ground sample distance (GSD) based positional encoding
for optical satellite imagery to encode the scale informa-
tion present in the remote sensing data. While ScaleMAE
has shown promising results on optical satellite data, its
complicated GSD positional encoding limits its ability to
be utilized for multi-spectral data. In contrast, we simplify
the idea of extracting multi-scale information in optical and
multi-spectral satellite data.

2.2. Multi-scale Information

Visual images typically contain objects of various sizes and
scales. It is therefore desired to utilize the multi-scale in-
formation to learn better semantic representations. Con-
volutional neural networks and transformers [1, 7, 9, 10,
14, 15, 19, 22] have employed the multi-scale information
and show promising results on classification, detection, and

Table 1. Sentinel-2 bands description. The multi-spectral data
contains three different GSD resolutions ranging from 10m to
60m. Different band combinations can be utilized to highlight spe-
cific information in the multi-spectral image.

Band Description GSD (m) | Central Wavelength (nm)
Bl Ultra Blue (Aerosol) 60 443
B2 Blue 10 490
B3 Green 10 560
B4 Red 10 665
B5 Red Edge 1 20 705
B6 Red Edge 2 20 740
B7 Red Edge 3 20 783
B8 Near Infra Red 10 842
B8A Red Edge 4 20 865
B9 Water Vapor 60 940
B10 Cirrus 60 1375
Bl11 Short Wave Infra Red 1 20 1610
B12 Short Wave Infra Red 2 20 2190

segmentation tasks. ConvMAE [8] introduces a hierarchi-
cal masking strategy to learn multi-scale features for a hy-
brid convolution-transformer encoder. Point-M2AE [24]
proposes a multi-scale auto encoder for 3D point clouds.
ScaleMAE [20] propose a Laplacian based decoder to learn
multi-scale information. We rationalize the method and in-
troduce an extensible convolution based upsampling block
to reconstruct the feature maps at multiple scales.

3. Background

Masked Auto-Encoder (MAE) takes an input I €
REXHXW “and resizes the image into sequence S of non-
overlapping patches having patch size P, where S €
RV*P*C and N = (Z. W) is the number of patches. A
patch embedding layer f : R” ¢ RD is utilized to
obtain the sequence S € RV*P of embedded tokens. A
fraction m of the IV tokens are masked and the remaining
1 — m tokens are input to the transformer encoder that uti-
lizes the position embedding to capture the spatial informa-
tion of the patches in the image. In decoder, the visible
tokens are placed back to their original sequence positions
and learnable mask tokens are appended to obtain NV tokens.
The positional embeddings are added to the N tokens and
fed to a series of transformer blocks. The decoder finally
reconstruct the image by utilizing the mean squared error
loss.

Positional Encodings Transformers utilize the positional
encodings to learn the spatial locations of the patch tokens.
In general, transformers use the sinusoidal positional encod-
ings given as:

xT 72‘ = ) 20
v, (pos, 29) sm(Q%)

ey

)

where pos is the position, ¢ is feature dimension index, d
is the total possible positions, and {2 is a large constant.

vy (pos,2i + 1) = cos(
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Figure 1. Illustration of Mask Autoencoder (MAE) framework for SatMAE++. The input image having spatial resolution of (4H, 4W)
is downsampled twice to obtain the images of resolution (2H,2W) and (H, W), respectively. We then feed the image with resolution
(H,W) to the MAE similar to the SatMAE [5] framework. The decoder reconstructs the image at the resolution (H, W) and apply
MSE loss to measure reconstruction quality. The reconstructed output is projected back to the feature space and is upsampled through
upsampling blocks to obtain features at (2H,2W) and (4H,4W) resolutions. The upsampled outputs are projected back to the image
space and L1 loss is utilized to penalize the reconstructions at higher resolutions. The overall loss is the weighted mean of all the losses.

4. Method
4.1. Baseline Framework

We adapt the recent SatMAE [5] framework as our base-
line. SatMAE follows the vanilla MAE based architecture
for RGB data as discussed in section 3. To deal with multi-
spectral data, SatMAE performs channel grouping based on
the GSDs of the multi-spectral channels. To make the train-
ing stable and reduce the memory requirements of the self
attention operation, spatial size of the input is reduced to
96 x 96 instead of the standard input size of 224 x 224
[5]. Accordingly, patch size is decreased to 8. Then it
creates separate patch embeddings layers and concatenate
them in the spatial dimension. SatMAE modifies the posi-
tion encoding of MAE to incorporate the spectral informa-
tion. To this end, separate encoding for each channel group
is created and concatenated to the Zpos i, Ypos,: POsitional
encodings such that the final encoding dimension is D. Af-
terwards, it passes the features to the transformer encoder.
Similar to the vanilla MAE, the decoder takes the output of
transformer encoder, place the visible tokens to their origi-
nal position and learnable mask tokens are appended to ob-
tain the /V tokens. Subsequently, the spectral encodings are
added to the patch tokens and feed to the series of trans-
former blocks. Finally, mean squared error (MSE) loss is
utilized to measure the reconstruction quality.

Limitations: Although the above baseline framework op-
erates well on RGB and multi-spectral data, however it does
not exploit the multi-scale information present in the re-

mote sensing data. In addition, the above baseline frame-
work strives to generalize across domains having images at
multiple scale levels. Furthermore, ScaleMAE [20] shows
that the scale information can be encoded through a GSD
based positional embeddings. However, the GSD based po-
sitional embeddings introduced by ScaleMAE can only be
used with the RGB data that has same GSD resolution for
each channel [20]. Therefore, it is desired to rethink the
design of the SatMAE framework to learn the multi-scale
information that is not constrained to single data modality.

4.2. Overall Architecture

Fig. 1 illustrates the overall framework of SatMAE++ that
overcomes the limitations of baseline framework SatMAE
[5] and other recent approaches for multi-scale pre-training
on multi-spectral (fMoW-Sentinel) as well as RGB data
(fMoW-RGB). We take input image at most of three scale
levels and feed the image at lowest scale level to the Sat-
MAE framework. The base framework takes the input im-
age, apply the patch embedding and masking operations,
and feed the visible tokens to the transformer encoder. Sub-
sequently, decoder takes the output of the encoder and re-
constructs the image having same spatial dimension as the
lowest scale level input. The reconstructed output from the
SatMAE model is utilized by the upsample blocks to per-
form fine grained reconstruction at higher scale levels. Re-
construction at higher scales encourage the model to learn
multi-scale representations thereby improving the perfor-
mance on various downstream tasks.
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Upsample Block: UpsampleFig. 2 shows the architec-
ture of the upsample block. It takes input features X €
REXHXW and pass them through a transpose convolu-
tion layer to upsample the spatial resolution of the fea-
tures. We normalize the upsampled features and apply the
leaky relu activation operation afterwards. Then, a resid-
ual block, comprising of two convolution layers, is uti-
lized for local feature enhancement. The enhanced features
X € ROX2HX2W are projected back to the spatial domain
by using a linear projection layer and mean absolute error is
utilized to compute the reconstruction error between the in-
put and the reconstructed image. Next, we discuss in detail
the multi-scale reconstruction procedure at two and three
scale levels.

4.2.1 Reconstruction at Two Scale Levels

Let I € REXHXW be an input image to the MAE. We take
an image I of resolution RE*2H*2W and down-scale it to
obtain the image I of size R*H#*W  The image I is fed
into the MAE which first utilizes the patch embedding lay-
ers to patchify the input image. In case of multi-spectral
input, separate patch embedding layers is used for different
groups of band channels. Afterwards, patch tokens of dif-
ferent groups are concatenated along the spatial dimension.
We mask the 75% of the patch tokens similar to the other
MAE methods. Then, positional encodings are added to the
visible patch tokens.

Following [5], we utilize the general positional encod-
ings (as illustrated in Eq. 1) that does not depend on the
GSD information. The visible patch tokens are fed to a se-
ries of transformer blocks that produce the encoded visi-
ble features. Similar to the SatMAE, decoder takes the en-
coded visible features from the transformer encoder and ap-
ply a linear projection to reduce the embedding dimensions.
Then, visible features are placed back to their original in-
dex positions and learnable mask tokens are appended to
the visible tokens. Afterwards, RGB or multi-spectral posi-
tional encodings are added to the patch tokens. Eventually,
the patch tokens are fed to the decoder transformer and a
final projection layer maps the decoded features back to the
spatial domain. The decoded image F' is reshaped to the
original input dimensions and mean squared error is utilized
to compute reconstruction quality.

Ly=1yr (F-1) 2)

After obtaining the reconstructed input from the decoder,
we use linear projection to map the reconstructed image
back to the feature space. We then utilize transpose con-
volution to upsample the feature maps at a resolution of
(2H x 2W). The upsampled feature maps are passed from
a residual block that is composed of two convolution layers.
Finally, we project the features back to the image space to
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Figure 2. The illustration of upsample block used in SatMAE++
framework. Input features X are upsampled by utilizing the trans-
pose convolution operation. Afterwards, a residual block which is
composed of two convolution layers is employed to enhance the
upsampled features given as X.

obtain the scaled reconstructed image F and apply the L1
loss to analyze the reconstruction performance of model at
a higher scale.
1 n r 7

LZZﬁ i=1 |F_I| (3)
Likewise super-resolution methods, we utilize the L1 loss at
higher scales so that the model can learn to reconstruct the
actual image values. Overall loss is given as:

Loss = a1 L1 + asls “4)

4.2.2 Reconstruction at Three Scale Levels

For multi-spectral data, we reconstruct the image at three
scale levels as the resolution of the model input is smaller
compared to the RGB data (RGB uses 224 x 224 pixels).
Here, we take image I at a higher resolution of RC*4H x4W
We then down sample the image I twice to obtain the im-
ages I € ROX2HX2W and [ € REOXH*W respectively. As
discussed in the previous section, we reconstruct the image
F at spatial resolution of (H, W'). Afterwards, a linear pro-
jection layer is applied to project the data to feature space
and input it to the upsample block. The upsample block
uses the transpose convolution to increase the spatial reso-
lution by two times which is then fed to the residual con-
volution block to obtain features F having spatial resolu-
tion (2H, 2W). The features F are input to another upsam-
ple block to obtain features ' with dimensions (4H, 4W).
Both features F' and F are projected back to the image space
and L1 loss is applied to measure reconstructed features
quality. The overall loss is the weighted average of the three
losses given as:

1= - =
Ly==Y |F—1
3 n;| | (5)

Loss = a1y + aslo + asgls
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Figure 3. SatMAE++ reconstruction results at multi-scale level. Examples from fMoW-Sentinel dataset are shown here. For illustration, we
show the RGB channels of the multi-spectral data here. The images are reconstructed at resolutions of (H, W), (2H,2W), and (4H,4W),
respectively. We observe that the proposed model provide better reconstruction results compared to SatMAE at resolution of (H, W).

5. Experiments

In this section, we first discuss about the mainstream
datasets. Then, we explain the pre-training and finetuning
procedures utilized for the mainstream benchmarks. Af-
terwards, we discuss about the datasets used for transfer
learning experiments and its finetuning methodology. We
further discuss the performance of learned representations
through simplified multi-scale MAE pre-training for Sat-
MAE++ and also present the fine tuning results on down-
stream tasks.

5.1. Pre-training Datasets

We utilized two publicly available large scale datasets for
pre-training the vision transformer on multi-spectral and
RGB satellite data.

fMoW-RGB: Functional Map of the World (fMoW) [4] is
a large scale publicly available dataset of high resolution
satellite images. The dataset is divided into 62 categories
for classification task and comprises of about 363k training
and 53k test images.

fMoW-Sentinel: SatMAE [5] refines and extended
the fMoW-RGB for classification task and includes the
Sentinel-2 data for the images. Similar to the fMoW-RGB,
this dataset has 62 class categories. The dataset contains
greater number of images and comprises of 712874 train-
ing, 84939 validation, and 84966 test images.
Reconstruction Results: We present the multi-scale recon-
struction results on fMoW-Sentinel dataset in Fig. 3. We
observe the improvement in reconstruction quality of the
image by employing multi-scale pre-training. Furthermore,

Table 2. Comparison of state-of-the-art methods on the valida-
tion set of f/MoW-RGB dataset. * represents that we reproduce
the results using the public codebase provided by the authors and
pre-train the model for 800 epochs on fMoW-RGB, which are con-
sistent to the performance reported in ScaleMAE [20]

Method Backbone Topl Acc.
GASSL [2] ResNet-50 71.55
MoCo-V2 [11] ResNet-50 64.34
MAE [12] ViT-Large 68.4
ConvMAE [8] Conv ViT-Large 74.1
ScaleMAE [20] ViT-Large 77.9
SatMAE [5] ViT-Large 77.84
SatMAE™* [5] ViT-Large 73.87
SatMAE++ (Ours) ViT-Large 78.14

we compare the reconstruction results of our approach with
the baseline approach (SatMAE) in Fig. 4. The reconstruc-
tion quality of SatMAE on visible patches is much worse in
comparison with the masked patches. However, our multi-
scale approach improves the quality of reconstruction for
both visible and masked patches. While achieving favor-
able reconstruction compared to SatMAE (see Fig. 3 and
4), we observe our approach to struggle in some cases to
reconstruct fine-grained structural details.

5.2. Pre-training and Finetuning on f/MoW-RGB

Pre-training: Similar to the SatMAE [5] and ScaleMAE
[20], we pre-train the ViT-Large [6] model on fMoW-RGB
dataset. The configuration of model is same as utilized in
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Figure 4. Here, we compare the reconstruction performance of our
framework with the baseline SatMAE. We observe that the recon-
struction results of SatMAE on visible patches is worse compared
to the masked patches. Whereas our framework provides much
better results on all the patches including the visible patches. The
above reported results demonstrate the effectiveness of multi-scale
pre-training framework SatMAE++.

[5] i.e., input image of spatial resolution (224 x 224) and
patch size of 16. During pre-training, we resize the shorter
side of the image to 448 pixels and then perform random
crop of 448 x 448 pixels from the resized image. The im-
age of size 448 x 448 pixels is then downsampled to a lower
resolution of 224 x 224 pixels by using bilinear interpola-
tion. We then input the image of size 224 x 224 pixels to
the model. We use AdamW optimizer and cosine learning
rate scheduler in our pre-training experiments. The initial
learning rate is set to 7e-4 and batch size of 64 is used for
single GPU. Similar to [5] 75% of the patches are masked
while pre-training the model. We utilize 8 NVIDIA V100
GPUs to train the model for 800 epochs.

Finetuning: We finetune the ViT-Large model by loading
the pre-training weights in an end-to-end manner. The ini-
tial learning rate is set to le-3 and batch size of 8 is used
for single GPU. We use the AdamW optimizer with cosine
scheduler and keep the configurations of augmentations and
weight decay similar to the [5]. We finetune the model for
50 epochs on 8 NVIDIA V100 GPUs.

Discussion: We present the finetuning results of our ap-
proach in Tab. 2. The state-of-the-art ScaleMAE [20] shows
an improved performance of 77.9% over the SatMAE [5] by
utilizing sophisticated GSD based positional encodings and
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Figure 5. Illustration of finetuning convergence on validation set
of fMoW-Sentinel dataset. We observe that the model pre-trained
with multi-scales achieves faster convergence as compared the
model pre-trained with single or less scales. The model trained
with single scale achieves highest score of 61.61 at 20th epoch
whereas the model that utilised three scales in pre-training con-
verges earlier and achieves highest score at 12th epoch.

Laplacian decoder. However, our approach outperforms the
state-of-the-art ScaleMAE [20] by providing the score of
78.14% without using the sophisticated GSD based posi-
tional encodings. Compared to the baseline method [5], our
approach provides an absolute gain of 4.27% over the re-
produced results and 0.3% over the numbers reported in the

paper.
5.3. Pre-training and Finetuning on fMoW-Sentinel

Pre-training: Following [5], we pre-train the ViT-Large
model on fMoW-Sentinel dataset having image size of 96 x
96 and patch size of 8. We employ the SatMAE+Group+IM
strategy of grouping the channels and independent masking
for the muli-spectral data. All 13 bands of the Sentinel-
2 images are not utilized and we discard the channels B1,
B9, and B10 during pre-training and finetuning. We follow
the channel grouping approach of [5] and create (i) group
containing B2, B3, B4, B8 channels (ii) group compris-
ing of BS5, B6, B7, B8A channels, and (iii) group of B11,
B12 channels, respectively. The groups are selected to have
same GSD resolution. During pre-training stage, the shorter
side of the image is resized to 384 pixels and random crop-
ping is used to obtain image of size 384 x 384 pixels. We
then interpolate 384 x 384 sized image to obtain two down
sampled images of sizes 192 x 192 and 96 x 96 pixels, re-
spectively. The resized image having spatial resolution of
96 x 96 is input to the model. The model is pre-trained with
a base learning rate of 1e-4 and batch size of 8 for 50 epochs
on 8 NVIDIA V100 GPUs. The remaining settings of opti-
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Table 3. Finetuning results on the validation set of fMoW-Sentinel
dataset. * represents that we reproduce the results using the pub-
licly available codebase provided by the authors and pre-train the
model on fMoW-Sentinel for 50 epochs.

Table 4. Ablation study demonstrating the effect of using multiple
scales in pre-training. Our SatMAE++ with three scales provides
a superior performance with top-1 accuracy of 63.23%.

Method Backbone | Pre-training Scales | Top1 Acc.
Method Backbone Topl Acc. SatMAE ViT-Large 1 61.61
MoCo-V3 ViT-Base 50.45 SatMAE++ | ViT-Large 2 62.86
MoCo-V3+Group ViT-Base 51.33 SatMAE++ | ViT-Large 3 63.23
SatMAE* [5] ViT-Base 60.01
SatMAE++ (Ours) ViT-Base 62.69 .
ScaleMAE" [20] ViT-Large 4201 Convergence.Rate: . Fig. 5 .shows the convergence of.the
SatMAE [5] ViT-Large 61.48 model pre-trained with multiple scales on fMoW-Sentinel
SatMAE* [5] ViT-Large 61.61 dataset. We observe that the model trained with single
SatMAE++ (Ours) ViT-Large 63.23 scale reaches its highest performance score of 61.61 at 20th

mizer, learning rate scheduler, weight decay, masking ratio,
are kept same as listed in [5].

Finetuning: In the finetuning stage, we load the pre-
training weights of the ViT-Large model and finetune it for
30 epochs. We used the base learning rate of 2e-4, input
size of 96 x 96 pixels and patch size of 8. Following [5],
we utilize AdamW optimizer, cosine scheduler and same
data augmentations. We employ 8 NVIDIA V100 GPUs
for finetuning the model.

Discussion: We report the state-of-the-art comparison on
fMoW-Sentinel dataset in Tab. 3. Our approach that em-
ploys multi-scale pre-training provides significant improve-
ment over the SatMAE [5]. In comparison to the state-
of-the-art method SatMAE that utilizes ViT-Large back-
bone, our approach provides an improved accuracy score of
1.75%. In case of ViT-Base backbone, SatMAE++ achieves
a gain of 2.68% in the terms of topl accuracy compared to
the SatMAE method which is even better than the score of
SatMAE method obtained by utilizing the ViT-Large back-
bone. We observe that the muli-scale pre-training encour-
age the model to learn better feature representations espe-
cially when the image resolution varies considerably in the
given dataset.

Ablation Studies: To demonstrate the efficacy of multi-
scale pre-training, we pre-train the ViT-Large model with
one, two and three scales. Afterwards, we finetune the
model by loading the respective pre-trained weights on
fMoW-Sentinel dataset. Tab. 4 shows the results of finetun-
ing by loading the pre-train weights of one, two and three
scales. We observe consistent improvement in the perfor-
mance of the model as pre-training scales are increased.
Compared to the single scale level, the improvement of the
model is significant when two scales are utilized i.e., a gain
of 1.25% is achieved. However, the performance gain is
0.37% when we shift from the two scale to three scale lev-
els. We hypothesize that after a certain number of scale
levels, the effect of multi-scale pre-training may be insignif-
icant.

epoch. Whereas when multi-scale pre-training is utilized,
model converges earlier and achieves it highest performance
score of 63.23 on the 12th epoch. From this, we infer that
the multi-scale pre-training can uplift the performance of
the models and provide faster convergence especially when
data has diverse range of scale variations.

5.4. Downstream Datasets

To demonstrate the effectiveness of our pre-training ap-
proach, we utilize following datasets corresponding to the
land cover and multi-label classification tasks.

EuroSAT [13]is a publicly available remote sensing dataset
for land use and land cover (LULC) classification. It is cat-
egorized into 10 classes and comprises of 27000 images.
The dataset is available in both RGB and multi-spectral
(Sentinel-2) format. Following [5], we use the data split
provided by [18].

RESISC-45 [3] is another public remote sensing scene clas-
sification dataset comprising of 31500 images having 45
scene classes. We follow the [20] for train / val splits of
the dataset.

UC-Merced [23] is a public land use remote sensing image
dataset which contains 21 scene classes. Each class com-
prises of 100 images that are manually selected from the
US regions. We follow the data split provided by [18] in
our experiments.

BigEarthNet [21] is a multi-label land cover classification
dataset and is publicly available for research purpose. The
dataset is composed of 590326 Sentinel-2 images and cate-
gorized into 19 classes. Following [5], we use 10% of the
train data in our experiments and utilize the data splits avail-
able at [18].

5.5. Transfer Learning on Downstream Datasets

We finetune the pre-trained ViT-Large model (SatMAE++)
on various downstream remote sensing tasks such as land
cover and multi-label classification. SatMAE++ provides
consistent improvement on the downstream tasks compared
to the other state-of-the-art methods existing in literature.
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Table 5. Land cover classification on EuroSAT dataset. { denotes
that the model uses multi-spectral data.

Method Backbone Top1 Acc.
GASSL [2] ResNet-18 89.51
SeCo [16] ResNet-18 93.14
SatMAE [5] ViT-Large 95.74
SatMAE! [5] ViT-Large 98.98
SatMAE++ (Ours) ViT-Large 99.04
Table 6. Finetuning results of land cover classification on
RESISC-45 dataset.
Method Backbone Topl Acc.
MAE [12] ViT-Large 93.3
ConvMAE [8] ViT-Large 95.0
SatMAE [5] ViT-Large 94.8
ScaleMAE [20] ViT-Large 95.7
SatMAE++ (Ours) ViT-Large 97.48

5.5.1 Land Cover Classification

We present the transfer learning experiments for land cover
classification task on three publicly available remote sens-
ing datasets including EuroSAT [13], RESISC-45 [3], and
UC-Merced [23]. We utilize the configuration settings used
in fMoW-RGB finetuning experiment for transfer learning
on these datasets.

Finetuning on EuroSAT: We present the finetuning re-
sults on EuroSAT dataset in Tab. 5. We observe that the
multi-scale pre-training approach provides reasonable im-
provement over other approaches. It is notable that Sat-
MAE++ surpasses the performance score of the state-of-
the-art SatMAE without using the multi-spectral informa-
tion and achieves an accuracy score of 99.01%.

Finetuning on RESISC-45: Tab. 6 shows the scene classi-
fication performance on RESISC-45 dataset. Among recent
methods, ScaleMAE [20] achieves superior performance,
however, ViT-Large when finetuned by using the pre-trained
weights of our approach, surpasses the ScaleMAE score and
achieves an accuracy of 97.48%.

Finetuning on UC-Merced: We further report the effec-
tiveness of multi-scale MAE pre-training on another pop-
ular LULC dataset (Tab. 7). Here, we report the results
of finetuning the ViT-Large model on UC-Merced dataset
by loading the pre-trained weights of SatMAE and our ap-
proach, respectively. The ViT-Large model provides the
accuracy score of 94.05% when utilizes the pre-trained
weights of SatMAE. However, the performance of ViT-
Large improves by 3.6% approx when finetuning is per-
formed by loading the pre-trained weights of our approach.

Table 7. Finetuning results of land cover classification on UC-
Merced dataset.

Method Backbone Top1 Acc.
SatMAE [5] ViT-Large 94.05
SatMAE++ (Ours) ViT-Large 97.62

Table 8. Multi-Label classification results on BigEarthNet [21]
dataset. Following [5], we use mean Average Precision (mAP)
metric and newer set of class labels. The reported results utilize
10% of training data. I denotes that model uses RGB bands only.

Method Backbone mAP
GASSL [2] Resnet-50 80.20
SeCot [16] Resnet-50 82.62
SatMAE [5] ViT-Large 82.13
SatMAE++ (Ours) ViT-Large 85.11

5.5.2 Multi-Label Classification

Finally, we report the performance of our approach on
multi-label classification task. We finetune the ViT-Large
model on BigEarthNet [21] dataset by loading the pre-train
weights of fMoW-Sentinel dataset. We keep the same con-
figurations for finetuning as utilized in fMoW-Sentinel ex-
periment. As the task is multi-label classification, therefore
soft target cross entropy loss is replaced with the multi-label
soft margin loss. Following [5], we use the average preci-
sion metric as a performance measure of the model.

Tab. 8 shows the finetuning results on BigEarthNet
dataset. Similar to the other downstream tasks, our frame-
work performs favorably in the case of multi-label classifi-
cation task. Compared to the state-of-the-art frameworks,
SeCo [16] performs fairly well and achieves the state-of-
the-art score of 82.62%. SatMAE [5] has a slightly lower
score of 82.13% as compared to the SeCo [16]. How-
ever, our framework provides significant improvement and
achieves an average precision score of 85.11%.

6. Conclusion

Remote sensing imagery offers a wide range of resolutions
and spectral bands having multi-scale information incorpo-
rated within it. Existing state-of-the-art methods struggle
to effectively utilize the multi-scale information along with
the multi-spectral data. We propose a framework, named
SatMAE++, to incorporate multi-scale information thereby
improving the model performance and achieving faster con-
vergence during finetuning. Our SatMAE++ is easily exten-
sible to multiple scale levels and is not restricted to single
type of data modality. Extensive experimentation on several
downstream and mainstream datasets reveal the efficacy of
our approach. Future work includes extending the proposed
multi-scale pre-training for dense prediction tasks.
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