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Abstract

Action Localization is a challenging problem that com-
bines detection and recognition tasks, which are often ad-
dressed separately. State-of-the-art methods rely on off-the-
shelf bounding box detections pre-computed at high resolu-
tion, and propose transformer models that focus on the classi-
fication task alone. Such two-stage solutions are prohibitive
for real-time deployment. On the other hand, single-stage
methods target both tasks by devoting part of the network
(generally the backbone) to sharing the majority of the work-
load, compromising performance for speed. These methods
build on adding a DETR head with learnable queries that
after cross- and self-attention can be sent to corresponding
MLPs for detecting a person’s bounding box and action.
However, DETR-like architectures are challenging to train
and can incur in big complexity.

In this paper, we observe that a straight bipartite match-
ing loss can be applied to the output tokens of a vision
transformer. This results in a backbone + MLP architec-
ture that can do both tasks without the need of an extra
encoder-decoder head and learnable queries. We show
that a single MViTv2-S architecture trained with bipartite
matching to perform both tasks surpasses the same MViTv2-
S when trained with RoI align on pre-computed bounding
boxes. With a careful design of token pooling and the pro-
posed training pipeline, our Bipartite-Matching Vision Trans-
former model, BMViT, achieves +3 mAP on AVA2.2. w.r.t.
the two-stage MViTv2-S counterpart. Code is available at
https://github.com/IoannaNti/BMViT

1. Introduction

Action Localization is a challenging task that requires
detecting a person’s bounding box within a given frame and
classifying their corresponding actions. This task shares
similarities with object detection, with the particularity that
the detected objects are always people and the classes cor-

respond to various actions that can sometimes co-occur. It
poses the additional challenge that actions require temporal
reasoning, as well as the fact that a person detector can con-
tribute to false positives if a given person is not performing
any of the target actions. The current golden benchmark
of AVA 2.2. [18] has a fairly low mean Average Precision
(mAP) compared to that of e.g. COCO [22].

Interestingly, state-of-the-art approaches achieving high
absolute mAP outsource the detection task to a pre-trained
Faster-RCNN [27], and focus on large capacity networks and
the use of large pre-training data (see Fig. 1a)). These meth-
ods serve the purpose of boosting the absolute performance
by means of accuracy but are in many cases prohibitive even
for standard GPU accelerators.

In this paper, we contribute to the domain of low-regime
scalable models that perform both the detection and the
recognition tasks. Because of its similarities with the object
detection task, many recent methods targeting a single-stage
model build on having a strong backbone that provides tem-
poral features to a DETR [1] architecture [44, 47]. A DETR
architecture is an encoder-decoder transformer with learn-
able queries that are assigned to the ground-truth pairs of
bounding box/action in a set prediction fashion (Fig. 1b)).

While DETR-based architectures have shown to be effi-
cient choices for end-to-end action localization (i.e. for joint
detection and classification tasks), their design involves a
video backbone and an encoder-decoder transformer archi-
tecture. This poses the question of whether there is room
for further improvement in the network design. To answer
this question, we draw inspiration from the recent advances
in Open-World Object Detection using Vision Transformers
(OWL-ViT [24]) and make the following contribution: we
propose the use of a bipartite matching loss between the
spatio-temporal output embeddings of a single transformer
backbone and the ground-truth instances in a video clip
(Fig. 1c). In this setting, the video embeddings are indepen-
dent tokens that can be matched to the predictions similarly
to that of DETR. This implies that a) no learnable tokens are
necessary, nor a transformer decoder with self- and cross-
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Figure 1. Comparison between existing works and our proposed approach. a) Traditional two-stage methods work on developing strong
vision transformers, that are applied in the domain of Action Localization by outsourcing the bounding box detections to an external detector.
ROI Align is applied to the output of the transformer using the detected bounding boxes, and the pooled features are forwarded to an MLP
that returns the class predictions. b) Recent approaches in one-stage Action Localization leverage on the DETR capacity to model both the
bounding boxes and the action classes. A video backbone produces strong spatio-temporal features that are handled by a DETR transformer
encoder. A set of learnable queries are then used by a DETR transformer decoder to produce the final outputs. c) Our method builds a vision
transformer only that is trained against a bipartite matching loss between the individual predictions given by the output spatio-temporal
tokens and the ground-truth bounding boxes and classes. Our method does not need learnable queries, as well as a DETR decoder, and can
combine the backbone and the DETR encoder into a single architecture.

attention, and b) the video backbone and the encoder can
be merged into a single strong video transformer. Such a
simple approach with a careful token selection allows us to
train an MViTv2-S [19] with a simple MLP head to directly
predict the bounding boxes and the action classes. With-
out additional elements or data, our single-stage MViTv2-S
surpasses the two-stage MViTv2-S of [19] that was trained
using RoI align and pre-computed bounding boxes.
Our main results indicate that with similar FLOPs an
MViTv2-S trained with bipartite matching performs better
than the same MViTv2-S when trained only for action clas-
sification from precomputed bounding boxes. In addition,
by simply removing the last pooling layer of MViTv2-S we
obtain a +3 mAP increase on AVA2.2 [18]. To the best of our
knowledge, our method is the first to apply an encoder-only
vision transformer for action localization with a bipartite
matching loss.

2. Related Work

Two-stage spatio-temporal action localization: Most ex-
isting works on action detection [6–8, 25, 36, 39, 41–43, 46]
depend on a supplementary person detector for actor local-
ization. Typically that is a Faster RCNN-R101-FPN [27] de-
tector, originally trained for object detection on COCO [20]
dataset and subsequently fine-tuned on the AVA [10], is in-
corporated in the action detection task. By introducing an
off-the-self detector, the action detection task is simplified
to an action classification problem. For actor-specific predic-

tion, the RoIAlign [12] operation is applied to the generated
3D feature maps. The aforementioned standard pipeline is
employed by SlowFast [8], MViT [19], VideoMAE [38] and
Hiera [29] where RoI features are directly utilized for action
classification. However, such features only confine infor-
mation within the bounding box, neglecting any contextual
information beyond it. To address the limitation, AIA [37]
and ACARN [25] employ an additional heavyweight module
to capture the interaction between the actor and the context
or other actors. Furthermore, to model temporal interac-
tions, MeMViT [42], incorporated a memory mechanism on
an MViT [19] backbone. While achieving high accuracy,
these methods are inefficient for real-world deployment. Our
method is on par with the state-of-the-art MeMViT requiring
fewer FLOPs.
Single-stage spatio-temporal action localization: Moti-
vated by the aforementioned limitation of the traditional
two-stage pipeline for action detection and classification,
several works attempted to tackle both detection and classifi-
cation in a unified framework. Some works borrow solutions
developed for object detection and adapt them to action detec-
tion [44,47] while others simplify training through joint actor
proposal and action classification networks [4, 9, 16, 35, 36],
or draw their attention to the task of Temporal Action Local-
ization [2, 30, 31, 45]. SE-STAD [35] builds on the Faster-
RCNN framework of [27] and incorporates into it the action
classification task. Similarly, the Video action transformer
network [9] is a transformer-style action detector to aggre-
gate the spatio-temporal context around the target actors.
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More recent works [3, 44, 47] leverage on recent advance-
ments of DETR in object detection, and hence, they propose
to form the task using learnable queries to model both ac-
tion and bounding boxes. TubeR [47] proposed a DETR-
based architecture where a set of queries, coined Tubelet
Queries, simultaneously encode the temporal dynamics of
a specific actor’s bounding box as well as their correspond-
ing actions. TubeR uses a single DETR head to model the
Tubelet Queries, with a classification head that requires an
extra decoder for the queries to attend again to the video fea-
tures. In a similar fashion, DETR-like fashion, STMixer [44]
proposes to adaptively sample discriminative features from
a multi-scale spatio-temporal feature space and decode them
using an adaptive scheme under the guidance of queries.
EVAD [3] suggests two video action detection designs: 1)
Token dropout focusing on keyframe-centric spatiotempo-
ral preservation and 2) Scene context refinement using ROI
align operation and a decoder. Contrary to previous works
that use a decoder or a heavy module that introduces inter-
action features of context or other actors, we demonstrate
that a single transformer model trained directly with a bipar-
tite matching can achieve similar accuracy to more complex
solutions based on DETR.

3. Method
To motivate our approach, we first depart from a standard
application of Vision Transformers for Action Localization
with pre-computed bounding boxes, to then provide a brief
description of single-stage methods that build on using bipar-
tite matching (i.e. DETR). We then introduce our approach:
a Video Transformer with bipartite matching, without learn-
able queries and decoder.

3.1. Preliminaries

The goal of Action Localization is to detect and classify a set
of actions in the central frame It of a video clip X composed
of T frames. Because not every person in a video clip might
be performing an action of interest, we distinguish between
a person and an actor, i.e. a person doing any of the C target
actions. An actor at time t is defined by a bounding box
b = [xc, yc, h, w], with xc, yc the normalized coordinates
of the box center and h,w the normalized height and width
of the box, and an action class one-hot vector a = {0, 1}C
representing the activation or not of each class. The action
classes do not need to be mutually exclusive (e.g. “talk to"
and “point to (an object)" can co-occur).

3.1.1 Vision Transformers for Action Localization

Multi-scale Vision Transformers (MViT, [5, 19]) are self-
attention-based architectures that operate on visual tokens
produced by dividing the input video (or image) into L̃ =
T ×H ×W patches of size 3 × (τυν), and by projecting

each into D-dimensional embeddings through a linear or a
convolutional layer. MViT architectures operate hierarchi-
cally considering many small input patches of few channels
D, progressively increasing the patch size and the channel di-
mensions through pooling layers. Without loss of generality,
we define a (Multi-scale ) Vision Transformer as a network V
that produces an output set of L̃ tokens of d dimensions from
an input clip X ∈ RD×T×H×W , as X̃ = V(X) ∈ RL̃×d,
with L̃ = t× h× w, and t ≤ T , w ≤ W , h ≤ H .

Generally, Vision Transformers are first pre-trained on
Action Recognition datasets with video-only mutually exclu-
sive classes, using an additional class token X0 prepended
to X . Then, Vision Transformers are adapted to Action
Localization tasks by using an external actor detector (i.e.
a person detector fine-tuned to return positives on actors
only) that provides a bounding box b̂. The output L̃ is then
treated as a spatio-temporal feature map: ROI-align is done
on the temporally pooled feature map h × w using b̂, and
forwarded to an action classifier to produce the action class
probabilities p(â).

These models, known as two-stage, compromise com-
plexity for accuracy, resulting in solutions with prohibitive
complexity. Existing works use a state-of-the-art Faster-
RCNN detector to compute the bounding boxes, resulting in
models with added complexity of 246 GFLOPs, regardless
of the size of the proposed architectures. While MViT has
recently been proposed for object detection by adding Mask-
RCNN [12] and Feature Pyramid Networks [21], the use of
a single architecture to perform both detection and action
classification is unexplored. Nonetheless, to our knowledge,
ours is the first Vision Transformer that can do bounding box
detection and action classification in a single step.

3.1.2 DETR for Action Localization

DETR (DEtection TRansformers [1]) formulate object de-
tection as a bipartite matching problem where a fixed set of
L learnable embeddings, known as object queries, are one-
to-one matched to a list of predictions of the form ⟨b, p(â′)⟩,
with â′ = {â,∅} the list of C target classes (objects in
this case) appended with the empty class ∅ representing
a no-object class. During training, the Hungarian Algo-
rithm [17, 34] is used to map the N < L objects in an image
to the “closest" predictions so that the assignments minimize
a combined bounding box and class cost. The L−N remain-
ing predictions are assigned to the empty class. The learning
is done by backpropagating the bounding box and class error
for those outputs matched to a ground-truth object, and only
the class error for those assigned to the empty class (i.e. to
enforce bounding boxes that do not correspond to an object
to be tagged as ∅).

DETR possesses appealing properties for Action Local-
ization, as the learnable object queries can convey object lo-
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calization and action classification. The handful of proposed
approaches that have ventured to apply DETR to Action
Localization are faithful to the DETR configuration [44, 47]:
a 3D backbone produces video features that are fed into
a transformer encoder to produce a hierarchy of features,
and a transformer decoder transforms the learnable queries
through self- and cross-attention layers between the queries
and the encoder features, producing a fixed set of L outputs.
However, rather than appending the target classes with the
empty class, a dedicated actor detector head is used to deter-
mine if a bounding box corresponds to an actor or not. The
outputs are now triplets of the form ⟨b, p(α), p(â)⟩, with
p(α) being a two-logit vector representing the actor and the
∅ classes. The use of a DETR encoder-decoder architecture
offers a good tradeoff between accuracy and complexity with
the decoder alleviating part of the backbone’s complexity.
However, these approaches still suffer from a complex archi-
tecture and a limited number of queries that can be used to
train the models.

3.2. Our solution: Bipartite-Matching ViT

Herein, we observe that neither the backbone nor the decoder
are necessary to achieve a good accuracy-speed tradeoff, and
we follow the recent advances in Open-Vocabulary Object
Detection(OWL-ViT [24]) to motivate our approach. OWL-
ViT introduces a CLIP vision transformer encoder with the
last pooling layer removed. Instead of pooling the output
tokens to form a visual embedding to be mapped into the
text embeddings as in the standard CLIP image-text match-
ing, each of the output embeddings is forwarded to a small
head consisting of a bounding box MLP and a class linear
projection. This way, the L̃ = h × w output tokens from
the vision encoder are treated as independent output pairs
⟨b̂, p(â)⟩. These pairs are matched to the ground truth using
DETR’s bipartite matching loss. In OWL-ViT, the image
patches play the role of the object queries.

To adapt OWL-ViT to the domain of Action Localiza-
tion, we first note that Multi-scale Vision Transformers are a
natural pool of spatio-temporal output embeddings that can
be one-to-one matched to triplets ⟨b̂, p(α), p(â)⟩. As we
demonstrate in §5.1, a simple MViTv2-S architecture trained
with bipartite matching achieves higher accuracy than the
same MViTv2-S trained for Action Localization using exter-
nal bounding boxes. Notably, our approach, which we coin
Bipartite-Matching Vision Transformer, or BMViT, does
not add additional complexity to the backbone, given that
the heads are simple MLPs.

The output of the video transformer, as introduced in
§3.1.1, is X̃ = V(X) ∈ RL̃×D̃, with L̃ = t × h × w
corresponding to the output sequence length. For instance,
MViTv2-S produces, for an input video of 16×256×256, an
output of 8× 8× 8 tokens, i.e. L̃ = 512, which outnumbers
DETR-based architectures. The number of output tokens

Figure 2. The output spatio-temporal tokens are fed to 3 parallel
heads. We use the central tokens to predict the bounding box and
the actor likelihood while averaging the output tokens over the
temporal axis to generate the action tokens. Each head comprises
a small MLP that generates the output triplets. We depict the flow
diagram for each head, following the standard OWL-ViT head [24].

does not affect the complexity of the network as these are in-
dependently processed by three MLPs. Following OWL-ViT,
we add a bias to the predicted bounding boxes to make each
be centered by default on the image patch that corresponds to
the 2D grid in which the output tokens would be re-arranged.
As reported in [24], “there is no strict correspondence be-
tween image patches and tokens representations"; however,
“biasing box predictions speeds up training and improves
final performance". In our 3D space-time setting, we add the
same 2D bias to all tokens on the same 2D grid along the
temporal axis.

Because each head will process the output tokens inde-
pendently to produce b̂, p(α) and p(â), we can select which
of these are of better use to the detection and recognition
subtasks. The only technical limitation is that the outputs
of each head need to be in one-to-one correspondence with
those from the other heads, to form the triplets that will be
matched to the ground-truth instances. This is an important
consideration because the tasks of actor detection and action
classification are opposed by definition: while detecting ac-
tors requires only information from the central frame, the
task of action recognition benefits from using temporal sup-
port. As we are not limited to use the same output tokens for
each task, we can consider e.g. the w×h tokens correspond-
ing to t = ⌊T/2⌋ to generate L̃ = w × h bounding boxes
b̂ and actor/no actor probabilities p(α), and apply temporal
pooling to produce an equivalent set of L̃ tokens that will be
used to compute the action probabilities p(â).

Bearing this in mind, we can handle the visual tokens in
a way that benefits both tasks. First, to avoid poor detection
when using MViTv2-S, we remove the last pooling layer to
increase the output resolution, i.e. to produce an output of
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L̃ = 8 × 16 × 16 = 2048 tokens. This way, we can use
the L̃ = h× w = 256 central tokens for the detection task,
and apply temporal pooling to form the equivalent L̃ = 256
spatio-temporal tokens to be used for the classification task.
We also study an alternative strategy that considers, for the
bounding box and actor/no actor predictions, the tokens
corresponding to both t = ⌊T/2⌋ and t = ⌈T/2⌉. Con-
catenating both results in L̃ = 512 tokens to perform the
actor detection task. To produce the corresponding L̃ = 512
“action" tokens, we apply temporal pooling on the past and
future tokens w.r.t. the central frame, independently. That
is to say, we compute X̃ ′

t<T/2 ∈ Rh×w as X̃ ′
t<T/2 [i,j] =

(2/T )
∑

t′<T/2 X̃t′,i,j for i, j ∈ [1...h, 1...w], and simi-
larly X̃ ′

t>T/2 ∈ Rh×w. We then concatenate both to form

the final set of L̃ = 512 tokens. Note that both the “ac-
tor" and “action" tokens have a clear one-to-one correspon-
dence, which is the necessary condition to produce L̃ triplets
⟨b̃, p(α), p(ã)⟩. As we observe in §5.2, this approach results
in better performance than the one above that considers only
L̃ = 256 tokens. Notably, this strategy also outperforms
that of considering the full set of L̃ = 2048 tokens, pointing
to the need of carefully choosing which tokens are more
suitable for each subtask.

Training During training, the output tokens are forwarded
to the corresponding heads to predict the L̃ triplets ŷl =
⟨b̂l, p(α)l, p(â)l⟩ with l ∈ [0, L̃− 1]. We use the Hungarian
Algorithm to match these predictions to the ground-truth
instances. A ground-truth instance with N bounding boxes
is defined as yj = ⟨bj , αj = 1,aj⟩ for j < N , and as yj =
⟨bj = ∅, αj = ∅,aj = ∅⟩. The matching cost between a
prediction ŷi and a ground-truth triplet yj is defined as

C(ŷi, yj) = 1[α=1]Lbox(bj , b̂i)−
1[α=1]Lactor(αj , p(αi))− 1[α=1]Lclass(aj , p(ai)).

(1)

with Lbox the bounding box loss, Lactor the actor/no ac-
tor loss, and Lclass the classification loss, respectively.
Following DETR [1] the bounding box loss is defined as
Lbox(b, b̂) = Liou(b, b̂) + ∥b − b̂∥1, with Liou the gen-
eralized IoU loss [28]. The actor/no actor loss is defined
as Lactor(αj , p(αi)) = −αj log p(αi) + (1 − αj) log(1 −
p(αi)), and the classification loss as:

(2)
Lclass(aj , p(ai)) = −

∑
c

aj,c log p(ai,c)

+ (1− aj,c) log(1− p(ai,c)),

where ai = {ai,c}c=1...C is a C-d vector of 1s and 0s rep-
resenting the multi-label nature of the problem, and p(a,c)
represents the model confidence for class c. For α = 0, we
simply set ai,c = 0, ∀c. Note that Eq. (1) only considers the
cost of the assignments w.r.t. the annotated bounding boxes
(i.e. α = 1).

Once an optimal assignment i = σ(j) ∀i ∈ [0, ..., L̃− 1]
is found, we compute the Hungarian Loss as:

L̃ =

L∑
j=1

[1[α=1]

(
λiouLiou(b, b̂) + λL1∥b− b̂∥1

)
−

λαLactor(αj , p(ασ(j)))− λaLclass(aj , p(aσ(j)))]

(3)

where λ = {λiou, λL1, λα, λa} ∈ R4 are hyperparameters.

Inference During inference, we compute the L output
triplets, and we simply keep the detections of those for which
p(α) > θ with θ a hyperparameter that controls the trade-off
between precision and recall.

Remarks We want to highlight that our method, which
resides in reformulating the training objective of vision trans-
formers for action localization and in the observation that
such approach comes with different alternatives for token
selection, is amenable to different backbones, token selec-
tion design, and even output resolution. The fact that tokens
are fixed and assigned to ground-truth instances also implies
that we can directly resize the input frames to a fixed squared
resolution, without any concern regarding losing the aspect
ratio, something not possible in ROI-based approaches. This
prevents our method from the need of using different views,
being computationally more efficient.

4. Experimental Setup
Datasets. We use AVA 2.2 [10, 18] to conduct our
main experiments and ablations, and UCF101-24 [33]
and JHMDB51-21 [13] to demonstrate the generalising
capabilities of our approach. AVA 2.2 [10, 18] is a long-tail
dataset with 299 videos of 15-minute duration, annotated
with bounding boxes and 80 action classes at 1 FPS rate.
The training and validation partitions contain 235 and 64
videos, amounting to 211k and 57k frames, respectively. We
follow the standard evaluation protocol and report our results
on the 60-class subset of annotated actions [6, 8, 25, 47].
UCF101-24 [33] contains 3207 untrimmed videos, and
contains box labels and annotations on a per-frame basis,
with 24 classes. We follow the standard protocol defined in
[32] and report our results on split-1. JHMDB51-21 [13]
has 928 trimmed videos that are labeled with 21 action
categories. We follow prior work and report the average
results on the three splits. For all datasets, we report
the standard mean average precision (mAP) computed
considering as false positives all predictions corresponding
to bounding boxes with IoU < 0.5 w.r.t. a ground-truth box.

Implementation details: We initialize our model weights
from the publicly available checkpoint of [19] pretrained on
Kinetics-400 [15]. The network architecture and the output
sizes are summarized in the Supplementary Material. The
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Setting (t× hw) GFLOPs mAP

MViTv2-S [19] 64 + 246 26.8
Inp: 16× 2242, Out: 8× 72 65 26.8
Inp: 16× 2242, Out: 8× 142 87.9 27.4
Inp: 16× 2562, Out: 8× 82 90.7 27.5
Inp: 16× 2562, Out: 8× 162 121.2 30.0

(a) vs MViT + ROI align

Method mAP Prec. Recall

Singleton 28.5 84.2 90.4
Tubelet 28.7 83.2 90.5
C + T 29.1 81.1 92.7

Max Pooling 28.3 84.1 91.3
2(C+T) 30.0 80.0 92.0

(b) Token Selection

Method mAP

Variable aspect ratio 28.5
Fixed aspect ratio 30.0

(c) Impact of aspect ratio

Table 1. Ablation studies on AVA 2.2 All experiments are done using an MViTv2-S [19] pre-trained on K400. a) We study the relation
between complexity and input/output resolutions, by removing or not the last pooling stride. Note that MViTv2-S [19] requires external
bounding boxes, reportedly adding 246 GFLOPs to the overall inference. b) We study the impact of different methods for token selection to
perform the bipartite matching. c) We study whether keeping the input aspect ratio affects the training, observing that a variable number of
tokens results in difficult convergence.

input to the model is T = 16 frames sampled at a stride
of τ = 4. All experiments are done using PyTorch [26].
We train our models using AdamW [23] with weight decay
0.0001, and set the trade-off hyperparameters in Eq. (3) to
λα = 2.0, λa = 6.0 λL1 = 5.0, and λiou = 2.0. We use
a batch size of 16 clips, and we train our models using 8
GeForce 3090 GPU cards. We train our model for 25 epochs
with initial learning rate of 0.0001 and cosine decay. During
training, we resize the videos to 256 pixels without cropping.
We add jitter to the ground-truth bounding boxes and apply
color augmentation. We report our results using a single
view with images directly resized to 256× 256 pixels.

5. Ablation studies

5.1. vs MViT + ROI align

We first show that our method offers significant improvement
w.r.t. the standard two-stage approach of MViT. Because
removing the last pooling stride of our model increases the
number of FLOPs, we also train a model that preserves the
original MViT structure. In such a scenario, the output is
a volume of t = 8, h = w = 8 for an input resolution of
256 × 256. In the MViT + ROI align setting [19] a tem-
poral pooling layer is added to remove the time dimension,
and ROI align is used to extract the actor features from pre-
computed bounding boxes. The actor-specific features are
forwarded to a classifier to predict the class probabilities.
In our setting, we generate a set of 64 triplets consisting
of bounding box coordinates with their corresponding actor
likelihoods and class probabilities. We keep the predictions
corresponding to the tokens for which the actor likelihood
is over a threshold empirically set to be θ = 0.2. We also
consider reducing the FLOPs by working at a lower reso-
lution and study how our method works at a resolution of
224 pixels. The output number of tokens when working at
224 resolution reduces to 14 × 14. We finally explore the
scenario where the resolution is dropped to 224, and the
pooling layers are left as in the original MViTv2. Such a

model produces only 7× 7 tokens at the central frame. The
results are summarized in Tab. 1a.

5.2. Token Selection

As mentioned in §3.2, the token selection design results in
a different number of tokens to be assigned to the ground-
truth. In this Section, we study how such selection affects
performance. For an MViTv2-S without the last pooling
layer, this results in L̃ = 2048 tokens. In §3.2 we introduced
two alternatives to the token selection designs, namely that
of considering the central frame only for detection and tem-
poral pooling for classification, which we refer to as C+T,
and that depicted in Fig. 2, which we denote as 2(C+T).
The former produces L̃ = 256 tokens, whereas the latter
produces L̃ = 512 tokens. In addition, we study three more
alternatives, namely singletons, where we directly consider
the L̃ = 2048 tokens without further reduction; tubelets,
whereby we directly apply temporal pooling to the output
embeddings of the MViTv2-S backbone, producing the same
L̃ = h × w = 256 for both the detection and recognition
tasks; and max-pooling of class predictions which con-
siders the central tokens for the actor detection task, and a
max-pooling operation on the temporal domain over the out-
puts of the L̃ = 2048 possible action tokens. The results in
Tab. 1b indicate that a proper token selection is important to
achieve a good tradeoff between detection and classification.
We observe that two factors affect the most to improve the
mAP: a high recall in the bounding box detection and a good
selection of representatives for action tokens.

5.3. Fixed vs Variable Aspect Ratio

Often, detection frameworks apply a scale augmentation by
resizing the images to different scales, and by keeping the
aspect ratio in the case of transformers. Such augmentation
incurs a variable number of tokens L̃ to be assigned for
each clip, which might affect the learning. We compare
both approaches by training our model using a scale range
between 240 and 340 pixels and keeping the aspect ratio.

18832



As shown in Tab. 1c, the performance drops significantly
with respect to using a fixed number of tokens. We attribute
this effect of matching a variable number of tokens to the
ground-truth during training, which might require further
hyperparameter optimization to improve convergence. We
leave for future work improving the training in the case of
variable-size images.

5.4. Qualitative analysis

In Fig. 3 we show a visual demonstration of how the tokens
carry the actor information properly. The left images show
the confidence maps (i.e. p(α)) for each of the h×w tokens
at t = ⌊T/2⌋ (for the sake of clarity we illustrate only the
confidence maps for the frame where the actor confidences
were resulting in positive detections). We can see that the
tokens around the actors in the frame are more confident than
those that are farther away. In the right images, we overlap
all the bounding boxes computed for the same h×w tokens,
representing in yellow those corresponding to the activated
tokens. We can see that while there are other bounding
boxes around the two actors, only those that are maximally
overlapping the ground-truth activate the actor likelihood
with high confidence. We include more qualitative results in
the Supplementary Material.

6. Comparison with State-of-the-art
6.1. Performance on AVA 2.2

We compare our method against current state-of-the-art ap-
proaches in AVA 2.2, as summarized in Tab. 2. We use sym-
bols ✗ to denote methods relying on pre-computed bounding
boxes, indicating a two-stage process, and symbols ✓ for
those employing a single-stage approach. Additionally, we
provide insights into the computational costs associated with
each method. Note that two-stage methods listed in Tab. 2
utilize bounding boxes generated by [8], i.e. they operate a
FasterRCNN-R101-FPN network that requires 246 GFLOPs
on an input resolution of 512 pixels [1].
Comparison with models pre-trained on K400: We are
mostly interested in attaining increased accuracy at a low
computational cost. When comparing our method to two-
stage approaches, we note that our method using MViTv2-
16 × 4 as the backbone surpasses all MViT methods, and
achieves higher accuracy than MeMViT, with fewer FLOPs.
Comparison with recent single stage approaches: We
compare our method against TubeR [47], STMixer [44] and
EVAD [3] which are the latest works on single-stage action
detector. For a fair comparison, and given that we have
trained on models initialized on K400, we do not report
and compare large models pre-trained on K700. In K400 we
achieve 30.0 mAP comparable to TubeR and STMixer. How-
ever, our method offers a simpler solution without explicit
context modeling and without the use of a decoder.

Figure 3. Qualitative analysis. The images on the left show the
confidence maps produced by the output 16 × 16 spatial tokens
(rescaled to the image size) w.r.t. the actor likelihood for the corre-
sponding bounding box. For the sake of clarity, we only plot the
256 tokens corresponding to one of the frames. The highlighted
tokens are those selected as positive detections. The images on the
right show all the bounding boxes computed by the corresponding
tokens on the left. We overlay all the bounding boxes returned
by each of the 16× 16 output tokens. In yellow we represent the
bounding boxes corresponding to the confident tokens represented
on the left. All other bounding boxes (in red) are assigned to the
no-class label ∅, and are thus considered as negative predictions

Generalization To further demonstrate the capabilities of
our method, we trained the same ViT-B backbone used for
EVAD [3], pre-trained on K400 and VideoMAE [38], with-
out token dropout. Following EVAD, we trained our model
using a resolution of 288 pixels. For this model, we used
only the central tokens for both actor detection and action
classification, resulting in L̃ = 18×18 = 324 output tokens.
We added a cross attention layer to the action classification
head to account for the temporal information, whereby the
L̃ output tokens first attend all the 8 × 18 × 18 = 2592
spatio-temporal tokens before being forwarded to the ac-
tion classification MLP. Note that this cross-attention layer
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Method Pretraining mAP GFLOPs Res. Backbone End-to-end
ACAR-Net [25] K400 28.8 205 + 246 256 SF-R50-NL ✗
MViTv1-B [6] K400 27.3 455 + 246 224 MViTv1-B ✗
MViTv2-S [19] K400 26.8 65 + 246 224 MViTv2-S ✗
MViTv2-B [19] K400 28.1 225 + 246 224 MViTv2-B ✗
MeMViT [42] K400 28.5 59 + 246 224 MViTv1 ✗

WOO [4] K400 25.4 148 256 SF-R50 ✓

STMixer [44] K400 27.8 N/A 256 SF-R50 ✓

Ours (BMViT) K400 30.0 121 256 MViTv2-S 16× 4 ✓

VideoMAE [38] K400, MAE 31.8 180 + 246 224 ViT-B ✗
EVAD [3] K400, MAE 32.1 425 288 ViT-B ✓

Ours (BMViT) K400, MAE 31.4 350 288 ViT-B 16× 4 ✓

Table 2. Comparison w.r.t. state-of-the-art (reported with mean Average Precision; mAP ↑) on AVA v2.2 [10]. “Res.” denotes frame
resolution.

(with 324 queries and 2592 keys and values), amounts to
only 4.7 GFLOPs, maintaining a computationally efficient
action head. The results in Tab. 2 (bottom) show that our
method offers a similar complexity/performance tradeoff
w.r.t. EVAD.

Scaling up to large backbones: While the scope of our
proposed approach is to develop efficient methods for train-
ing a video transformer for action localization, we explore
how our proposed approach scales to larger models. To this
end, we train a Hiera-L [29] in an end-to-end fashion using
the publicly available checkpoint pre-trained on Kinetics400,
which was first pre-trained in a self-supervised manner using
Masked AutoEncoders [11]. We directly reuse our training
recipe to train the large model, without any further parameter
optimization. We observe that our approach competes with
the two-stage approach of Hiera-L [29], although results in
sub-par performance. While Hiera-L obtains 39.8 mAP in
a two-stage approach incurring in 413 + 246 GFLOPs, our
single-stage equivalent obtains 38.5 mAP with 650 GFLOPs
(full results are included in the Supplementary Material). We
attribute this sub-par performance to the difficulty of training
large models in an end-to-end fashion. We leave for future
research the optimization of big models in our setting.

6.2. Additional Datasets

To demonstrate the effectiveness of our approach we evalu-
ate our method on UCF101-24 [33] and JHMDB51-21 [13]
datasets. Results of our approach are shown in Tab. 3.
We note that compared to EVAD [3] we have similar per-
formance with a backbone of much smaller capacity, i.e.
our backbone has 121 GFLOPs while EVAD [3] has 243
GFLOPS. Our approach surpasses EVAD on UCF24, and
lies behind in JHMDB. However, for JHMDB, we observed
that our model attains precision and recall of of 95% and
97% correspondingly, indicating that further attention needs
to be put towards improving accuracy.

Method End-to-end Backbone JHMDB UCF24
ACAR-Net [25] ✗ SF-R50 - 84.3
ACT [14] ✓ VGG 65.7 69.5
MOC [18]∗ ✓ DLA32 70.8 78.0
ACRN [36] ✓ S3D-G 77.9 -
YOWO [16] ✓ 3D-X101 80.4 74.4
WOO [4] ✓ SF-R101-NL 80.5 -
TubeR [47]∗ ✓ I3D 80.7 81.3
TubeR [47] ✓ CSN-152 - 83.2
STMixer [44] ✓ SF-R101-NL 86.7 83.7
Ours (BMViT) ✓ MViTv2-S 80.7 85.6

EVAD [3] @ 288 ✓ ViT-B 90.2 85.1
Ours (BMViT) @ 288 ✓ ViT-B 85.4 87.3

Ours (BMViT) @ 288 ✓ ViT-B† 88.4 90.7

Table 3. Comparison with the state-of-the-art on UCF101-24
and JHMDB.!denotes an end-to-end approach using a unified
backbone, and%denotes the use of two separated backbones, one
of which is Faster R-CNN-R101-FPN (246 GFLOPs [27]) to pre-
compute person proposals. T × τ refers to the frame number and
corresponding sample rate. Methods marked with ∗ leverage optical
flow input.†: ViT-B backbone pre-trained on K710 and fine-tuned
on K400 from VideoMAE V2 [40].

7. Conclusion

In this paper, we presented a simple method for the direct
training of Vision Transformers for end-to-end action local-
ization. We showed that the output tokens of a vision trans-
former can be independently forwarded to corresponding
MLP heads to have a fixed sequence of predictions similar to
DETR. Using a bipartite matching loss it is possible to train
the backbone directly to perform both tasks without compro-
mising performance. Our results show that simple models
achieve similar accuracy to equivalent two-stage approaches.
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