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Figure 1. Given an image of the scene, READ retrieves a candidate initial motion from a database of image-motion pairs based on image
similarity. READ then refines this motion through asymmetric diffusion that models the forward process as interpolation in a latent space
and then performs one-step refinement via reverse diffusion in the original space. Alternating iterative forward and reverse processes,
indicated by encircled numbers, improve the final prediction (i.e., motion). While READ refines only motions, images are also displayed
for visualization. Temporal poses composing each motion are visualized as colored dots overlaid on the image.

Abstract

This paper proposes Retrieval-Enhanced Asymmetric
Diffusion (READ) for image-based robot motion planning.
Given an image of the scene, READ retrieves an initial mo-
tion from a database of image-motion pairs, and uses a dif-
fusion model to refine the motion for the given scene. Un-
like prior retrieval-based diffusion models that require long
forward-reverse diffusion paths, READ directly diffuses be-
tween the source (retrieved) and target motions, resulting in
an efficient diffusion path. A second contribution of READ
is its use of asymmetric diffusion, whereby it preserves the
kinematic feasibility of the generated motion by forward
diffusion in a low-dimensional latent space, while achiev-
ing high-resolution motion by reverse diffusion in the orig-
inal task space using cold diffusion. Experimental results
on various manipulation tasks demonstrate that READ out-
performs state-of-the-art planning methods, while ablation
studies elucidate the contributions of asymmetric diffusion.
Code: https://github.com/Obat2343/READ

1. Introduction

Image-based motion planning is the problem of producing
feasible motions that enable an agent, such as a robotic
arm [9, 20] or self-driving car [1, 11], to successfully per-
form a task (e.g., reach a goal) based on an image of
the scene. Typically, there is a diverse set of success-
ful motions (homotopies), e.g., an arm can take differ-
ent motions to reach the goal, which requires us to model
the distribution over successful motions. Generative mod-
els provide a promising means to represent these distribu-
tions. Among them, diffusion models [19, 34] have been
applied to achieve high sample diversity in various do-
mains [13, 22, 32, 48, 49, 52]. For motion planning, how-
ever, high sample diversity is insufficient—it is critical that
the generated motion is kinematically feasible and success-
fully performs the task [9, 35, 36]. To achieve both, we pro-
pose Retrieval-Enhanced Asymmetric Diffusion (READ),
a framework that efficiently refines a candidate motion re-
trieved from an image-motion database towards a motion
that is both feasible and successful in the target scene.
READ does so through four key contributions.
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(1) Retrieval enhancement: Typical stochastic diffusion-
based motion planning methods generate motions by run-
ning reverse diffusion from a random (e.g., Gaussian) sam-
ple, which may result in motion that is infeasible and/or
does not reach the goal (Fig. 1 (top) and Fig. 2(a)).
Retrieval-based methods use a diffusion process to refine
a candidate (retrieved) motion that is assumed to be near
the target motion (Fig. 1 (bottom) and Fig. 2(b), 2(c), 2(d)).
However, prior retrieval-based methods employ forward
diffusion to move towards the initial distribution (e.g., a
zero-mean Gaussian) along the path indicated by each black
line in Figs. 2(b) and 2(c) and then refine the motion towards
the target, resulting in a longer, roundabout path. Instead,
READ performs diffusion directly from the retrieved mo-
tion to the target (Fig. 2(d)).
(2) Latent space interpolation: Forward diffusion has dif-
ficulty in preserving the feasibility of the motion in the orig-
inal high-dimensional task space. To enhance the retrieved
motion, READ instead performs interpolation in a latent
space (Fig. 2(d)) in which the semantics of the motion, in-
cluding feasibility, are preserved [4, 6, 10, 53].
(3) Asymmetric diffusion: While the latent space supports
the generation of feasible motions, the lower dimensionality
makes it difficult to model high-resolution motions such as
those needed for manipulation. To address this, we propose
asymmetric diffusion that performs the forward process in
the latent space and the reverse process in the original space
to achieve high-resolution refinement.
(4) Cold diffusion: Standard forward and reverse diffusion
processes operate in the same space. The same is true of ap-
plications of cold diffusion [3]; however, because a one-step
reverse process in cold diffusion is independent of the for-
ward process, the forward and reverse processes can be de-
signed independently. READ takes advantage of this to per-
form asymmetric diffusion in the original and latent spaces.

While READ works for a variety of image-based motion
planning problems, we evaluate it on robot manipulation.
Experiments reveal that READ outperforms contemporary
baselines, while a series of ablation studies demonstrate the
contributions of the different components of READ.

2. Related work

2.1. Diffusion models

With their sequential application of denoising autoencoders,
diffusion models [19, 34, 46, 47] achieve stable learning and
produce high-fidelity outputs. Latent space diffusion [8, 41,
50] achieve gains in computational efficiency by learning a
distribution over a lower-dimensional latent space.

Generalized diffusion models use various task-specific
initializations and perturbations instead of Gaussian
noise [2, 28, 29]. For image restoration tasks, IRSDE [28]
designs the initialization and perturbations as the interpola-
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Figure 2. Various reverse processes, each of which is depicted by
a solid arrow. Orange circles represent a noise distribution.

tion from the source (input) to the target images.
Continuous diffusion methods [24, 46, 47] model the dif-

fusion process as a stochastic differential equation (SDE).
Drawing on the large body of work in SDE optimization,
continuous diffusion models are capable of high-quality
generation in fewer steps [14, 23, 24, 30].

Based on these insights, READ adopts a task-specific
initialization with perturbations in the latent space, and em-
ploys continuous diffusion.

2.2. Retrieval-based diffusion models

Retrieval is often utilized to improve the performance of
generative models [26, 54]. In retrieval-based diffusion
models, retrieval data guides the diffusion processes. These
models are categorized into condition- [5, 7, 43, 55] and
SDEdit-based [31, 36] methods, shown in Figures 2(b)
and 2(c), respectively.

During the reverse diffusion process, condition-based
methods guide each reverse step, as depicted by each dashed
arrow in Fig. 2(b), so that given a sample from the ini-
tial noise distribution, the denoised data gradually becomes
similar to the retrieved data distribution. For example,
RDM [5] and ReMoDiffuse [55] retrieve images and hu-
man motions, each of which matches a given text, and use
them as conditions for text-to-image generation and text-to-
motion generation, respectively.

As shown in Fig. 2(c), SDEdit-based methods [31, 36]
replace the initial sample of the reverse process with the re-
trieved data, allowing the reverse process to start from near-
target data. R2-Diff [36] applies SDEdit to image-based
motion planning so that the initial motion is retrieved based
on image similarity. Our method belongs to the SDEdit-
based category in terms of replacing the initial sample with
the retrieved motion.
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(a) Inference (b) Training

Figure 3. Overview of the training and inference procedures.
~M (t) is M R and M (t) if t = 1 and t < 1, resepctively.

3. Retrieval-Enhanced Asymmetric Diffusion
3.1. Preliminaries

We consider image-motion pairs (I; M ), where I is an
RGB-D image of the robot and its surrounding environment
and M is the sequence of robotic end-effector poses p1;��� ;L
from time 1 to L . Each pose pl at time l consists of its three-
dimensional position, six-dimensional orientation [56], and
its open/close grasp state. The position is expressed as a
combination of the image coordinates (ul ; vl ) and the depth
(zl ) of the robotic hand from the camera. The rotation r l is
expressed by a 6D vector, as proposed in [56]. The grasp-
ing state gl is a real value between 0 and 1, representing the
closed and open states, respectively. Through the forward
process, M is perturbed along the diffusion step t . The per-
turbed motion at t is denoted by M (t). M (0) is a target
motion with no perturbation. Our goal is to predict M (0)
from I . The predicted motion is denoted by M̂ (0).

3.2. Overview

As depicted in Fig. 3, READ takes as input an image I of
the scene and retrieves a similar image from the dataset D .
D contains images paired with a valid motion that performs
the task depicted in the image. High similarity between the
input and retrieved images serves as a proxy to indicate that
the retrieved motion (i.e., M R ) is close to a motion that can
achieve the task in the target scene depicted in I . While
any image similarity criteria can be used, we follow previ-
ous work [36] and compute similarity based on differences
in image features obtained from the image encoder EncI .
Then, the retrieved motion M R is refined by iterating the
latent space forward and original space reverse processes.
For the forward process in the latent space, READ uses a
motion encoder-decoder pair EncM and DecM .
Inference: Algorithm 1 outlines the inference procedure.
As shown in Fig. 3(a), given a query image I , READ re-
trieves M R from the database D based on image similar-
ity. M R is refined by following cold-diffusion-like opti-

Algorithm 1: Inference Procedure
Input: I
Output: M̂ (0)

1 M R ← Image-based Retrieval(D , I ) ;
2 M̂ (0) ← Reverse(I; M R ; 1) ;
3 t ← 1 − 1

N ;
4 while t > 0 do
5 M (t) ← Forward(M̂ (0); M R ; t);
6 M̂ (0) ← Reverse(I; M (t); t) ;
7 t ← t − 1

N ;
8 end
9 return M̂ (0)

mization. First, M R is fed into the reverse process, which
is described in detail in Section 3.4, to predict a success-
ful motion via one-step direct refinement. Its precision is,
however, insufficient. For further optimization by iterative
refinements the forward process, which is described in de-
tail in Section 3.3, obtains M (t) that is then fed into the
reverse process instead of M R . During this iteration, the
continuous step t is decreased from 1 to 0 to progressively
approach a successful motion. This iterative refinement
scheme works essentially similarly to general discrete diffu-
sion steps. While this iterative refinement scheme improves
the image-motion consistency of the final output (denoted
by M̂ (0)) in the high-resolution motion space in the reverse
process, the forward process in the latent space maintains
motion semantics (i.e., motion feasibility).
Training: Figure 3(b) and Algorithm 2 outline the training
procedure of the reverse process. Initially, the method sam-
ples each pair I and M (0) from the image-motion training
dataset D , as depicted by the green arrow in Fig. 3(b). Then,
we retrieve an initial motion M R similar to M (0). Note that
this similarity is evaluated on motion because image feature
F I is under training.

We found that it is important to retrieve not only the most
similar motion but also the k-nearest-neighbor motions for
data augmentation. That is, each of k retrieved motions is
used as M R for training. k is a hyperparameter; a larger k
may enhance robustness in case of retrieval failure, but an
excessively large k may introduce a gap between the distri-
bution of retrieved motions during inference and training.

The reverse process is trained so that M R is refined to-
ward M (0). Given M R and M (0), M (t) at a continuous
step t is obtained by the forward process. t is randomly
selected in accordance with the training procedure of a gen-
eral diffusion model with discrete steps. Then, M (t), I , and
t are fed into the reverse process to predict M̂ (0). Finally,
by minimizing the MSE loss between M (0) and M̂ (0), the
parameters of the reverse process are updated.
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Algorithm 2: Training Procedure

1 Sample I; M (0) from D ;
2 t ∼ uniform[0; 1];
3 M R ← Motion-based Retrieval(D , M (0)) ;
4 M (t) ← Forward(M (0); M R ; t);
5 M̂ (0) ← Reverse(M (t); I; t );
6 Update Reverse()on ∇Loss(M̂ (0); M (0)) ;
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Figure 4. Illustration of our forward process. Black dashed frames
are inputs of the forward process.
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Figure 5. Illustration of our reverse process. Black dashed frames
are inputs of the reverse process.

3.3. Forward SDE via latent space interpolation

As shown in Fig. 4 and Algorithm 3, our forward SDE ob-
tains M (t) by interpolation between M R and ~M (0), which
is M (0) and M̂ (0) in the training and inference procedures,
respectively, along the continuous diffusion step t ∈ [0; 1]
as follows. ~M (0) and M R are embedded into ~z(0) and zR ,
respectively, in the latent space by EncM . ~z(0) is then per-
turbed with the following SDE based on IR-SDE [28]:

d~z = � t (zR − ~z(t))dt + ! t dw ; (1)

where � t and ! t are hyperparameters, and w is the stan-
dard Wiener process. � t controls the speed to approach from
~M (0) to M R , while ! t controls the stochasticity of pertur-

bation. ~z(t) can be acquired from � t , computed by interpo-
lation between zR and ~z(0), by satisfying ! 2

t
� t

= 2 � 2 for all
t , as proven in [28]:

z(t) = � t ( ~z(0); zR ) +
√

� t � t ; (2)

� t ( ~z(0); zR ) := zR + ( ~z(0) − zR )e� �� t ; (3)

� t := � 2(1 − e� 2�� t ); (4)

Algorithm 3: Forward SDE

Input: M (0), M R , t
Output: M (t)

1 z(0); zR ← EncM (M (0)) ; EncM (M R );
2 z(t) ← � t (z(0); zR ) +

√
� t � where � ∼ N (0; I );

3 M (t) ← DecM (z(t)) ;
4 return M (t);

where �� t =
Rt

0 � sds and � t ∼ N (0; I ). Finally, z(t) is
converted to M (t) by DecM .

In what follows, we emphasize the difference between
our forward SDE and a general forward SDE, VPSDE [47],
as follows. � t in VPSDE is expressed by Eq. (5):

� t (z(0)) = z(0)e� �� t (5)

In both READ and VPSDE, if e� �� t = 1 , � t = z(0). How-
ever, if e� �� t = 0 , � t = 0 in VPSDE, while � t = zR in our
forward SDE. Since � t is linear with respect to ~z(0) in both
SDEs (as expressed in Eq. (3) and Eq. (5) for our SDE and
VPSDE, respectively), e� �� t is regarded as an interpolation
ratio. While this interpolation path is long (i.e., between
0 and z(0), which are “Initial” and “Target” in Fig. 2(a),
respectively) in VPSDE, it is short (i.e., between zR and
z(0), which are “Retrieved” and “Target” in Fig. 2(d), re-
spectively) in our SDE, making READ successful.

Algorithm 4: Reverse process

Input: ~M (t); I; t # Note p1;��� ;L = ~M (t)
Output: M̂ (0)

1 F I ← EncI (I ) ;
2 f I

1;��� ;L ← Ext I (F I ; p1;��� ;L ) + PE ;
3 f p

1;��� ;L ← Encp(p1;��� ;L ) + PE ;
4 f t ← Enct (t) + PE ;
5 f e

1;��� ;L ← Encf (f p
1;��� ;L ; f I

1;��� ;L ; f t ) ;
6 M̂ (0) ← p1;��� ;L + Dece(f e

1;��� ;L ) ;
7 return M̂ (0)

3.4. Reverse process in the original space

Figure 5 and Algorithm 4 show the procedure of the re-
verse process. I is encoded into image feature map F I

by EncI . The spatial dimension of F I is the same as I
for high-resolution representation. If this large feature map
is fed into the following procedure for accurate refinement
that requires a complex mechanism (e.g., Transformer), its
computational cost becomes heavy. To avoid this problem,
we downscale F I into image feature vectors f I

1;��� ;L via
an image feature extractor Ext I . If Ext I is implemented
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with any naive downscaling, such as average pooling, high-
resolution accurate motion prediction is impossible. For a
high-resolution but size-reduced feature map, READ em-
ploys Spatially-aligned Temporal Embedding (STE) [35].
STE extracts the motion-relevant features along M in the
image coordinate system (i.e., u1; v1; · · · ; uL ; vL ) from F I .
Note that asymmetric diffusion enables us to adopt STE be-
cause u1; v1; · · · ; uL ; vL are available only in the original
space. f I

1;��� ;L is fed into an encoder, EncF , with temporal
pose and time features (denoted by f p

1;��� ;L and f t ) obtained
by their encoders, Encp and Enct , respectively. Positional
Encoding (PE) is applied to f I

1;��� ;L , f p
1;��� ;L and f t . Finally,

M̂ (0) is predicted by feeding the output of EncF (denoted
by f e

1;��� ;L ) into Dece with skip connections from p1;��� ;L .

3.5. Implementation

While READ can employ arbitrary architectures for each
network, we follow those used in Oba and Ukita [36], ex-
cept EncM and DecM that do not appear in Oba and Ukita
[36], as follows. EncI is ConvNext-based UNet [27, 42].
Encp; Enct and Dece are three-layer perceptrons with a
gelu activation function [17]. Encf is a multi-head trans-
former encoder [51]. The numbers of heads and layers are
four and eight, respectively. For PE, we adopt the sinusoidal
positional encoding [51].

The architectures and training procedures of EncM and
DecM follow [39] so that Transfomer-based EncM and
DecM are pre-trained in an autoencoder manner with the
VAE loss. Training data for EncM and DecM are borrowed
from motion data included in the image-motion database.
In accordance with [8, 41], EncM and DecM are frozen in
the training procedure of the reverse process.

N = 100, k = 3 , and � = 0 :5. � t is linearly scheduled
from 0:01 to 2:0. ! t is derived to satisfy ! 2

t
� t

= 2 � 2.

4. Experiments
We evaluate READ in comparison to contemporary base-
lines on 16 manipulation tasks along with a subset of 12
tasks (Fig. 6) from the RLBench [21] benchmark, imple-
mented in the Coppelia simulator [40]. We use a database
D with |D | = 1000 image-motion pairs for training and
100 pairs for testing. The training dataset is used as a re-
trieval dataset D in the test phase. All sequences in the
database are scaled to length 100 (L = 100) via upsam-
pling or downsampling. The size of the image is 256× 256.
Objects, including manipulation targets and obstacles, are
randomly placed, and the camera and the robot’s initial po-
sition are fixed. Since READ plans the task-space motion
of the end-effector, we use inverse kinematics to solve for
the corresponding joint angles. RLBench provides an in-
dication of the binary success of each episode (indicated
by reward > 1), while motions longer than 100 steps are

labeled as having failed. We measure the performance of
each method in terms of its average success rates on the sets
of 12 (Avg12) and 16 (Avg16) tasks.

We compare READ to the following ten no-retrieval and
retrieval baselines:
• Deterministic: Deterministic planner trained to mini-

mize MSE between ground-truth and predicted motion.
• DDPM [19]
• RVT [16]: uses a multi-view transformer to aggregate in-

formation across virtual views obtained by re-rendering
of the camera input. Note that RVT predicts only key-
frame motion rather than the entire motion.

• VPSDE [47]: Continuous version of DDPM. using the
Runge–Kutta–Fehlberg method [15] for sampling.

• VINN [37]: Uses self-supervised learning to obtain
the retrieval model and predict the motion with non-
parametric Locally Weighted Regression.

• DMO-EBM [35]: Refines the retrieved motion based on
an energy-based model (EBM) score.

• VPSDE+CG: VPSDE [18] with Classifier-free Guidance
(CG) [18], which guides the reverse process by condition-
ing on the retrieved motion M R as in other work [7, 55].

• R2-Diff [36]: An SDEdit-based diffusion model that uti-
lizes the retrieved motion as the initial motion (Fig. 2).

We consider the following variations of READ:
• READ-O: The forward and reverse processes are per-

formed in the original task space using the Euler
Maruyama method [25], which is a reverse process used
in conventional continuous diffusion models.

• READ-L: The forward and reverse processes are per-
formed in the latent space. It replaces STE, which can-
not be used in the latent space, by downscaling F I from
256 × 256 to 16 × 16. It then flattens the downscaled
feature map for the transformer. Note that READ-L also
adopts the Euler Maruyama method.

4.1. Main results

Table 1 compares the performance of READ to the no-
retrieval and retrieval baselines on the 16 manipulation
tasks. Performance numbers for DDPM, VINN, DMO-
EBM, and R2-Diff are from Oba and Ukita [36], while we
experimented with the other models by ourselves. See our
code and supplemental material for implementation details.
READ vs. no-retrieval methods While conventional dif-
fusion models (i.e., DDPM and VPSDE) outperform deter-
ministic models (i.e., Deterministic, RVT) on tasks where
the stochasticity of the motion is high (e.g., PC), they strug-
gle on deterministic tasks (e.g., RT). In contrast, READ out-
performs each no-retrieval baseline in terms of the average
success rate on the 12- and 16-task sets (Avg12 and Avg16)
and performs equal to or better on 8 tasks in the 12-task set.

Furthermore, we observed that RVT significantly de-
creases performance in tasks where motion planning should
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Figure 6. List of tasks. Their abbreviated names are in parentheses. The red dashed line encloses tasks included in Avg12.

Table 1. Success rates of 16 robot manipulation tasks. The best results of Avg16 and Avg12 are in red.

Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

no
re

tr
ie

va
l Deterministic 56.4 72.7 64 74 88 65 85 77 99 39 95 61 35 91 3 24 3 0

DDPM [19] 54.4 71.9 96 1 44 70 100 96 98 40 84 84 52 98 0 1 6 1
VPSDE [47] 50.2 66.4 95 3 96 53 99 68 95 48 59 50 38 93 1 3 1 1
RVT [16] 65.9 74.3 86 100 100 77 92 92 20 78 8 76 81 92 46 17 80 10

re
tr

ie
va

l VINN [37] 18.7 24.8 5 2 2 20 59 2 45 4 71 25 25 38 0 1 0 0
DMO-EBM [35] 56.6 70.4 89 32 85 61 97 85 74 40 91 46 51 94 16 25 2 17
VPSDE+CG [18] 14.6 19.5 26 10 5 6 72 6 30 1 51 7 5 15 0 0 0 0
R2-Diff [36] 62.9 81.0 95 91 99 72 96 98 96 43 90 56 48 89 23 6 3 1

ou
rs

READ 70.2 88.8 96 99 72 88 100 98 97 57 91 86 82 100 16 32 4 1
READ-O 60.1 78.5 95 99 83 72 95 99 98 41 86 34 42 96 5 11 4 0
READ-L 38.5 51.3 89 2 65 63 89 68 39 25 31 84 31 84 1 0 0 0

�'�d

�&���]�o����

Figure 7. A visualization of a failure case for VPSDE+CG.

adhere to specific constraints. For example, WP requires
carrying a watering can without spilling water to achieve
the task. However, RVT fails to consider such constraints
due to key-frame detection. Conversely, READ achieves
high success rates even in such tasks.
READ vs. retrieval-based methods We see in Table 1
that READ achieves higher success rates on the 12- (Avg12)
and 16-task (Avg16) sets, and matches if not exceeds their
performance on 11 tasks in the 12-task set and 13 of the
tasks in the 16-task set. Among all retrieval-based meth-
ods, VINN and VPSDE+CG exhibit noticeably lower suc-

cess rates. In VINN, the retrieval model is trained only
from the appearance of objects. In contrast, READ opti-
mizes feature F I for retrieval through motion refinement.
Since the appearance of objects is almost the same for each
task, VINN fails to retrieve the motion appropriately, while
READ retrieves successful motions in most cases (Sec-
tion 4.2). Meanwhile, VPSDE+CG fails during refinement
rather than retrieval. As shown in Fig. 7, while the pre-
dicted motion M̂ (0) seems feasible, classifier-free guidance
strongly guides M̂ (0) towards the retrieved motion M R .
Although the guidance makes small errors, the errors ren-
der the motion unsuccessful.

While DMO-EBM and R2-Diff outperform the no-
retrieval methods on Avg16, they struggle to accurately
refine M R due to training difficulty [45] and roundabout
diffusion path, respectively. READ avoids these issues
through asymmetric diffusion. As shown in Fig. 8, READ
accurately refines M R to a successful motion M̂ (0).

4.2. READ ablations and analyses

In the following, we perform a more detailed analysis of our
READ framework.
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Figure 8. Visualization of motion refinement by READ.

Table 2. Detailed analysis

(a) Refinement

i Avg16 Avg12

READ 1 70.4 88.6
READ-O 1 61.4 78.3
READ-L 1 33.6 44.8

READ 3 70.7 89.3
READ-O 3 61.1 78.8
READ-L 3 34.1 45.3

READ 10 71.0 89.8
READ-O 10 60.1 77.3
READ-L 10 34.9 46.5

(b) Retrieval

Avg16 Avg12

READ 56.6 73.5
READ-O 57.1 75.5
READ-L 52.4 68.9
Cheat 60.6 79.5

(c) EM vs. CD with READ-O

READ-O Avg16 Avg12

w/ EM 60.1 78.5
w/ CD 58.8 77.4

Benefits of Asymmetric Diffusion From Table 1, we see
that READ’s use of asymmetric diffusion results in better
Avg12 and Avg16 success rates compared to the variations
of READ that perform diffusion solely in the original task
space (READ-O) and latent space (READ-L). Comparing
READ-O and READ-L, the results reveal that diffusion in
the latent space performs demonstrably worse on average
as well as on most of the individual tasks. We isolate the
influence of asymmetric diffusion shortly, but together, the
results above suggest that READ benefits from performing
forward diffusion in the latent space and reverse diffusion
in the original space.
Evaluation of retrieval Next, we evaluate the retrieval
performance. Since the EncI weights differ between
READ, READ-O, and READ-L, so will the retrieved mo-
tion M R . Given the diversity of valid paths, which may be
from different homotopy groups, it is not straightforward
to define a metric that provides a suitable measure of the
similarity between motion pairs. Instead, we measure the
quality of the retrieved motion M R in terms of its success
rate when executed without refinement (i.e., N = 0 ). As an
upper-bound on performance, we consider the motion in the
database that is closest to the ground-truth motion, which
we refer to as “cheat.” We see in Table 2(b) that READ
and READ-O perform similarly, with READ-O slightly bet-
ter, and are only slightly worse than the “cheat” retrieval

�&�K�H�D�W �5�(�$�' �5�(�$�'���2 �5�(�$�'���/

Figure 9. Examples of retrieved motion and image. Retrieved
motions are overlaid on the retrieved images

method, while READ-L is noticeably worse. This suggests
that the reverse process in the original space has little ef-
fect on the image encoder and, in turn, retrieval. We also
observe qualitatively, in Fig. 9, that the visual differences
between the retrieved motions are negligible.

Evaluation of refinement via diffusion Next, we iso-
late the effect of READ’s approach to motion refinement.
To control for retrieval, we use i th nearest neighbor to the
gound-truth motion as the retrieved motion M R for all
methods. We then apply Algorithm 1 to refine M R . Ta-
ble 2(a) shows the success rates for READ, READ-O, and
READ-L for different values for i . While M R is the same
for all methods, READ achieves higher performance for all
i , suggesting that asymmetric diffusion improves the refine-
ment rather than the retrieval.

To better understand the factors that contribute to the ad-
vantages of asymmetric diffusion, we consider (i) the space
of the reverse process, (ii) the method of the reverse process,
and (iii) the space of the forward process.
(i) Forward process in original vs. latent space: The re-
verse process is performed in the original space in READ
and READ-O, while it occurs in the latent space in READ-
L. Table 2(a) shows that the success rates of READ-L are
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Figure 10. Generated motions from different retrieved motions.

Table 3. Success rates of READ with different hyperparameters.

Setting N k � � Max Avg16 Avg12

A 100 3 0:5 2:0 70.2 88.8

B 10 3 0:5 2:0 69.9 88.0
C 1 3 0:5 2:0 68.8 87.1

D 100 10 0:5 2:0 67.1 85.9
E 100 1 0:5 2:0 67.1 85.5

F 100 3 1:0 2:0 68.8 87.4
G 100 3 0:1 2:0 59.5 76.6

H 100 3 0:5 20:0 65.4 84.3
I 100 3 0:5 0:1 67.4 85.9

much lower than those of READ and READ-O, further sug-
gesting that the reverse process in the original space is in-
dispensable in READ.
(ii) Analysis of EM vs. CD: While READ-O and READ-L
use the Euler Maruyama method (EM) for diffusion, READ
employs cold diffusion (CD). For a fair comparison be-
tween the effects of EM and CD, we should compare READ
with EM and READ with CD. Asymmetric diffusion in
READ, however, can be designed only with CD. Therefore,
we compare READ-O with EM to READ-O with CD. As
shown in Table 2(c), EM slightly outperforms CD, suggest-
ing that CD does not improve refinement quality.
(iii) Reverse process in original vs. latent space: The dif-
ference between READ and READ-O with CD is only the
space of the forward process. Since READ achieves almost
a 10% higher average success rate than READ-O with CD
(Avg16 = 70.2 vs. 58.5), we conclude that performing the
forward process in the latent space contributes to READ’s
performance gain.

4.3. Effect of retrieved motions

Since READ starts the refinement from each retrieved mo-
tion M R , the predicted motion M̂ (0) is expected to be in-
fluenced by M R . Figure 10 visualizes examples of M̂ (0)
for different M R . As we expected, M̂ (0) is similar to M R .

4.4. Hyperparameter studies

Table 3 shows the average success rates when changing
only one of the hyperparameters (N , K , � , or � t ) from the
best parameter combination (Setting A). We consider linear
changes in � t from 0:01 to � Max .

N (the number of iterations): As shown in Table 3, READ
achieves high success rates even with a quite small number
of iterations (i.e., Avg16 = 68.8 for N = 1 in Setting C),
demonstrating the effectiveness of our one-step reverse pro-
cess. Yet, iterative refinement achieves better success rates
(Avg16 = 69.9 for Setting B and 70.2 for Setting A).

k (the maximum rank of retrieved motions during train-
ing): k changes the degree of data augmentation. While
appropriate values improve accuracy (Avg16 = 70.2 in (A)
vs. 67.1 in (D)), excessively high values tend to decrease
accuracy due to differences in distributions (Avg16 = 70.2
for Setting A vs. 67.1 for Setting E).

� (scale of the noise in the forward process): � affects the
stochasticity of the forward process. During training, the
stochasticity works as a form of data augmentation. Dur-
ing inference, � handles the diversity of possible motions.
While � should be sufficiently small for retrieval-based in-
ference (Avg16 = 70.2 for Setting A vs. 68.8 for Setting F),
a smaller � decreases the augmentation effect during train-
ing (Avg16 = 59.5 for Setting G).

� t (velocity of interpolation ratio): � t controls the inter-
polation ratio e� �� t . If � t is too small, perturbed motion
M (t) cannot reach the retrieved motion M R , resulting in
poor performance (Avg16 = 67.4 in Setting I) due to lack
of data augmentation in training. In contrast, if � t is too
large, the interpolated motion, M (t), cannot be near ~M (0),
resulting in poor performance (Avg16 = 65.4 in Setting H)
due to iterative refinement starting far from ~M (0).

5. Conclusion

We present Retrieval-Enhanced Asymmetric Diffusion
(READ) an image-based motion planning framework that
generates motions that are both feasible and successful. Un-
like the conventional diffusion models, READ adopts la-
tent space interpolation as the forward process, enabling
a shorter reverse path from the retrieved motion and pre-
serving the semantics of the motion. Furthermore, we pro-
pose asymmetric diffusion to take advantage of the comple-
mentary nature of the latent and original task spaces. Ex-
periments on a suite of simulated robot manipulation tasks
reveal that READ outperforms contemporary retrieval and
non-retrieval methods, while ablations elucidate the role of
the different components of READ, particularly the critical
nature of asymmetric diffusion for accurate planning.
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