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Abstract

Computer vision in unconstrained outdoor scenarios
must tackle challenging high dynamic range (HDR) scenes
and rapidly changing illumination conditions. Existing
methods address this problem with multi-capture HDR sen-
sors and a hardware image signal processor (ISP) that pro-
duces a single fused image as input to a downstream neural
network. The output of the HDR sensor is a set of low dy-
namic range (LDR) exposures, and the fusion in the ISP is
performed in image space and typically optimized for hu-
man perception on a display. Preferring tonemapped con-
tent with smooth transition regions over detail (and noise)
in the resulting image, this image fusion does typically not
preserve all information from the LDR exposures that may
be essential for downstream computer vision tasks. In this
work, we depart from conventional HDR image fusion and
propose a learned task-driven fusion in the feature domain.
Instead of using a single companded image, we introduce a
novel local cross-attention fusion mechanism that exploits
semantic features from all exposures – learned in an end-
to-end fashion with supervision from downstream detection
losses. The proposed method outperforms all tested conven-
tional HDR exposure fusion and auto-exposure methods in
challenging automotive HDR scenarios.

1. Introduction
A wide range of computer vision tasks requires predictions
in outdoor scenarios at real-time rates, with applications
ranging from self-driving vehicles and advanced driver as-
sistance systems to drones and robots in farming and out-
door maintenance. The global dynamic range of luminances
in real-world scenes is 280 dB, see [34]. Inside this range,
a typical outdoor scene covers a sub-range of about 120 dB,
and such a typical scene already exceeds what conventional
CMOS image sensors can capture at around 60-70 dB. And
yet, in-the-wild computer vision systems, routinely have to
handle more challenging conditions, like facing the sun in
presence of large, shadow-casting objects (backlights) or
moving from indoor to outdoor and back (e.g., entrance and
exit of a tunnel). In such cases, the range of luminances
seen at the same time can reach 180 dB, and they exceed
the range of today’s robotic and automotive high dynamic
range (HDR) image sensors (covering around 120-140 dB).

Moreover, existing computer vision systems must also be
able to adapt to changing illumination conditions in real-
time, for example, when the vision system, or when large
objects in the environment move quickly.

The traditional approach to tackle these challenges is
to employ an HDR image sensor coupled with a hardware
image signal processor (ISP) and an auto-exposure control
system, each of them having been designed independently.
More precisely, the HDR image sensor captures multiple
exposures that are fused and processed in image space by
an ISP. The output of the ISP is a single HDR color im-
age which is consumed by a computer vision module that
has been designed and trained independently of the other
components in the pipeline. Each individual capture in this
pipeline, acquired at a different exposure, covers a low dy-
namic range (LDR), i.e., not exceeding 70 dB per image,
while the total dynamic range covered by the set of LDR
images covers a larger dynamic range. The fusion algo-
rithm that produces the image output in image space (i.e.,
the fused image), is typically designed in isolation from the
other components of the vision pipeline. In particular, it is
not optimized for the computer vision task at hand, be that
detection, segmentation, or localization.

In this work, we depart from the conventional approach
of capturing a bracketed HDR raw capture, fusion and de-
tection. Instead of image-space HDR fusion, we propose
a feature-domain fusion approach driven by a downstream
detection task, without needing to reconstruct a single HDR
image, see Figure 3. Specifically, we propose an early fu-
sion approach that fuses feature maps from the different ex-
posures into a single feature map. We introduce a novel
attention module to help the neural network determine, at
each spatial location, the exposure that contains the most
relevant information concerning the object detection task.
To this end, we devise a local cross-attention fusion block
which attends to features locally across exposures. The
queries of this cross-attention module are learned, while the
keys and the values are the feature vectors at each location,
across the different exposures.

The intuition behind our local cross-attention module is
best conveyed by the attention maps it produces. Figure 2
shows an example of such learned attention maps paired
with the corresponding images. The maps illustrate that
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Figure 1. Modern HDR image sensors are capable of producing a
stack of LDR images taken at different exposures in a short time
frame. We take advantage of this feature in our method to per-
form fusion at a later stage in the pipeline. At the bottom of the
figure, we show challenging scenarios for conventional HDR sys-
tems: Tunnel entrance and exit, oncoming traffic or strong back-
light. Scenes with large luminance range complicate HDR fusion
in image space and result in poor detail and low contrast.

our attention module locally gives more weight to features
from semantically relevant and adequately exposed regions.
In this particular example, we see that the lowest exposure
feature map weights the area outside the tunnel higher than
inside, while the medium and high exposures emphasize the
inside regions of the tunnel. The weights are distributed
evenly across exposures for areas with task-irrelevant se-
mantic content, such as the sky, while in areas with high in-
formation content, the weights are concentrated in the best-
exposed exposure.

We train our multi-exposure vision pipeline end-to-end,
including a differentiable ISP and feature domain exposure
fusion. This training is driven by detection losses typically
used in object detection training pipelines [8, 35]. We learn
feature-based fusion for n > 1 sub-exposure captures (see
Figure 1) jointly with the ISP and the object detector, and
we demonstrate that this outperforms existing object detec-
tion approaches based on HDR fusion. We validate the pro-
posed feature-domain exposure fusion with a test set of au-
tomotive scenarios, and we compare the method against ex-
isting HDR reconstruction methods. The proposed method
outperforms the conventional exposure fusion methods by
2.7% mAP. We validate all algorithm choices with exten-
sive ablations experiments that test different feature-domain
HDR fusion strategies. Specifically, we make the following
contributions:
• We propose a novel neural feature-space fusion approach

inside the detection model, as an alternative to image
space exposure fusion for HDR object detection.

Figure 2. Multi-exposure captures and attention maps that illus-
trate the behavior of the proposed local-cross attention mecha-
nism, see text. Only the highest weight per exposure is overlaid
to highlight which exposure is given more weight at each spatial
location.

• We design a new type of attention module, local cross-
attention fusion, to perform feature fusion and is driven
by a downstream detection task.

• We validate that the proposed method outperforms exist-
ing image space methods for automotive object detection
across all tested scenarios and over all tested methods:
+2.3% (Deep HDR) and +2.7% (Raw HDR).

2. Related Work
Next, we review related work on HDR imaging using expo-
sure fusion, object detection, and learned HDR. Most prior
works that we discuss primarily treat HDR imaging and per-
ception as independent tasks which can lead to failure in
high contrast scenes, see Fig. 1.

Exposure Fusion for High Dynamic Range Imaging
The dynamic range of real-world scenes is much greater
than what current sensors cover, and therefore a single ex-
posure is insufficient for most real-world driving scenarios
(e.g., tunnel entrances and exits). Exposure fusion is one
of several strategies for capturing the large range of illumi-
nations with multiple exposures [3, 25, 34]. Single expo-
sure capture cameras typically apply image-dependent me-
tering strategies to capture the largest dynamic range pos-
sible [6, 7, 15, 17], while multi-exposure cameras rely on
temporal multiplexing of different exposures to obtain a sin-
gle HDR image [3, 9, 11, 25, 28, 34]. Our work explores fu-
sion in the feature domain, driven by a detection loss, with-
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(b) Proposed Neural Exposure Fusion for Detection
Figure 3. Conventional HDR exposure fusion is done in image space, before object detection. We propose an alternative approach to HDR
object detection, where multi-exposure captures are not merged on the sensor but fused in the feature domain. The proposed pipeline
reasons on features from separate exposures and relies on an attention module to fuse them together, which is trained end-to-end along
with all the other modules of the pipeline, driven by the detection loss.

out needing to reconstruct a single HDR image.

Object Detection Networks Object detection networks
can be classified into single-stage and two-stage meta-
architectures based on how the inputs are chosen for object
classification and regression [14]. In single-stage models
[23, 24, 33], each cell of the feature map is considered for
potential object category with different bounding box sizes
then further refined and classified. During the first stage of
a two-stage detector, the feature map is used for detecting
regions of interest where objects can potentially be found.
The potential regions are then cropped and fed to a detec-
tion head that does the final bounding box regression and
classification [2, 22, 35]. We deliberately demonstrate the
proposed method with the popular Faster-RCNN [35] meta-
architecture with a custom lightweight 28-layer ResNet [13]
backbone split into two stages.

Learning-based HDR Imaging and Perception Deep
learning for HDR has primarily investigated generating
HDR from a single LDR [4, 5, 18, 20, 26], HDR from multi-
exposure fusion of LDR [16, 19, 32, 40, 41], and learned
capture techniques [27, 29, 31]. A review of recent deep
learning-based HDR method can be found in [39]. A few
works propose to combine HDR imaging with perception
tasks. For example, [38] proposes traffic light detection in
dual-channel HDR image where the dark channel is used
for detection and bright channel for classification, [30] pro-
posed HDR object detection by converting HDR to LDR
images. Some methods [1, 21] consider two differently ex-
posed HDR stereo images for depth estimation. In contrast
to these works, the proposed fusion of the individual sub-
exposures is done in the feature domain, guided by a down-
stream loss, instead of the image domain as in conventional
HDR fusion [34].

3. HDR Image Formation
In this section, we briefly review conventional image
space exposure fusion. Typical HDR image pipelines pro-
duce an HDR raw image IHDR by fusing n LDR images
R1, . . . , Rn, that is

IHDR = ExpoFusion(R1, . . . , Rn). (1)
The LDR images R1, . . . , Rn are recorded sequentially
(or simultaneously using separate photo-sites per pixel) as
n different recordings of the radiant scene power ϕscene.
Specifically, an image Rj , j ∈ {1, . . . , n}, with exposure
time tj and gain setting Kj is

Rj = min
(
(ϕscene ·tj+npre)·g ·Kj+npost,Mwhite

)
, (2)

where g is the conversion factor of the camera from radi-
ant energy to digital number for unit-gain, npre and npost

are the pre and post-amplification noises, and Mwhite is
the white level, i.e., the maximum sensor value that can be
recorded.

The fused HDR image is formed as a weighted average
of the LDR images,

IHDR =

n∑
j=1

wj ·Rj , (3)

where the wj are per-pixel weights such that pixels that are
saturated are given a zero weight. The role of the weights
is to merge content from different regions of the dynamic
range in a way that reduces artifacts, in particular noise.
A popular approach is to choose the weights wj such that
IHDR is the minimum variance unbiased estimator [12].

4. Neural Exposure Fusion
In this section, we first formalize conventional HDR
pipelines (see Fig. 3a) before introducing the proposed
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method (see Fig. 3b). In conventional HDR pipelines, the
HDR image results from the fusion of n LDR raw im-
ages which are recorded in a burst following an exposure
bracketing scheme. Such an image-space exposure fusion
is designed independently of the vision task. As an alter-
native, we investigate here feature-space exposure fusion
where we produce features from all exposures before fus-
ing them based on semantic information. In addition, fea-
ture fusion is supervised by the downstream object detec-
tion loss. In other words, the training of the feature fusion
module is driven by the performance on the object detec-
tion task. More formally, we can express a conventional
HDR object detection pipeline (see Fig. 3a) as the follow-
ing composition of operations

(bi, ci, si)i∈I = OD(ISPhw(ExpoFusion(R1, . . . , Rn))),
(4)

where the bi are the detected bounding boxes and ci and si
the corresponding inferred classes and confidence scores,
the symbols OD, ISPhw and ExpoFusion denote the object
detector, the hardware ISP and the image space exposure
fusion, and R1, . . . , Rn are the raw LDR images recorded
by the HDR image sensor. Note that the exposure fusion
outputs a single image that is ingested by the downstream
pipeline to extract features. In contrast, we propose the fol-
lowing feature-space fusion

(bi, ci, si)i∈I = ODH
(
Fusion

(
FE(ISP(R1)), . . . ,

FE(ISP(Rn))
))

.

Here, we do not use a fused HDR image. Instead, we
learn to extract features for each exposure that are fused
in feature-space. The operator FE is the feature extraction,
and ODH is the downstream part of the object detector, i.e.,
the object detector heads. We share weights between the
different feature extraction branches. The symbol Fusion
denotes the neural fusion, which fuses feature maps from
different exposures. We rely on a differentiable ISP in our
method for each of the n raw subexposures R1, . . . , Rn.
The entire model is trained end-to-end as a differentiable
multiexposure HDR capture and vision pipeline where ex-
posure control, ISP, feature extraction, fusion and the heads
of the object detector are trained jointly. Specifically, for
the object detector, we use the Faster-RCNN [35] meta-
architecture with a 28-layer variant of ResNet [13] as fea-
ture extractor.

Note that, departing from the standard single-exposure
method, we capture and extract features from multiple dif-
ferent exposures and propose a feature-based fusion for
these multiple exposures. As such, the fusion of the infor-
mation extracted from the different exposures is critical for
the proposed model to be effective, which we discuss in the
following.
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Figure 4. Local Cross-Attention Fusion. Cross attention with
learned query matrix Q is applied locally to the n feature maps
stacked into y, at row r and column c, resulting in the weight vec-
tor α·,r,c, which is used to produce the vector at location (r, c) of
the fused feature map ffm. In contrast to [37], the softmax is nor-
malized with respect to both axes.

4.1. Exposure Feature Fusion with Local Cross-
Attention

We propose to fuse exposure features with local cross-
attention, illustrated in Fig 4. To this end, we first extract
a stack of feature maps for each exposure, that is, for expo-
sure j, the following

yj,r,c,k = (FE(ISP(Rj)))r,c,k , (5)
where r, c are spatial coordinates, and k ∈ {1, . . . , d} is a
feature channel resulting from feature extractor FE.

We fuse the n exposure feature maps corresponding to
the different exposures together by performing a locally
weighted average with local weights that are computed
according to attention maps. These attention maps are
stacked together across the first dimension axis into the ten-
sor αj,r,c. The fused feature map ffm is then computed by
applying a weighted sum reduction across the first dimen-
sion, that is

ffm,(r,c,k) =

n∑
j=1

αj,r,c · yj,r,c,k. (6)

To predict αj,r,c, we design a new attention module
which we call local cross-attention fusion. In our attention
module, the keys and the values are feature vectors from
the feature maps y and the queries are trainable parameters.
The module attends to the feature vectors across exposures
and across a set of learned queries.

This means that for each row r and column c of the
feature map, we consider the matrix y·,r,c,· such that for
1 ⩽ j ⩽ n and 1 ⩽ k ⩽ d, (y·,r,c,·)j,k = yj,r,c,k, and apply
our attention module locally to produce the n-dimensional
local attention weight vector α·,r,c,

α·,r,c = Attention(Q, y·,r,c,·), (7)
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where Q is a learned query matrix of shape (q, d), which is
shared across all locations (r, c).

Specifically, for each row r = 1, . . . , h and each col-
umn c = 1, . . . , w we first compute the key matrix K(r,c) at
location (r, c) with the following matrix multiplication

K(r,c) = y·,r,c,·W
K , (8)

where WK is the learnable projection matrix with d rows
and d columns for the keys (as in [37]). Queries are directly
learned, the redundant projection step is therefore skipped.

As an intermediate step, we compute the expanded at-
tention map α̃ of shape (q, n, h, w). At each location (r, c)
we represent α by the matrix α̃·,·,r,c, which is computed as

α̃·,·,r,c = softmax

(
Q̃(K(r,c))T√

d

)
. (9)

The matrix Q̃ is the normalized version of matrix Q, where
each row of Q has been divided by its ℓ2 norm. The result
of the above softmax operation is a matrix of shape (q, n).
We note that in this softmax operation, we apply the nor-
malization of the softmax with respect to both axis of the
matrix, i.e., if z is a q × n matrix,

softmax(z)i,j =
ezi,j∑q

i′=1

∑n
j′=1 e

zi′,j′
, (10)

while in the conventional query-key-value attention mod-
ules [37], the normalization is only applied with respect to
the second axis.

Finally, the stacked attention map α is obtained by sum-
ming the expanded attention map α̃ along its first axis, that
is

αj,r,c =

q∑
i=1

α̃i,j,r,c. (11)

Here, the final step to compute the fused feature map,
i.e., Equation (6), is analog to the matrix multiplication
between the softmax output and the value matrix in [37].
Hence, we can view our cross-attention fusion as a variant
of the query-key-value attention module, where the role of
the value is played by y·,r,c,·. While a projection matrix
WV is applied to the value matrix in [37], we do not apply
any here.

4.2. Post Fusion Processing

The fused feature map can be used as input to any object
detector that relies on a feature map. In our implementa-
tion, we adopt the corresponding first and second stages of
[35]. That is to say, the fused feature map is input to the
Region Proposal Network (RPN, see [35]), as well as to the
ROI pooling operation (see [8]), and the remaining down-
stream processing closely follows [35] until producing the
final bounding boxes and class scores.

In Section 6, we evaluate our method with different fu-
sion variants, see Section 6.2 for a brief description and the
Supplement for the details.

4.3. Differentiable ISP

The image signal processor (ISP) for all fusion strategies is
composed of a sequence of conventional ISP modules, that
permit differentiability, with the following processing steps:
contrast stretching, demosaicing, image resizing, color cor-
rection, low frequency denoising, sharpening, contrast en-
hancing. We refer to the Supplemental Document for addi-
tional details. We implement all ISP blocks as differentiable
operations to backpropagate through them, and we note that
other differentiable ISP modules could be used.

4.4. Exposure Control

To set the exposure values – note that this is a problem sepa-
rate from exposure fusion addressed in this work – we gen-
eralize the neural exposure control module from [31] to a
set of n exposures. During inference, the module predicts
exposure shifts to capture n LDR images. The model is
trained using a synthetic training procedure. We provide
details about the architecture and training procedure of the
adapted module in the Supplemental Document.

5. Training

For training and testing of the proposed method, we use a
dataset of automotive HDR images captured with the Sony
IMX490 sensor mounted on a test vehicle. The sensor pro-
duces images that are 24 bits when decompanded. The
training dataset consists of 18790 examples.

To train our end-to-end HDR object detection method,
we simulate the capture of n 12-bit LDR raw images
R1, . . . , Rn, from each HDR image IHDR of the training
set. These n raw images are used as input to our object de-
tection pipeline. The object detection loss from [35] and
its gradients are computed. The parameters of all trainable
modules, including feature fusion, are updated with a gra-
dient descent step. Following [31], exposure control is also
factored into the training loop. See the Supplemental Mate-
rial for details.

For our HDR baselines (see Section 6.1) instead of simu-
lating n 12-bit raw images, we simulate a single 20-bit HDR
image, reproducing the dynamic range of existing automo-
tive HDR sensors like the OnSemi AR0231.

For our comparisons in the next section, we use the same
starting point for training, i.e. a pretrained ISP – object
detector pipeline. For additional details about the training
methodology, we refer to the Supplemental Material.

6. Evaluation

In this section, we validate the proposed method. We com-
pare different variants of the proposed fusion approach to
conventional HDR Imaging and detection pipelines, and al-
ternative fusion approaches, in diverse HDR scenarios.
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Table 1. HDR object detection evaluation for different
neural exposure fusion strategies compared to conventional
LDR/HDR Imaging and object detection pipelines. Our proposed
feature fusion strategies result in significant gains in mAP com-
pared to pixel-level fusion methods, and improvements in most of
the six considered object classes.

Classes
Method Point of Bike Bus & Car & Person Traffic Traffic mAP

Fusion Truck Van Light Sign

Shim et al. [36] (LDR) N/A 9.3 5.5 27.7 16.3 14.7 14.1 14.6
Onzon et al. [31] (LDR) N/A 23.9 15.3 72.1 43.4 39.4 52.2 41.1
Raw HDR Pre-ISP 23.4 15.2 72.1 43.7 41.8 52.8 41.5
Debevec and Malik [3] Post-ISP 23.0 15.0 71.9 44.9 44.1 51.1 41.7
Deep HDR [16] Post-ISP 25.6 16.7 72.2 44.6 43.4 48.7 41.9
Hanji et al. (PPNE) [10] Pre-ISP 26.4 16.4 72.4 46.0 43.9 53.4 43.1
Max Pooling Fusion (ours) Conv4 26.1 15.8 73.9 46.2 42.6 54.8 43.2
Conv 1 x 1 Fusion (ours) Conv4 20.9 12.9 70.8 41.4 38.0 46.9 38.5
Conv 3 x 3 Fusion (ours) Conv4 20.8 13.3 70.1 39.4 37.0 46.7 37.9
Late Fusion (ours) 2nd Stage 27.5 14.2 73.8 47.2 42.8 52.3 43.0
Local Cross Attention (ours) Conv4 26.8 16.6 74.3 47.0 44.4 56.3 44.2

Our test set consists of 1996 pairs of consecutive HDR
frames taken under a variety of challenging conditions.
The second frame of each mini sequence is manually an-
notated with 2D bounding boxes. The examples are dis-
tributed across the following different illumination cate-
gories: sunny, cloud/rain, backlight, tunnel, dusk, night.

We simulate captures using 7 exposure shifts κshift ∈
2{−15,−10,−5,0,5,10,15}, that represent different evaluation
scenarios of varying difficulty. The evaluation metric is the
object detection average precision (AP) at 50% IoU, which
is computed for the full test set. For fair comparison, all
tested pipelines use the learned auto-exposure from [31],
with minimal modifications to support 3-exposure inputs for
the methods that require it (see Section 4.4).

6.1. Baseline Detection Pipelines

We compare against recent HDR and LDR baseline meth-
ods. Specifically, we compare against two image space ex-
posure fusion methods: A custom HDR strategy RAW HDR,
and Deep HDR [16]. Both pipelines synthesize an HDR Im-
age by performing pixel fusion. Both variants convert the
raw input image to 32 bit floating point and use the same
differentiable ISP module (see 4.3) and object detector and
are jointly finetuned on the training dataset for fair compari-
son. We compare to two LDR object detection pipelines that
differ in their exposure selection approach. LDR Gradient
AE uses the method from [36], and the second LDR object
detection pipeline follows the method of [31], which is con-
ceptually closest to our method. To our knowledge there are
no existing feature-space exposure fusion approaches that
are optimized for downstream task performance that we can
include in our ablations. In the following, we describe the
HDR pipelines that we compare to.

6.1.1 RAW HDR
For this baseline, no feature fusion is performed, instead a
single 20-bit raw HDR image is simulated, as explained in
Section 5. This image is then used as input to the ISP.

Table 2. Ablations experiments with varying number of exposures
using Local Cross Attention (LCA) and experimental validation of
its internal components.

Classes
Method Point of Bike Bus & Car & Person Traffic Traffic mAP

Fusion Truck Van Light Sign

SoftMax 1D Conv4 26.7 16.6 73.6 45.9 42.5 53.6 43.2
Skip Normalize Q Conv4 25.7 15.8 71.4 45.3 41.8 53.8 42.3
Skip Multiply WK Conv4 26.5 17.2 74.0 46.9 44.2 55.9 44.1
LCA 2 Exposures Conv4 27.1 16.5 74.1 46.7 42.3 55.7 43.7
LCA 4 Exposures Conv4 26.7 16.7 74.4 47.9 44.3 56.2 44.4

6.1.2 Deep HDR
For this baseline, no feature fusion is performed, instead the
LDR captures are processed independently by the ISP and
merged to an HDR Image at the end of the ISP. The fusion
is performed following the approach from [16].

6.2. Alternative Fusion Strategies

We validate the proposed method by comparing to the fol-
lowing alternative fusion strategies. We describe them
briefly below, see Supplemental Material for details.

6.2.1 Maximum Pooling Fusion Strategy
For this strategy, the feature maps are fused together at the
end of the feature extractor, as in Section 4.1. We employ a
variant of the local cross-attention fusion, where we make a
drop-in replacement of the local cross-attention fusion mod-
ule by a maximum reduction across the n exposures, i.e., we
consider the following fused feature map,

fmax,(r,c,k) = max
j=1,...,n

yj,r,c,k. (12)

6.2.2 Convolutional Fusion Strategy
For this strategy again, the feature maps are fused together
at the end of the feature extractor, as in Section 4.1. The
local cross attention fusion module is replaced by a convo-
lutional layer. Specifically, the feature maps corresponding
to the n exposures are first stacked along the channel axis.
Then a convolution is applied followed by ReLU. We ex-
periment with 1× 1 and 3× 3 kernels.

6.2.3 Late Fusion Strategy
The late fusion strategy consists in running the object detec-
tor for each of the n images independently in parallel. The
final NMS stage is performed on the union set of all second
stage detections. See Supplemental Material for details and
comparisons with modified training losses.

6.3. Experiments

Ablations - Fusion Strategies As an ablation study to
further validate the proposed fusion strategy, we conduct
comparisons with the maximum pooling fusion, convolu-
tional fusion (1 × 1 and 3 × 3) and late fusion methods
described in Section 6.2. The proposed method, local cross-
attention fusion, performs overall better than these four al-
ternatives by respectively 1%, 5.7%, 6.3% and 1.2% mAP.
This is confirmed by a higher AP score across most of the
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considered object classes, see Table 1. Specifically, the pro-
posed feature fusion strategy outperforms the pixel-level fu-
sion methods in five out of the six considered object classes.
These experiments confirm the effectiveness of the pro-
posed fusion block and other fusion strategies.

Ablations - Local Cross Attention at Different Stages
In addition to the default local cross-attention fusion at the
end of the feature extractor, we propose fusing different ex-
posure features at varying stages of the 28-layer ResNet
variant [13]. We follow the terminology of [13], where
Conv1 (43.3 mAP) refers to the initial 7x7 convolution and
Conv2 (43.9 mAP)/Conv3 (44.1 mAP)/Conv4 (44.2 mAP)
to the following three residual blocks of the feature extrac-
tor. Results show that performance increases when fusing
at later stages, however, by trading off runtime, which we
discuss in Sec. 6.4) and the Supplemental Dcoument.

Ablations - Number of Exposures Additionally we vary
the number of exposures (see Table 2). We experiments
using two, three and four exposures all using the proposed
Local Cross Attention fusion module after Conv4. We chose
three exposures as our default configuration (Table 1) for all
other experiments as a quality/run-time trade-off.

Ablations - Local Cross Attention Fusion Module The
proposed Local Cross-Attention Fusion differs in key as-
pects from [37]. The main design choices are experimen-
tally validated in Table 2. a) The 2-dim SoftMax, taylored
to the purpose of fusion (+1.0% compared to conventional
1D version), b) Normalized Queries (+1.9%) and c) Learn-
ing a projection matrix for the keys WK (+0.1%). Other
internal components (see Figure 4) cannot be ablated.

Quantitative and Qualitative Analysis Next, we com-
pare the proposed method to the baseline detection meth-
ods. We report our findings in Tab. 1. These evaluations
validate that the proposed neural fusion variants, which use
three exposures, outperform the HDR baselines. The pro-
posed method is overall best by 2.7% mAP and 2.3% mAP,
respectively compared to Raw HDR and Deep HDR.

Fig. 5 shows qualitative results that complement the
quantitative analysis. Objects in the darkest parts of the im-
age can be missed by Raw HDR and Deep HDR methods,
while the proposed Local Cross Attention Fusion method
manages to detect them. We find the presence of the high-
est exposure capture is particularly useful in such cases.
Such an instance can be seen in the first row of images in
Fig. 5, where a particularly difficult to distinguish vehicle is
in front of a house on the left side of the image. This vehicle
is not detected by Raw HDR and Deep HDR methods, but
the proposed Local Cross Attention Fusion method man-
ages to detect it. This is also the case for a vehicle parked on
the left of the image in the second row of images, whose de-
tection escapes the Raw HDR method. Hallucinating HDR

images, the Deep HDR method suffers from false negatives
in this particularly dark part of the image.

Partially occluded objects are another challenge for de-
tection in high dynamic range scenes. Occlusions can be
due to the presence of other objects masking the object of
interest, as is the case in the fourth row of images in Fig. 5
where a truck parked in a poorly lit area is partially occluded
by a tree and a low wall. Despite this, the proposed method
manages to detect this truck, whereas the Deep HDR and
Raw HDR methods fail to detect it. Finally, some objects
can also be occluded because they exit the camera field of
view, so that only a small part of the object is visible. When
combined with the fact that this small part of the object is
poorly exposed because the camera must be able to properly
expose a high dynamic range image, this makes the object
particularly difficult to detect. This is the case, for example,
with a car in the third row of Fig. 5, which disappears to the
left of the image. The Deep HDR and Raw HDR methods
fail here, while the Local Cross Attention Fusion method
manages to detect this object which is very badly exposed
and largely occluded. Finally, small objects are known to
be a source of difficulty for object detectors. This difficulty
is even more pronounced in a high dynamic range situation,
such as the tunnel entrance visible in the last row of Fig. 5,
where we can see small traffic signs at the entrance of the
tunnel, which the Raw HDR and Deep HDR methods fail
to detect, but which are detected correctly by the proposed
Local Cross Attention Fusion method.

6.4. Runtime and Additional Model Parameters

Next, we analyze the inference runtime and the parameters
that are added by the proposed feature-fusion approach.

Number of Additional Parameters For Local Cross-
Attention Fusion, additional parameters are introduced by
the matrices Q and WK . This adds d2 + q · d = 16, 896
parameters (d = 128, q = 4). In contrast, for Convolutional
Fusion with k×k kernels. This adds k2·n·d·(d+1) parame-
ters. For k = 1 and 3, this is respectively 49,536 and 445,824
parameters. For Maximum Pooling Fusion and Late Fusion,
there are no additional parameters.

Runtime Complexity Analysis Because of its locality,
our cross-attention fusion has a complexity comparable to
a 1×1 convolution, and can be implemented using 2D con-
volutions. For instance the matrix multiplications in equa-
tions (8) and (9) on the whole image can be implemented as
1 × 1 convolutions. Their computational complexities are
respectively O(h · w · n · d2) and O(h · w · n · q · d).

Real-Time Runtime on Jetson Orin AGX Using the
lightweight ISP described in the Supplemental Material
with our method, batch processing with n = 3 exposures
runs in 17.5 ms (57 FPS) on the Nvidia Jetson AGX Orin
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Figure 5. Qualitative comparison of the proposed Local Cross-Attention Fusion with the baseline methods Raw HDR and Deep HDR [16]
on challenging scenes. Our neural fusion module recover features from separate exposure streams, where the image region is well exposed
to make its decision. In contrast, the fused HDR image misses details and local contrast resulting in false negatives and false positives.
Final detections in the last three columns are overlaid over all Cross-Attention exposures.

Table 3. Complexity analysis, runtime on Jetson Orin AGX (FPS)
and relative detection performance compared to the proposed Lo-
cal Cross Attention Fusion after Conv4.

Method Point of Fusion GFLOPS FPS ∆mAP

Shim et al. [36] (LDR) N/A 44 144 -29.6
Onzon et al. [31] (LDR) N/A 44 144 -3.1
RAW HDR Pre-ISP 44 144 -2.7
Deep HDR [16] Post-ISP 401 16 -2.3

Max Pooling Fusion (ours) Conv4 111 57 -1.0
Local Cross Attention (ours) Conv4 111 57 0.0
Conv 1 x 1 Fusion (ours) Conv4 111 57 -5.7
Local Cross Attention (ours) Conv3 90 70 -0.1
Conv 3 x 3 Fusion (ours) Conv4 111 57 -6.3
Local Cross Attention (ours) Conv2 72 88 -0.3
Late Fusion (ours) 2nd Stage 131 48 -1.2
Local Cross Attention (ours) Conv1 51 123 -0.9

(16-bit float) using the proposed Local Cross Attention Fu-
sion after Conv4. Runtimes, complexity and relative detec-
tion performance of the compared variants can be found in
Table 3. Proposed variants that fuse exposure features at
earlier stages achieve faster runtimes with just slight losses
in downstream detection performance. Note that we run our
method on a general-purpose GPU while ISPs typically run
on specialized ASICs.

7. Conclusion
Outdoor scenarios are challenging for computer vision be-
cause of large dynamical ranges of luminance. Instead of
a conventional HDR sensing approach with fusion in im-
age space, we propose a neural exposure fusion that at-
tends to the information of different LDR captures using
a novel local cross attention module, allowing for fusion
of the information in feature space. This feature-based fu-
sion is embedded in an end-to-end trainable vision pipeline
that jointly learns exposure control, image processing, fea-
ture extraction and detection driven by a downstream loss.
Our method outperforms conventional HDR, learned, and
classical auto-exposure methods on challenging automotive
scenarios, when sunlight and low-lit areas are present in the
same scene, where HDR fusion strategies lead to poorly ex-
posed areas and fail to yield robust features for detection.
In the future, we plan to expand our method to other vision
tasks, including segmentation and optical flow, and investi-
gate the design of the sensor itself, such as pixel layout and
readout schemes — all driven by the downstream task.
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