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Abstract

With the rapid growth in deepfake video content, we re-
quire improved and generalizable methods to detect them.
Most existing detection methods either use uni-modal cues
or rely on supervised training to capture the dissonance be-
tween the audio and visual modalities. While the former
disregards the audio-visual correspondences entirely, the lat-
ter predominantly focuses on discerning audio-visual cues
within the training corpus, thereby potentially overlooking
correspondences that can help detect unseen deepfakes. We
present Audio-Visual Feature Fusion (AVFF), a two-stage
cross-modal learning method that explicitly captures the
correspondence between the audio and visual modalities
for improved deepfake detection. The first stage pursues
representation learning via self-supervision on real videos
to capture the intrinsic audio-visual correspondences. To
extract rich cross-modal representations, we use contrastive
learning and autoencoding objectives, and introduce a novel
audio-visual complementary masking and feature fusion
strategy. The learned representations are tuned in the second
stage, where deepfake classification is pursued via super-
vised learning on both real and fake videos. Extensive exper-
iments and analysis suggest that our novel representation
learning paradigm is highly discriminative in nature. We
report 98.6% accuracy and 99.1% AUC on the FakeAVCeleb
dataset, outperforming the current audio-visual state-of-the-
art by 14.9% and 9.9%, respectively.

1. Introduction
Deepfake generative AI technology enables new opportuni-
ties to create rich and quality content in multimedia appli-
cations such as virtual reality [52], movie production [41],
and telepresence [35, 48]. However, its malicious use has
become a major societal threat posing a number of problems
including frauds1, defamation2 and disinformation3. As the

*This work was completed during an internship at Reality Defender Inc.
1Fraudsters Used AI to Mimic CEO’s Voice in Cybercrime Case
2Deepfake porn documentary explores its ‘life-shattering’ impact, AI

Fake Nudes are booming
3Martin Lewis felt ‘sick’ seeing deepfake scam ad on Facebook, Deep-

fake scams have arrived
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Figure 1. We use audio-visual correspondences for deepfake de-
tection. Transformer-based encoders are used to extract audio and
visual feature tokens, which are then masked complementarily. The
visible audio tokens are sent through a learnable A2V network to
predict the masked visual tokens. These predicted visual tokens
are fused with the visible visual tokens to obtain the full visual
embeddings. Full audio embeddings are obtained in a similar way
using the V2A network. The audio/visual embeddings are then
used for video reconstruction in the MAE sense, and subsequently
for deepfake classification.

generative AI landscape continues to evolve, there is a grow-
ing need for robust deepfake detection that helps preserve
content integrity. In this paper, we study video deepfake
detection where either or both the visual and audio content
are AI-generated.

We pursue multi-modal learning and draw inspiration
from previous works, such as SyncNet [9], CLIP [42], and
AudioCLIP [18], where the correspondence between differ-
ent modalities (audio, text, visual) was leveraged to signifi-
cantly enhance performance on various downstream tasks.
We note that in real video face context, the audio-visual
correspondence is deeply intuitive since there is an intrinsic
correlation between the mouth articulations (visemes) and
the speech units (phonemes) [2, 9, 41, 58], as well as an
alignment of emotional nuances embedded in the facial and
speech expressions [4, 36, 37]. Such inherent audio-visual
correspondence, for example, in audio-driven emotion, is
challenging to faithfully replicate in deepfake videos. Based
on these observations, we propose a video deepfake detection
method that learns efficient representations for audio and vi-
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sual modalities. The proposed method employs a novel com-
plementary masking and cross-modal feature fusion strategy
to explicitly capture the audio-visual correspondences.

Previous literature on audio-visual video deepfake detec-
tion [36, 53] use supervised contrastive learning to capture
the audio-visual correspondence. Such methods align the
audio and visual embeddings closer to each other, if the con-
tent in both modalities is real, and push them apart if either
or both modalities are generative. Similarly, others pursue a
single stage supervised learning method, where models are
directly trained on labeled deepfake datasets for deepfake
classification [11, 29]. While such methods yield promis-
ing results, we conjecture that they may not fully exploit the
audio-visual correspondence. Also, training solely on a deep-
fake dataset narrows the model’s focus to discern separable
features within the training corpus, potentially overlooking
subtle audio-visual correspondences that can help detect un-
seen deepfake samples (observe in Tabs. 1 and 3, the weaker
performance of other baselines compared to [20] and ours).

To circumvent these issues, we propose a two stage train-
ing pipeline comprising of (i) a self-supervised represen-
tation learning stage that explicitly enforces audio-visual
correspondence using a novel approach, and (ii) a super-
vised downstream classification stage. In the representation
learning stage, we extract audio-visual representations via
self-supervised learning on real face videos, which are avail-
able in abundance [1, 51, 59]. Drawing inspirations from
CAV-MAE [17], we make use of the complementary nature
of two learning objectives: contrastive learning and autoen-
coding. For extracting rich representations, we supplement
the contrastive learning objective by a novel audio-visual
complementary masking and fusion strategy that sits within
the autoencoding objective. In the classification stage, we
train a classifier that exploits the lack of cohesion between
audio-visual features of deepfake videos to separate them
from real videos.

We evaluate our method against existing state-of-the-art
approaches on multiple benchmarks. Our results reveal sub-
stantial improvements, when compared against the existing
audio-visual state-of-the-art, enhancing the performance by
9.9% in AUC and 14.9% in accuracy when evaluated on the
FakeAVCeleb dataset [29]. This underscores the effective-
ness of explicitly leveraging audio-visual correspondences
through the proposed method. In summary:
• We propose a novel self-supervised representation learn-

ing method that explicitly captures audio-visual correspon-
dences in real videos. To learn the correspondences, we
pursue a dual-objective of contrastive learning and au-
toencoding, and supplement it with a novel audio-visual
complementary masking and fusion strategy.

• Qualitative analysis using t-SNE [46] shows a clear separa-
tion between the real and fake video embeddings at the end
of the representation learning stage. This demonstrates the

efficacy of the proposed representation learning.
• We propose a two-stage deepfake detection method com-

prising of the aforementioned representation learning stage
followed by a deepfake classification stage. Our method
yields state-of-the-art performance on deepfake detection
when either or both the audio and visual contents are AI
generated. We achieve 98.6% accuracy and 99.1% AUC on
FakeAVCeleb, surpassing the existing audio-visual state-
of-the-art by 14.9% and 9.9% respectively.

2. Related Works
2.1. Multi-Modal Representation Learning

Learning a joint representation from multiple modalities has
been shown to be effective for different tasks in the state-of-
the-art. SyncNet [9] proposes a Siamese Network to estimate
the lip-sync error between audio and visual modalities. This
framework processes each modality through a distinct branch
and employs a contrastive loss to promote the similarities
in the encoding space. More recently, improvements in
the Natural Language Processing (NLP) field brought by
BERT [10], allowed to use text modality in multi-modal
frameworks. Another example is CLIP [42], a zero-shot
image classification model that leverages separate encoders
for images and captions to find a suitable pairing in the
latent space. AudioCLIP [18] extends this approach to audio,
enabling multi-modal classification.

Several self-supervised methods have emerged, inspired
by the Masked Autoencoder (MAE) framework [21]. AV-
MAE [16] is a joint masked autoencoder for audio, visual,
and joint audio/visual classification. The authors explore
different encoding policies for dual-modality inputs, demon-
strating the ability to decode one masked modality from the
other. CAV-MAE [17] raises concerns about the ability of a
vanilla masked autoencoder to learn a coordinated representa-
tion between audio and visuals (i.e., a representation that en-
forces similarity [5]) and adds a contrastive loss to explicitly
leverage the audio-visual pair information. In this work, we
draw inspiration from CAV-MAE, in using a dual contrastive-
autoencoding objective for effective representation learning.
Our approach diverges from existing MAE literature: (i)
in terms of the masking strategy, where we use a comple-
mentary masking strategy post-encoding; (ii) in terms of the
cross-modal fusion, where for every modality we replace the
shared learnable masked tokens of MAEs with tokens pre-
dicted from the other modality. We do this to enforce explicit
correspondence between audio and visual modalities.

2.2. Deepfake Detection

Visual-only methods. Multiple recent works have made use
of visual-only artifacts for deepfake detection. The authors
of [43] train a Convolutional Neural Network (CNN) (Xcep-
tionNet) end-to-end, setting one of the first baselines on the
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Figure 2. Audio-Visual Representation Learning Stage. A real input sample, x ∈ Dr , with corresponding audio and visual tokens
(xa, xv), is split along the temporal dimension, creating K slices, {xa,ti}Ki=1 and {xv,ti}Ki=1 (illustrated with K = 8 in the figure). The
temporal slices are then encoded using unimodal transformers, Ea and Ev , to yield feature embeddings a and v. We then complementarily
mask 50% of the temporal slices in (a, v) with binary masks (Ma, Mv). The visible slices of a and v are passed through A2V and V2A
networks respectively, to generate cross-modal slices av and va. The masked slices of a and v are then replaced with the corresponding
slices in av and va. The resulting cross-modal fusion representations, a′ and v′, are input to unimodal decoders to obtain the audio and
visual reconstructions, x̂a and x̂v . For the learning, we use a dual-objective loss function, which computes the contrastive loss between the
audio and visual feature embeddings and the autoencoder loss between the input and the reconstruction of the masked tokens.

dataset they shared with the community. Some methods
target specific face regions for exposing deepfakes. For ex-
ample, LipForensics [19] relies on lip movements that might
be difficult to reproduce by generative methods. Others con-
sider inconsistent head pose [34, 54] or eye blinking [27, 33].
Another common approach is to consider both spatial and
temporal domains. FTCN [56] proposes a combination of a
CNN and a transformer network to exploit short-time and
long-time temporal incoherence. Similarly, [55] extracts
spatial features by means of an attention-based network and
then fuses those features with a temporal module.

Several papers based on the Vision Transformer (ViT)
have been published since the advent of the original pa-
per [14] for image classification. An example is CViT [50],
where learnable features are extracted by means of a CNN
and subsequently fed to a ViT for the classification task.
Similar approaches are followed by [13, 28, 60]. Recently,
generalization to unseen deepfake methods [40, 49] and the
impact of the identity leakage during training [12, 22] have
also been investigated. RealForensics [20] proposed a hybrid
approach that consists of using a multi-modal pre-training
pipeline, where audio and visuals exclusively from real sam-
ples are used for computing internal representations that help
the classifier to discriminate between real and fake video.
This is not considered a pure multi-modal approach as the
final classification is performed just on visuals, discarding
the audio modality. As modern day video deepfakes consist
of both audio and visual manipulations, uni-modal deepfake
detection methods prove to be less effective.

Audio-visual methods. These methods consider audio and
visual signals to target deepfake detection on both modalities.
One of the first papers to address multi-modality is Emotions
Don’t Lie [36], proposing a Siamese Network where uni-
modal features are passed to an emotion recognition network
to compare affective cues corresponding to perceived emo-
tion from the two modalities within a video. Not made for
each other [8] explicitly modeled the dissimilarity between
modalities, and proposed the Modality Dissonance Score
(MDS) network, where a contrastive loss is computed on
single modality embeddings to expose differences on audio-
visual pairs. Voice-Face matching Detection (VFD) [7] is
another example of using contrastive loss for modeling face
and voice homogeneity. A similar concept is exploited in
[2], where the focus is on phoneme-viseme mismatch. The
idea is that a given dynamic of mouth shape (viseme) should
correspond to a given emitted sound (phoneme). The au-
thors only focus on the mouth region, showing how deepfake
methods struggle to reproduce certain dynamics.

More recently, the paradigm for multi-modality shifted
towards fusion of single-modality features. AV-DFD [57]
proposes a joint audio-visual deepfake detection framework
in which visual and audio features are aligned and tiled to
be passed onto a cross-attention mechanism on the temporal
dimension. More recent papers study the encoding/decoding
potential of ViTs and build feature fusion in the embedding
space on the decoder side. Examples are AVFakeNet [24]
and AVoiD-DF [53].
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3. Method

The proposed algorithm, AVFF, consists of two stages:
(i) representation learning, and (ii) deepfake classification.
Stage 1 aims to acquire an audio-visual representation with
cross-modal correspondence via self-supervised learning,
and it solely utilizes real face videos. The model learns
audio-visual correspondences inherent to real videos via a
contrastive learning objective and an effective complemen-
tary masking and fusion strategy that sits within an auto-
encoding objective (see Fig. 2). Here, the complementary
masking and fusion strategy takes uni-modal audio and vi-
sual embeddings (a,v) and systematically masks them to
force the learning of advanced embeddings (a′,v′) via re-
construction in the MAE sense. To instill cross-modal depen-
dency, tokens from one modality are used to learn the masked
embeddings of the other modality via cross-modal token con-
version networks (A2V and V2A in Fig. 2). Since we work
exclusively with real face videos in this stage, the model
learns the dependency between “real” speech audio and the
corresponding visual facial features. In Stage 2, a classifier
is trained to distinguish between real and fake videos using
the learned representations from the first stage. Effectively,
the representation learning stage serves as pre-training for
the downstream task of video deepfake detection.

3.1. Preprocessing

Initially, visual frames and the corresponding audio wave-
forms are extracted from raw videos at a sampling rate of
5 fps and 16 kHz, respectively. Given our emphasis on
audio-visual correspondence, we align the cropped facial
regions and eliminate the background in the visual frames
using FaceX-Zoo [47]. This step is performed since back-
ground variations typically exhibit minimal correspondence
with speech audio. Simultaneously, the audio waveform is
converted into a log-mel spectrogram with L frequency bins.
Henceforth, we refer to the preprocessed visual frames and
log-mel spectrograms as the visual and audio input represen-
tations, respectively.

3.2. Representation Learning Stage

The primary objective of this stage is to learn a representa-
tion that effectively captures audio-visual feature correspon-
dences inherently present in real videos (and different thereof
from the correspondences in fake videos). Drawing inspira-
tion from CAV-MAE [17], we propose a dual self-supervised
learning approach that incorporates contrastive learning and
autoencoding objectives. While contrastive learning helps
build cross-modal correlations [18, 38, 42, 44], we found in
preliminary experiments that relying solely on it does not
establish a strong correspondence between the audio and
visual modalities. Therefore, we supplement it with an au-
toencoding objective and embed a complementary masking

and cross-modal fusion strategy into the autoencoding frame-
work. This allows us to learn rich cross-modal representa-
tions that result in improved deepfake detection (see Tab. 4).
In Fig. 2, we illustrate the overall pipeline for our represen-
tation learning stage and discuss its key components next.

Input Tokenization. Given a dataset Dr of real talking
human portrait videos, we denote a video sample x ∈ Dr

with a time duration T as comprising of audio and visual
components, xa ∈ RTa×L and xv ∈ RTv×C×H×W ,
respectively. In xa, the (Ta, L) denote the number of
audio frames and mel-frequency bins. In xv, the (Tv,
H , W , C) denote the number of visual frames, height,
width, and number of channels. We choose Ta and Tv

such that Ta · na = Tv · nv = T , where na and nv are the
sampling frequencies of the audio and visual sequences.
We tokenize xa using 16× 16 non-overlapping 2D patches
(similar to Audio-MAE [23]), and xv using 2 × 16 × 16
non-overlapping 3D spatio-temporal patches (similar to
MARLIN [6]). The resulting representations are denoted
as xa and xv. Subsequently, we segment each of the
tokenized representations into 8 equal temporal slices,
xa = {xa,ti}8i=1 and xv = {xv,ti}8i=1, where the number
of slices was decided empirically. This slicing preserves the
temporal correspondence of each slice between modalities,
as xa,ti and xv,ti correspond to the same time interval.

Feature Encoding. The two uni-modal audio and visual
encoders, Ea and Ev, encode the tokenized inputs, xa and
xv, and output uni-modal features a and v respectively:
p = {pti}8i=1 = Ep(xp + posep), where, p ∈ {a, v} and
posep is the learnable positional embedding.

Complementary Masking. Within the uni-modal feature
embeddings, a and v, we mask 50% of the temporal slices
using binary masks, (Ma,Mv) ∈ {0,1}, such that Ma

and Mv are complementary to each other, i.e., Ma = 1 for
slices where Mv = 0 and vice-versa. In other words, for
every masked slice in the audio feature, the corresponding
visual slice is visible and vice versa. Let us denote the visible
temporal slices as pvis = Mp ⊙p and the masked temporal
slices as pmsk = (¬Mp)⊙p, where p ∈ {a, v}, ⊙ denotes
the Hadamard product and ¬ is the NOT operator.

Cross-Modal Fusion. Next, the visible temporal slices
avis and vvis are sent through learnable audio-to-visual
(A2V) and visual-to-audio (V2A) networks to create their
cross-modal temporal counterparts, va = A2V(avis) and
av = V2A(vvis), respectively. Here, va contains {vti,a =
A2V(ati), ∀ti where ati ∈ avis}, and similarly av . Each
of the A2V/V2A networks is composed of a single-layer
MLP to match the number of tokens of the other modality fol-
lowed by a single transformer block. The audio embedding
a′ is then created using cross-modal fusion, wherein, we take
the original feature a and replace each masked slice with the
corresponding slice of the same temporal index in the cross-
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modal vector av given by the V2A network (see Fig. 2). The
visual embedding v′ is similarly obtained from the original
feature v and the cross-modal feature va. Effectively, this
process replaces the masked temporal slices of each modality
with cross-modal slices generated from the corresponding
temporal slices in the other modality. This is feasible due to
our complementary masking strategy, as the masked slices
of one modality are the visible slices of the other modality.

Decoding. The uni-modal audio and visual decoders, Ga

and Gv, take a′ and v′ as input to generate the audio
and visual reconstructions, x̂a = Ga(a

′ + posga) and
x̂v = Gv(v

′ + posgv), where posga and posgv are learnable
positional embeddings for each modality. The decoders use
a transformer-based architecture and are entrusted with the
task of effectively utilizing the mix of uni-modal slices and
cross-modal slices present in a′ and v′ to generate the re-
constructions for the two modalities.

Loss Functions. We use a dual objective loss, comprising
an audio-visual contrastive loss and an autoencoding loss.
The bi-directional audio-visual contrastive loss is defined as:

Lc = −
∑

p,q∈{a,v},
p̸=q

1

2N

N∑
i=1

log

[
exp

(
∥p̄(i)∥T ∥q̄(i)∥/τ

)∑N
j=1 exp

(
∥p̄(i)∥T ∥q̄(j)∥/τ

)] (1)

where p̄(i) is the mean latent vector across the patch dimen-
sion of the uni-modal embeddings of the i-th data sample,
N is the number of samples, τ is the temperature parameter,
and i, j are sample indices. The audio-visual contrastive loss
enforces similarity constraints between the audio and visual
embeddings of a given sample.

The autoencoder loss, Lae, is composed of reconstruction
and adversarial losses, similar to MARLIN [6]. The recon-
struction MSE loss, Lrec, is computed between the inputs
(xa, xv), and their reconstructions (x̂a, x̂v), and is com-
puted only over the masked tokens following the approach
in MAEs [6, 17, 23]:

Lrec =
∑

p∈{a,v}

1

N

N∑
i=1

∥x(i)
pmsk

− x̂
(i)
pmsk

∥ (2)

For the adversarial loss, Ladv , we use the Wasserstein GAN
loss [3] to supplement the reconstruction loss by enhancing
the features captured in the reconstructions of each modality.
Similar to the reconstruction loss, the adversarial loss is
computed only on the masked tokens:

L(G)
adv = −

∑
p∈{a,v}

1

N

N∑
i=1

Dp(x̂pmsk ) (3)

L(D)
adv =

∑
p∈{a,v}

1

N

N∑
i=1

(Dp(x̂pmsk )−Dp(xpmsk )) (4)

Here, Dp denotes the discriminator of each modality, and
the L(D)

adv and L(G)
adv represents the adversarial loss during the

generator and the discriminator training steps respectively.

Audio
Encoder, A2V

Network

Visual
Encoder, V2A

Network

Classifier
Network

REAL/
FAKE

Figure 3. Deepfake Classification Stage. Given a sample x ∈ Ddf ,
comprising of audio and visual inputs xa and xv , we obtain the
unimodal features (a,v) and the cross-modal embeddings (av,va).
For each modality, the unimodal and cross-modal embeddings are
concatenated to obtain (fa,fv). A classifier network is then trained
to take (fa,fv) as input and predict if the input is real or fake.

The overall training loss for the generative training step
is as follows, where the λ∗ parameters represent the corre-
sponding loss weights:

L(G) = λcLc + λrecLrec + λadvL(G)
adv (5)

Computing the autoencoding loss objective on the masked
temporal slices strictly enforces the decoder to learn from
the other modality, as the input embeddings for the decoder
at masked indices are obtained from the other modality. This
novel strategy explicitly enforces audio-visual correspon-
dence supplementing the contrastive loss objective.

3.3. Deepfake Classification Stage

The goal of this stage is to detect video deepfakes, where
either or both audio and visual modalities have been faked.
For this, we use the encoders and the cross-modal networks
trained in the representation learning phase. We train a
classifier to tell real videos and deepfakes apart using a
supervised learning approach. The classification pipeline is
depicted in Fig. 3. Since the learned representations have a
high audio-visual correspondence for real videos, we expect
the classifier to exploit the lack of audio-visual cohesion of
synthesized samples in distinguishing between real and fake.

Input Tokenization. The process followed in input tokeniza-
tion is identical to Stage 1 except for the dataset used. In this
stage we draw samples from a labeled deepfake dataset (Ddf )
consisting of both real and fake videos, i.e., (x, y) ∈ Ddf ,
where x is the video sample and y is the label (real/fake).

Feature Extraction. The tokenized inputs (xa,xv), are
sent through the backbone of Stage 1 to obtain (i) the feature
embeddings (a,v), which are the outputs of the uni-modal
encoders, and (ii) the cross-modal embeddings (av,va),
which are the outputs of the A2V/V2A cross-modal networks.
Here, the cross-modal embeddings are computed for all tem-
poral slices (note: we do not use masking in this stage). We
concatenate the two embeddings of each modality creating
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(fa,fv), where fp = p ⊕ pq, ∀p, q ∈ {a, v}, p ̸= q, and
⊕ is the concatenation operator along the feature dimension.

Classifier Network. The classifier network, Q, takes as
input the combined embeddings of each modality (fa,fv),
and predicts if a given sample is real or fake. The classifier
network consists of two uni-modal patch reduction networks:
(Ψa,Ψv), followed by a classifier head, Γ. Each embedding
(fa,fv), is first distilled in the patch dimension using the
corresponding uni-modal patch reduction networks. Then
the output embeddings are concatenated along the feature
dimension and fed into the classifier head which outputs the
logits, l, used to classify if a given sample is real or fake.
Formally, l = Q(fa,fv) = Γ(Ψa(fa)⊕Ψv(fv)).

Loss Function. We use the standard cross-entropy loss,
denoted by LCE as the learning objective, computed using
the input labels, y, and the output logits, l.

Deepfake Classifier Inference Stage. During inference,
we first split the video into blocks of time T (the sample
length during training) with a step size of T/8, which is the
duration of a temporal slice. The output logits are computed
for each of the blocks and the classification decision (real or
fake) is made based on the mean of the output logits.

4. Experiments and Results
4.1. Implementation

We train Stage 1 (representation learning), using the LRS3
dataset [1], which exclusively contains real videos. In Stage
2 (deepfake classification), we train a classifier that follows
a supervised learning approach using the FakeAVCeleb [29]
dataset. FakeAVCeleb comprises of both real and fake
videos, where either one or both audio-visual modalities
have been synthesized using different combinations of sev-
eral generative deepfake algorithms (visual: FaceSwap[31],
FSGAN[39], and Wav2Lip [41]; audio: SV2TTS [26]).
Please refer to the supplementary for additional details on
datasets, architecture, and implementation.

4.2. Evaluation and Discussion

We evaluate the performance of our model against existing
state-of-the-art algorithms, on multiple criteria: intra-dataset
performance, cross-manipulation generalization, and cross-
dataset generalization following [15, 53]. We compare
our results against state-of-the-art audio-visual approaches
and uni-modal (visual) approaches for completeness. We
report accuracy (ACC), average precision (AP), and area
under the ROC curve (AUC) averaged across multiple runs
with different random seeds. For audio-visual algorithms,
we label a video as fake if either or both audio and visual
modalities have been manipulated. To maintain fairness, for
uni-modal algorithms we consider a video as fake only if the
visual modality has been manipulated. Please refer to the

Method Modality ACC AUC

Xception [43] V 67.9 70.5
LipForensics [19] V 80.1 82.4

FTCN [56] V 64.9 84.0
CViT [50] V 69.7 71.8

RealForensics [20] V 89.9 94.6

Emotions Don’t Lie [36] AV 78.1 79.8
MDS [8] AV 82.8 86.5

AVFakeNet [24] AV 78.4 83.4
VFD [7] AV 81.5 86.1

AVoiD-DF [53] AV 83.7 89.2

AVFF (Ours) AV 98.6 99.1

Table 1. Intra-Dataset Performance. We evaluate our
method against baselines using a 70%-30% train-test split on the
FakeAVCeleb dataset, where we achieve state-of-the-art perfor-
mance by significant margins. Best result is in bold, and second
best per modality is underlined.

supplementary for additional results on robustness to unseen
audio and visual perturbations.

Intra-Dataset Performance. Following the methodol-
ogy outlined in [53], our training utilizes 70% of all
FakeAVCeleb samples, while the remaining 30% consti-
tutes the unseen test set. As denoted in Tab. 1, our approach
demonstrates substantial improvements over the existing
state-of-the-art, both in audio-visual (AVoiD-DF [53]) and
uni-modal (RealForensics [20]) deepfake detection. Com-
pared to AVoiD-DF, our method achieves an increase in accu-
racy of 14.9% (+9.9% in AUC), and compared to RealForen-
sics the accuracy increases by 8.7% (+4.5% AUC). Overall,
the superior performance of audio-visual methods leverag-
ing cross-modal correspondence is evident, outperforming
uni-modal approaches that rely on uni-modal artifacts (i.e.
visual anomalies) introduced by deepfake algorithms. Re-
alForensics, while competitive, discards the audio modality
during detection, limiting its applicability exclusively to vi-
sual deepfakes. This hinders its practicality as contemporary
deepfakes often involve manipulations in both audio and
visual modalities. The enhanced results of both RealForen-
sics and our proposed method highlight the positive impact
of employing a pre-training stage for effective representa-
tion learning. This observation aligns with findings in other
multi-modal representation learning research across diverse
downstream tasks [6, 17, 23].

Cross-Manipulation Generalization. In this experiment,
we aim to assess the model’s performance on samples gen-
erated using previously unseen manipulation methods. The
scalability of deepfake detection algorithms to unseen ma-
nipulation methods is crucial for adapting to evolving threats,
thus ensuring wide applicability across diverse scenarios.

Similar to [15], we partition the FakeAVCeleb dataset into
five categories: RVFA, FVRA-WL, FVFA-FS, FVFA-GAN,
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Method Modality RVFA FVRA-WL FVFA-FS FVFA-GAN FVFA-WL AVG-FV

AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC

Xception [43] V - - 88.2 88.3 92.3 93.5 67.6 68.5 91.0 91.0 84.8 85.3
LipForensics [19] V - - 97.8 97.7 99.9 99.9 61.5 68.1 98.6 98.7 89.4 91.1

FTCN [56] V - - 96.2 97.4 100. 100. 77.4 78.3 95.6 96.5 92.3 93.1
RealForensics [20] V - - 88.8 93.0 99.3 99.1 99.8 99.8 93.4 96.7 95.3 97.1

AV-DFD [57] AV 74.9 73.3 97.0 97.4 99.6 99.7 58.4 55.4 100. 100. 88.8 88.1
AVAD (LRS2) [15] AV 62.4 71.6 93.6 93.7 95.3 95.8 94.1 94.3 93.8 94.1 94.2 94.5
AVAD (LRS3) [15] AV 70.7 80.5 91.1 93.0 91.0 92.3 91.6 92.7 91.4 93.1 91.3 92.8

AVFF (Ours) AV 93.3 92.4 94.8 98.2 100. 100. 99.9 100. 99.4 99.8 98.5 99.5

Table 2. Cross-Manipulation Generalization on FakeAVCeleb. We evaluate the model’s performance by leaving out one category for
testing while training on the rest. We consider the following 5 categories in FakeAVCeleb: (i) RVFA: Real Visual - Fake Audio (SV2TTS),
(ii) FVRA-WL: Fake Visual - Real Audio (Wav2Lip), (iii) FVFA-FS: Fake Visual - Fake Audio (FaceSwap + Wav2Lip + SV2TTS), (iv)
FVFA-GAN: Fake Visual - Fake Audio (FaceSwapGAN + Wav2Lip + SV2TTS), and (v) FVFA-WL: Fake Visual - Fake Audio (Wav2Lip
+ SV2TTS). The column titles correspond to the category of the test set. AVG-FV corresponds to the average metrics of the categories
containing fake visuals. Best result is in bold, and second best is underlined. Our method yields consistently high performance across
all manipulation methods while yielding state-of-the-art performance for several categories.

Method Modality AP AUC

Xception [43] V 76.9 77.7
LipForensics [19] V 89.5 86.6

FTCN [56] V 66.8 68.1
RealForensics [20] V 95.7 93.6

AV-DFD [57] AV 79.6 82.1
AVAD [15] AV 87.6 86.9

AVFF (Ours) AV 93.1 95.5

Table 3. Cross-Dataset Generalization on KoDF. We evaluate our
model’s performance against baselines by testing the model trained
on the FakeAVCeleb dataset, on a subset of the KoDF dataset. Best
result is in bold, and second best is underlined.

and FVFA-WL, based on the algorithms used to generate
the deepfakes. Descriptions of these categories are included
in the caption of Tab. 2, for ease of reference. Using these
categories, we evaluate the model leaving one category out
for testing while training on the remaining categories. Re-
sults are reported in Tab. 2. Our method achieves the best
performance in almost all cases (and at par with the rest) and
notably, yields consistently enhanced performance (AUC >
92+%, AP > 93+%) across all categories, while other base-
lines (Xception [43], LipForensics [19], FTCN [56], AV-
DFD [57]) fall short in categories FVFA-GAN and RVFA.
While the performance of AVAD (an unsupervised method)
is intriguing, we can notice how other supervised baselines
perform better in most cases.

Cross-Dataset Generalization. We also evaluate the adapt-
ability of the model to a different data distribution, by test-
ing on a subset of the KoDF dataset [32], following the
evaluation protocol established by [15]. We report the re-
sults in Tab. 3, where we perform at par with RealForensics.
Overall, we observe a performance trend similar to cross-

generalization to unseen generative methods. Please refer to
the supplementary for additional cross-dataset generalization
results on DF-TIMIT [30] and DFDC [11] datasets.

Analysis on the Learned Representation. During the train-
ing of the downstream task, we observe notable AUC scores
on the test set, reaching as high as 90% within the initial
1-3 epochs. Intrigued by this observation, we explore the
representations learned at the end of Stage 1 (Sec. 3.2). We
visualize the t-SNE plots of embeddings for random samples
from each category of the FakeAVCeleb dataset in Fig. 4. We
do not expose Stage 1 to any deepfake samples during train-
ing, and still observe clear discrimination between real and
fake samples. This explains the high AUC scores achieved
even at the very early stages of the downstream training. A
consequence of our representation learning stage is that we
observe a clear disentanglement between real and deepfake
videos within the FakeAVCeleb dataset. Further, distinct
clusters are evident for each deepfake category which indi-
cates that our representations are capable of capturing subtle
cues that differentiate different deepfake algorithms despite
not encountering any of them during the training stage. 4

A further analysis of the t-SNE visualizations reveals that
the samples belonging to adjacent clusters are related in
terms of the deepfake algorithms used to generate them. For
instance, FVRA-WL and FVFA-WL, which are adjacent,
both employ Wav2Lip to synthesize the deepfakes (refer
to the encircled regions in Fig. 4). These findings under-
score the efficacy of our novel audio-visual representation
learning paradigm. Please refer to the supplementary for the
evaluation of the classification performance on the learned
representation which further reinforces the above analysis.

4Stage 1 is exclusively trained on the LRS3 dataset containing only real
videos, while samples for the t-SNE are drawn from FakeAVCeleb.

27108



Figure 4. The t-SNE Visualization of the Embeddings at the end
of the Representation Learning Stage. A clear distinction is seen
between the representations of real and fake videos, as well as be-
tween different deepfake categories. Further analysis indicates that
samples of adjacent clusters are generated using the same deepfake
algorithm, which we encircle manually to highlight the clusters.

5. Ablation Study
Autoencoding Objective. In this experiment, we train the
model using only the contrastive loss objective, discarding
the autoencoding objective. This deactivates complementary
masking, cross-modality fusion, and decoding modules. The
feature embeddings at the output of the encoders (a,v), are
used for the downstream training. Results (see row (i) in
Tab. 4) indicate a performance reduction, highlighting the
importance of the autoencoding objective.

Cross-Modal Fusion. In this ablation, we discard the
A2V/V2A networks, which predict the masked tokens of
the other modality, and instead use shared learnable masked
tokens similar to MAE approaches [6, 17, 21, 23]. We can
see that the performance of the model diminishes (especially
AP) (see row (ii) in Tab. 4). This highlights the importance
of the cross-modal fusion module, as it supplements the rep-
resentation of a given modality with information extracted
from the other modality, helping building the correspondence
between the two modalities.

Complementary Masking. Replacing complementary
masking with random masking in Stage 1, results in a notable
drop in AP and AUC scores, affecting the model’s ability
to learn correspondences (see row (iii) in Tab. 4). We at-
tribute this performance drop to the inability of the model to
learn correspondences between audio and visual modalities
due to the randomness, which indicates the importance of
complementary masking in the proposed method.

Concatenation of Different Embeddings. In the deepfake
classification stage, we concatenate the feature embeddings
(a,v), with the cross-modal embeddings (av,va), creating
the concatenated embeddings (fa,fv). In this experiment,
we evaluate the performance using each of the embeddings
in isolation (see rows (iv) and (v) in Tab. 4). While the use
of each embedding generates promising results, the synergy
of the two embeddings enhances the performance.

Method AP AUC

(i) Only contrastive loss 84.2 90.3
(ii) Ours w/o cross-modality fusion 87.2 93.1
(iii) Ours w/o complementary masking 78.9 90.7
(iv) Only feature embeddings 89.7 97.6
(v) Only cross-modal embeddings 94.6 98.0
(vi) Mean Pooling patch dimension 96.5 98.1

AVFF (Ours) 96.7 99.1

Table 4. Evaluation on Ablations. Best result is in bold, and
second best is underlined. The proposed AVFF pipeline performs
the best among the considered ablations.

Uni-Modal Patch Reduction. Replacing the uni-modal
patch reduction networks (Ψa,Ψv) with Mean Pooling
slightly dents the performance (see row (vi) in Tab. 4). This
suggests that a simple linear averaging is sub-optimal in that
some subtle cues may no longer be preserved when com-
pared to using an MLP which effectively performs weighted
non-linear averaging.

6. Conclusion, Limitations, and Future Work
In this paper, we propose AVFF, a novel two-staged learn-
ing framework for audio-visual deepfake detection. AVFF
is composed of a self-supervised representation learning
stage that captures the audio-visual correspondence using
contrastive learning and a novel complementary masking
and cross-modal fusion module within the autoencoding
objective, followed by a supervised deepfake classification
stage. Our method shows significant improvements in both
in-distribution performance as well as generalization on un-
seen manipulations over both visual-only and audio-visual
state-of-the-art algorithms. Our results not only validate the
effectiveness of the proposed approach but also emphasize
the potential as a defensive tool against the escalating threat
posed by deepfake videos.

Limitations. Our work is limited to cases where there is
a coherence between the audio and visual modalities, as
we rely on it to distinguish fake from real videos. Hence,
asynchronous videos with audio lags or mismatched audio,
videos with multiple speakers, and visuals with occlusions
(e.g., masks, hands) would be challenging. Our model also
requires the input to contain both audio and visual modali-
ties, i.e., videos with only one modality are not supported.

Future Works. A few possible future research avenues in-
clude: (i) supplementing our representation learning method
with a strategy to preserve uni-modal cues to mitigate the
aforementioned limitations, (ii) adaptation for other audio-
visual downstream tasks such as emotion recognition, and
(iii) generalization for non-humanoid audio-driven videos
especially with diffusion-based approaches [25, 45].
Acknowledgements. Yaser Yacoob is supported in part by the
DARPA SemaFor Program under HR001120C0124.
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