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Abstract

Despite their exceptional performance in vision tasks,

deep learning models often struggle when faced with do-

main shifts during testing. Test-Time Training (TTT) meth-

ods have recently gained popularity by their ability to en-

hance the robustness of models through the addition of an

auxiliary objective that is jointly optimized with the main

task. Being strictly unsupervised, this auxiliary objective

is used at test time to adapt the model without any access

to labels. In this work, we propose Noise-Contrastive Test-

Time Training (NC-TTT), a novel unsupervised TTT tech-

nique based on the discrimination of noisy feature maps.

By learning to classify noisy views of projected feature

maps, and then adapting the model accordingly on new do-

mains, classification performance can be recovered by an

important margin. Experiments on several popular test-

time adaptation baselines demonstrate the advantages of

our method compared to recent approaches for this task.

The code can be found at: https://github.com/

GustavoVargasHakim/NCTTT.git

1. Introduction

A crucial requirement for the success of traditional deep

learning methods is that training and testing data should be

sampled from the same distribution. As widely shown in

the literature [20, 22], this assumption rarely holds in prac-

tice and a model’s performance can drop dramatically in the

presence of domain shifts. The field of Domain Adaptation

(DA) has emerged to address this important issue, propos-

ing various mechanisms that adapt learning algorithms to

new domains.

In the realm of domain adaptation, two notable directions

of research have surfaced: Domain Generalization and Test-

Time Adaptation. Domain Generalization (DG) approaches
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[12, 21, 24, 26, 27] typically train a model with an ex-

tensive source dataset encompassing diverse domains and

augmentations, so that it can achieve a good performance

on test examples from unseen domains, without retraining.

Conversely, Test-Time Adaptation (TTA) [2, 11, 25] entails

the dynamic adjustment of the model to test data in real-

time, typically adapting to subsets of the new domain, such

as mini-batches. TTA presents a challenging, yet practical

problem as it functions without supervision for test sam-

ples or access to the source domain data. While they do

not require training data from diverse domains as DG ap-

proaches, TTA methods are often susceptible to the choice

of unsupervised loss used at test time, a factor that can sub-

stantially influence their overall performance. Test-Time

Training (TTT), as presented in [5, 7, 15, 19, 23], offers

a compelling alternative to TTA. In TTT, an auxiliary task

is learned from the training data (source domain) and subse-

quently applied during test-time to refine the model. Gener-

ally, unsupervised and self-supervised tasks are selected for

their capacity to support an adaptable process, without rely-

ing on labeled data. Finally, employing a dual-task training

approach in the source domain allows the model to be more

confident at test time, as it is already familiar with the aux-

iliary loss.

Motivated by recent developments in machine learn-

ing using Noise-Contrastive Estimation (NCE) [1, 16, 18],

we introduce a Noise-Contrastive Test-Time-Training (NC-

TTT) method that efficiently learns the distribution of

sources samples by contrasting it with a noisy distribution.

This is achieved by training a discriminator that learns to

distinguish noisy out-of-distribution (OOD) features from

in-distribution ones. At test time, the output of the discrimi-

nator is used to guide the adaptation process, modifying the

parameters of the network encoder so that it produces fea-

tures that match in-distribution ones. Our contributions can

be summarized as follows:

• We present an innovative Test-Time Training approach in-

spired by the paradigm of Noise-Constrastive Estimation

(NCE). While NCE was initially proposed for generative

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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models as a way to learn a data distribution without hav-

ing to explicitly compute the partition function [6, 16],

and later employed for unsupervised representation learn-

ing [1, 18], our work is the first to show the usefulness of

this paradigm for test-time training.

• We motivate our method with a principled and efficient

framework deriving from density estimation, and use this

framework to guide the selection of important hyperpa-

rameters.

• In a comprehensive set of experiments, we expose our

NC-TTT method to a variety of challenging TTA scenar-

ios, each featuring unique types of domain shifts. Re-

sults of these experiments demonstrate the superior per-

formance of our method compared to recent approaches

for this problem.

The subsequent sections of this paper are structured as fol-

lows. Section 2 reviews prior research on TTA, TTT, and

NCE. Section 3 presents our NC-TTT method along with

the experimental framework for its evaluation, detailed in

Section 4. Section 5 offers experimental results and dis-

cussions, while Section 6 concludes the paper with final re-

marks.

2. Related work

Test-Time Adaptation. TTA is the challenging problem

of adapting a pre-trained model from a source domain to

an unlabeled target domain in an online manner (i.e., on a

batch-wise basis). In this problem, it is assumed that the

model no longer has access to source samples, making the

setting more realistic and applicable as an off-the-shelf tool.

Finally, the online nature of TTA also limits the possibil-

ity of computing accurate target data distributions, specially

when the number of samples is low.

Two classic TTA methods have prevailed in the lit-

erature, Prediction Time Batch Normalization (PTBN)

[17] and Test-Time Adaptation by Entropy Minimization

(TENT) [25]. The former consists in simply recomputing

the statistics from each batch of data inside the batch norm

layers, instead of using the frozen source statistics. The later

goes one step further by minimizing the entropy loss on the

model’s predictions and updating only the affine parame-

ters of the batch norm layers. Recently, LAME [2] intro-

duced a closed-form optimization mechanism that acts on

the model’s predictions for target images. This method is

based on the Laplacian of the feature maps, which enforces

their clustering based on similarity. A more detailed pre-

sentation of TTA approaches can be found in [14].

Test-Time Training. TTA methods assume the existence

of an implicit property in the model that can be linked to ac-

curacy and can be used for adaptation at test time (e.g., en-

tropy [25]). In contrast, TTT techniques explicitly introduce

a given property by learning a secondary task alongside the

main classification task at training. As seminal work in the

field, TTT [23] introduced a Y-shaped architecture allow-

ing for a self-supervised rotation prediction task. This sub-

network can be attached to any layer of a CNN. Formally,

the overall TTT objective is composed of a supervised loss

Lsup (e.g., cross-entropy) and an auxiliary, task-dependent

loss Laux, as follows:

LTTT = Lsup + λLaux (1)

The auxiliary loss is used at test time to update the model’s

encoder, reconditioning the features into being more simi-

lar to those from the source domain. TTT++ [15] proposed

using contrastive learning as the secondary task, while also

preserving statistical information from the source domain’s

feature maps to align the test-time features. Similarly, TTT-

MAE [9] used Masked Autoencoder (MAE) [5] image re-

construction as the auxiliary task. Normalizing Flows (NF)

[4, 13] have also been employed in TTTFlow [19], adapt-

ing the feature encoder at test time by approximating a

likelihood-based domain shift detector. Unlike previous ap-

proaches, TTTFlow requires two separate training proce-

dures for the original model and the NF network, which

makes source training more complex. Recently, ClusT3 [7]

introduced an unsupervised secondary task where the pro-

jected features of a given layer are clustered using a mu-

tual information maximization objective. Although ClusT3

achieves competitive results, the hyperparameters of this

method (e.g., number clusters) are dataset dependent, which

limits its generalization capabilities.

Noise-contrastive estimation (NCE). Our work is also re-

lated to NCE, a useful tool to model unknown distibutions

by comparison [6]. In NCE, a dataset is contrasted against a

set of noisy points drawn by an arbitrary distribution. A dis-

criminator is then trained to distinguish between both sets,

thereby learning the original dataset’s properties. This ap-

proach has been employed to learn word embeddings [16],

training Variational Autoencoders [1], and self-supervised

learning (InfoNCE) [18], among others. To our knowledge,

this work is the first to investigate the potential of NCE for

test-time training. We hypothesize that NCE is well suited

to estimate the source domain distribution at training time,

and that this estimation can be used in an unsupervised man-

ner at test time to adapt a model to target domain samples.

3. Methodology

We begin by presenting an overview of our NC-TTT

method for Test-Time Training. We then proceed to detail

the Noise-Contrastive Estimation framework on which it is

grounded.

3.1. The proposed method

The problem of Test-Time Training can be formally de-

fined as follows. Let the source domain be represented
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Figure 1. Overview of our Noise-Contrastive Test-Time-Training (NC-TTT) method. The auxiliary module comprises a linear projector

pϕ that reduces the scale of features, and a classifier qϕ to discriminate between two different noisy views of the reduced features.

by a joint distribution P(Xs,Ys) , where Xs and Ys cor-

respond to the image and labels spaces, respectively. Like-

wise, denote as P(Xt,Yt) the target domain distribution,

with Xt and Yt as the respective target images and labels.

Following previous research, we consider the likelihood

shift [2] between source and target datasets, expressed as

P(Xs|Ys) ̸= P(Xt|Yt), and assume the label space to be

the same between domains (Ys = Yt). Given a model

F : X → Y trained on source data (x, y) ∈ Xs × Ys,

the goal of TTT is to adapt this model to target domain ex-

amples from Xt at test time, without having access to source

samples or target labels.

As shown in Fig. 1, our NC-TTT model follows the same

Y-shaped architecture as in previous works, with the first

branch corresponding to the main classification task and

the second one to the auxiliary TTT task. The classifi-

cation branch can be defined as Fθ,ϕ = (hϕ ◦ fθ) where

fθ = (fL
θ ◦ . . . ◦ f1

θ ) is an encoder that transforms images

into feature maps via L convolutional layers (blocks) and hϕ

is a classification head that takes features from the last en-

coder layer and outputs the class probabilities. This branch

is trained with a standard cross-entropy loss LCE

Following recent TTT approaches [7, 19], our auxiliary

task operates on the features of the encoder. Without loss of

generality, we suppose that the features come from layer ℓ
of the encoder and denote as f ℓ

θ(x) ∈ R
B×W×H×D the D

feature maps of size W×H for a batch of B images. We first

reshape these feature maps to a (BWH)×D feature matrix

and then use a linear projector to reduce its dimensional-

ity, giving projected features z = pφ(f
ℓ
θ(x)) ∈ R

BWH×d

with d ≪ D. Next, we generate two noisy versions of z,

an in-distribution version z̃s = z + ϵs, ϵs ∼ N (0, σ2
sI),

and an out-of-distribution (OOD) version z̃o = z + ϵo,

ϵo ∼ N (0, σ2
oI) where σo > σs. These noisy features are

fed into a discriminator qφ which predicts in-distribution

probabilities [0, 1]BWH . This discriminator, which is built

using two linear layers with ReLU in between, is trained by

minimizing loss Laux computing the binary cross-entropy

between the predicted probabilities and soft-labels which

will be described in the next section. To update the encoder

parameters at test-time, as we do not have class labels, we

only compute gradients from Laux.

3.2. Noisecontrastive Testtime Training

We now present our noise-contrastive strategy for test-time

training. Let us denote as ps(z) the probability of features

from the source domain. Our method employs a density

estimation strategy to learn ps(z) from training source ex-

amples Ds = {zi}
Ns

i=1, where Ns = BWH . Afterwards, it

uses the estimated distribution p̂s(z) to adapt the model to

distribution shifts at test time.

Estimating the source distribution. We consider the well-

known kernel density estimation approach to model ps(z).
This approach puts a small probability mass around each

training example xi ∈ Ds, in the shape of a D-dimensional

Gaussian with isotropic variance Σs = σ2
sI , and then esti-

mates the distribution as

p̂s(z) =
1

Ns(2π
)D/2

σD
s

Ns∑

i=1

exp

(

−
1

2σ2
s

∥z− zi∥
2

)

(2)

At test-time, one could use this probability estimation to de-

fine an adaption objective Laux that minimizes the negative

log-likelihood of test examples Dt = {zj}
Nt

j=1:

Laux = −
1

Nt

Nt∑

j=1

log p̂s(zj). (3)

However, this simple approach faces two important issues.

First, estimating the density in high-dimensional space is

problematic since moving away from a training example
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Figure 2. Posterior probability p(ys = 1|z) of 2D points with different pairs (σs, σo). The in-domain influence expands by increasing

σo for a fixed σs (see difference row-wise). Furthermore, this region is more regular when σs increases when σo is fixed (see difference

column-wise).

Figure 3. Noise 2D vectors sampled with σs = 0.05 and σo =
1 (left). The overlapping of both distributions can be overcome

by assigning a probability to each point based on our threshold

method.

quickly reduces the probability to zero. Second, the training

examples from the source domain are no longer available at

test time, hence the density of samples in Eq. (2) cannot be

evaluated.

To overcome these issues, we propose a noise contrastive

approach, which uses a discriminator to learn feature dis-

tribution ps(z). Toward this goal, we contrast ps(z) with

an out-of-domain distribution po(z) which is also estimated

using Eq. (2) but replacing the variance with σ2
o , where

σo > σs. Let ys be a domain indicator variable such that

ys = 1 if an example is from the source domain, else

ys = 0. Assuming equal priors p(ys = 1) = p(ys = 0), we

can use Bayes’ theorem to get the posterior

p(ys = 1 | z) =
p̂s(z)

p̂s(z) + p̂o(z)
. (4)

To illustrate this model, we show in Figure 2 the prob-

ability p(ys = 1 | z) obtained for different values of σs

and σo, when training with randomly-sampled 2D points.

For a fixed σs, increasing σo expands the in-domain region

around the training samples. Likewise, for the same σo,

using a greater σs gives a larger and more regular (less de-

termined by individual points) in-domain region.

Training the disciminator. To train the discriminator

qφ(·), for each training example zi ∈ Ds, we generate

2M samples z̃i,m = zi + ϵi,m, the first M from the in-

domain distribution, i.e. ϵi,m ∼ N (0, σ2
sI), and the other

M ones from the noisier out-of-domain distribution, i.e.

ϵi,m ∼ N (0, σ2
oI). For these samples, we assume that

exp(−∥̃zi,m − zj∥
2
2/2σ

2
s) ≈ 0, for j ̸= i, hence the poste-

rior simplifies to

p(ys = 1 |̃ zi,m) =

σ−D
s exp

(

− 1
2σ2

s

∥ϵi,m∥2
)

σ−D
s exp

(

− 1
2σ2

s

∥ϵi,m∥2
)

+ σ−D
o exp

(

− 1
2σ2

o

∥ϵi,m∥2
)

(5)

where ϵi,m = z̃i,m − zi. For large values of D, this for-

mulation is numerically unstable it leads to division by zero

errors. Instead, we use an equivalent formulation p(ys =
1 |̃ z) = sigmoid(u), where pre-activation “logit” u is given

by

u =
1

2

(
1

σ2
o

−
1

σ2
s

)

∥ϵi,m∥2 + D log

(
σo

σs

)

(6)

See Appendix A in the supplementary material for a proof.

The in-domain region, p(ys = 1 |̃ z) ≥ 0.5, which corre-

sponds to the case where u ≥ 0, is thus defined by the fol-

lowing condition:

∥ϵi,m∥ ≤ σsσo

√

2D

(σ2
s − σ2

o)
log

(
σs

σo

)

(7)

Figure 3 shows examples of noise vectors ϵ sampled with

σs = 0.05 and σo = 1 (left), and their corresponding pos-

terior probability (right). As can be seen, the posterior
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Figure 4. Heatmap of in-distribution probabilities, i.e., p(ys =
1 | z) approximated by qϕ(z) in our model, and spatial gradient

of log-likelihood function, i.e. ∇ log qϕ(z), which is used as test-

time adaptation objective. The arrow shows how an OOD test sam-

ple (white point) is adapted toward the source distribution.

probability correctly separates in-distribution samples from

OOD ones. Doing so, it overcomes the problem of having

OOD samples that are similar to in-distribution ones (red

circles near the center), which would confuse the discrimi-

nator during training.

Using these samples z̃i,m, we train the discriminator

qφ(·) by minimizing the cross-entropy between its predic-

tion and the soft-label p̃i,m = p(ys = 1 |̃ zi,m):

Laux = −
1

2MNs

Ns∑

i=1

2M∑

m=1

p̃i,m log qφ(̃zi,m)

+
(
1− p̃i,m

)
log

(
1− qφ(̃zi,m)

)

(8)

Adapting the model at test time. During inference, we

adapt the parameters of the encoder in layers where the aux-

iliary loss is computed, as well as those of preceding layers.

The adaptation modifies the encoder so that the trained dis-

criminator qφ(·) perceives the encoded features {zj}
Nt

j=1 of

test examples as being in-distribution. This is achieved by

minimizing the following test-time loss:

Ltest
aux = −

1

Nt

Nt∑

j=1

log qφ(zj) (9)

As illustrated in Fig. 4, our method models the in-

distribution probability p(ys = 1 | z) using NCE and then

approximates this distribution with discriminator qφ(·). At

test time, the encoder is updated to move OOD features

(white point) toward the source distribution, making them

more suitable for the source-trained classifier. Thanks to

the non-zero in-distribution noise (σs > 0), we avoid over-

adapting the encoder (the white point stops at the border of

the in-distribution region and not at a training sample), a

problem often found in other TTT approaches.

3.3. Selecting the distribution variances

Our model requires to specify the in-distribution variance

σ2
s and the OOD variance σ2

o . In this section, we present

how these can be chosen. The OOD variance should be

greater than the in-distribution, hence we can write σo =
βσs, with β = σo/σs > 1. Hence, β is a measure of noise

ratio for the in-distribution and OOD samples. Using this

relationship, Eq. (6) simplifies to

u = −
1

2σ2
s

(
β2 − 1

β2

)

∥ϵ∥2 + D log β (10)

For OOD samples, the expected value of “logit” u is then

given by

uβ = E
ϵ∼N (0,σ2

o
I)

[

−
1

2σ2
s

(
β2 − 1

β2

)

∥ϵ∥2 + D log β

]

= −
1

2σ2
s

(
β2 − 1

β2

)

E
ϵ∼N (0,σ2

o
I)

[
∥ϵ∥2

]

︸ ︷︷ ︸

σ2
o
= β2σ2

s

+D log β

= −
1

2

(
β2 − 1

)
+ D log β

(11)

Figure 5 show how the expected in-distribution predic-

tion E[ys | z] = sigmoid(uβ) varies as function of β, for

D = 16 (the dimension used in our experiments). In this

case, to have near-zero probability for OOD samples, one

can choose any β > 1.5. In our experiments, we selected

β = 2.

Figure 5. Expected in-distribution label as a function of noise ratio

β = σo/σs.

4. Experimental Settings

We evaluate NC-TTT on several TTT datasets, following

the protocol of previous works. These benchmarks emulate

different challenging domain shift scenarios, which help

evaluating the effectiveness of our approach. As in [7, 23],

these benchmarks are categorized as common corruptions,

and sim-to-real domain shift.

For common corruptions, we evaluate our method on

CIFAR-10-C and CIFAR-100-C [10]. This family of do-

main shifts include 15 different corruptions such as Gaus-

sian noise, JPEG compression, among others. Each corrup-

tion has 5 different levels of severity with 10,000 images,

which amounts to 75 different testing scenarios. For each
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Figure 6. Evolution of accuracy on all corruptions in CIFAR-10-

C.

of the aforementioned datasets, CIFAR-10 and CIFAR-100

are used as source domains, with 10 and 100 classes respec-

tively. Finally, the challenging large-scale VisDA-C [20]

dataset corresponds to the sim-to-real domain shift. The

source domain comprises a training set of 152,397 images

of 3D renderings from 12 different classes, while the test set

consists in 72,372 video frames of the same categories.

Source training. The cross-entropy and auxiliary losses

are jointly trained on the source dataset. We explored dif-

ferent architectural choices for each setting. For common

corruptions (i.e. CIFAR-10/100-C), we define the projector

as a 1×1 convolutional layer that reduces the number of

channels to D = 96 to later be flattened for classification.

We utilize a discriminator composed of two linear layers

with a Batch Norm layer and Leaky ReLU in between, and

a hidden dimension of 1024 in the intermediate layer. For

this particular case, we use the tuple (σs = 0, σo = 0.015),
which was experimentally determined as it produced the

best performance. The model is trained using 128 images

per batch for 350 epochs using SGD, an initial learning rate

of 0.1, and a multi-step scheduler with a decreasing factor

of 10 at epochs 150 and 250. Due to the challenging nature

of the sim-to-real domain shift from VisDA-C, we escalate

the architecture to make it able to learn more source do-

main information. We utilize a 1×1 convolutional projector

with an output number of channels of D = 16. As opposed

to flattening the features, we also employ two 1×1 convo-

lutional layers for the discriminator, with an intermediate

number of channels of 1024. The noise values are sampled

with (σs = 0.025, σo = 0.05) and added pixel-wise to the

projected feature maps. Following related works’ protocol

for VisDA-C, we use an ImageNet-pre-trained model [3]

as a warm start, to then perform the source training with a

batch size of 50 for 100 epochs with SGD and a learning

rate of 0.01. ResNet50 [8] is the chosen architecture for all

datasets.

Test-time adaptation. Adaptation is performed on the en-

coder’s blocks (including BatchNorm layers). If the auxil-

iary task is plugged to the third layer block, for instance, the

weights of all the previous blocks will be optimized. The

source training on CIFAR-10 is used to adapt for CIFAR-

10-C. In an analog way, CIFAR-100 is utilized to adapt for

CIFAR-100-C. For all this cases, the ADAM optimizer with

a learning rate of 10−5 is used in batches of 128 images. As

for VisDA-C, a batch size of 50 is employed with a learning

rate of 10−4. The weights of the source model are restored

after each batch.

Benchmarking. We compare the performance of NC-

TTT with previous works from the state-of-the-art in TTT

and TTA. Chosen works in TTA include PTBN [17],

TENT [25], and LAME [2], whereas for TTT we con-

sider TTT [23], TTT++ [15], and ClusT3 [7]. We utilize

the source model (named ResNet50 in our results) without

adaptation to measure accuracy gains.

5. Results

In this section, we present the experimental results obtained

from NC-TTT and compare them against the state-of-the-

art. In accordance with previous TTT research, we also

offer insights on the working mechanisms that take part in

the success of our technique.

5.1. Image classification on common corruptions

We assess the performance of ClusT3 using the CIFAR-

10/100-C dataset, considering 15 distinct corruptions. Sub-

sequently, our experiments concentrate exclusively on

Level 5, recognized as the most demanding adaptation sce-

nario. Comprehensive results for all severity levels are pro-

vided in the Supplementary material.

The data presented in Fig 6 reveals that peak accuracy

is typically reached around 20 iterations, depending on the

specific corruption type. Remarkably, accuracy remains sta-

ble even beyond the 20th iteration. In the case of certain

corruptions, specifically the ones with noise such as Im-

pulse Noise which significantly degrade the image quality,

we observe a decline in performance with an increase in the

number of adaptation iterations.

As shown in Table 1, NC-TTT achieves an average

improvement of 30.61% with respect to the baseline (i.e.

ResNet50), and obtains a considerable advantage in all the

different corruptions. Moreover, our method achieves to

outperform ClusT3 in most corruptions and in average for

the whole dataset. It is worth noticing that, besides the

strong relation of NC-TTT to Gaussian-like noise, the per-

formance on the Gaussian Noise corruption is not neces-

sarily the highest, which could be due to the fact that the

auxiliary task does not bias the model towards any type

of domain shift. Table 2 shows a more surprising trend
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ResNet50 LAME [2] PTBN [17] TENT [25] TTT [23] TTT++ [15] ClusT3 [7] NC-TTT (ours)

Gaussian Noise 21.01 22.90 ±0.07 57.23 ±0.13 57.15 ±0.19 66.14 ±0.12 75.87 ±5.05 76.01 ±0.19 75.30 ±0.04

Shot noise 25.77 27.11 ±0.13 61.18 ±0.03 61.08 ±0.18 68.93 ±0.06 77.18 ±1.36 77.67 ±0.17 77.74 ±0.05

Impulse Noise 14.02 30.99 ±0.15 54.74 ±0.13 54.63 ±0.15 56.65 ±0.03 70.47 ±2.18 69.76 ±0.15 68.80 ±0.11

Defocus blur 51.59 45.16 ±0.13 81.61 ±0.07 81.39 ±0.22 88.11 ±0.08 86.02 ±1.35 87.85 ±0.11 88.77 ±0.09

Glass blur 47.96 36.58 ±0.06 53.43 ±0.11 53.36 ±0.14 60.67 ±0.06 69.98 ±1.62 71.34 ±0.15 70.15 ±0.16

Motion blur 62.30 55.41 ±0.15 78.20 ±0.28 78.04 ±0.17 83.52 ±0.03 85.93 ±0.24 86.10 ±0.11 86.93 ±0.05

Zoom blur 59.49 51.48 ±0.20 80.29 ±0.13 80.26 ±0.22 87.25 ±0.03 88.88 ±0.95 86.68 ±0.05 88.40 ±0.06

Snow 75.41 66.14 ±0.12 71.59 ±0.21 71.59 ±0.04 79.29 ±0.05 82.24 ±1.69 83.71 ±0.09 84.92 ±0.08

Frost 63.14 50.03 ±0.22 68.77 ±0.25 68.52 ±0.20 79.84 ±0.11 82.74 ±1.63 83.69 ±0.03 84.79 ±0.05

Fog 69.63 64.56 ±0.19 75.79 ±0.05 75.73 ±0.10 84.46 ±0.09 84.16 ±0.28 85.12 ±0.13 86.85 ±0.10

Brightness 90.53 84.27 ±0.10 84.97 ±0.05 84.77 ±0.13 91.23 ±0.08 89.07 ±1.20 91.52 ±0.02 93.05 ±0.03

Contrast 33.88 31.46 ±0.23 80.81 ±0.15 80.70 ±0.15 88.58 ±0.09 86.60 ±1.39 84.40 ±0.11 87.78 ±0.15

Elastic transform 74.51 64.23 ±0.10 67.14 ±0.17 67.13 ±0.10 75.69 ±0.10 78.46 ±1.83 82.04 ±0.17 80.99 ±0.11

Pixelate 44.43 39.32 ±0.08 69.17 ±0.31 68.70 ±0.29 76.35 ±0.19 82.53 ±2.01 82.03 ±0.09 82.26 ±0.11

JPEG compression 73.61 66.19 ±0.02 65.86 ±0.05 65.83 ±0.07 73.10 ±0.19 81.76 ±1.58 83.24 ±0.10 79.66 ±0.06

Average 53.82 49.06 70.05 69.93 77.32 81.46 82.08 82.43

Table 1. Accuracy (%) on CIFAR-10-C dataset with Level 5 corruption for NC-TTT compared to previous TTA and TTT methods.

ResNet50 LAME [2] PTBN [17] TENT [25] TTT [23] ClusT3 [7] NC-TTT (ours)

Gaussian Noise 12.67 10.55 ±0.08 43.00 ±0.16 43.17 ±0.24 33.99 ±0.11 49.77 ±0.18 46.03 ±0.12

Shot noise 14.79 12.58 ±0.04 44.57 ±0.16 44.47 ±0.23 36.55 ±0.08 50.54 ±0.16 47.04 ±0.14

Impulse Noise 6.47 5.83 ±0.07 36.76 ±0.11 36.64 ±0.28 26.87 ±0.08 44.35 ±0.31 41.53 ±0.11

Defocus blur 29.97 29.07 ±0.11 66.68 ±0.06 66.74 ±0.06 65.96 ±0.14 64.40 ±0.12 67.00 ±0.09

Glass blur 21.36 19.58 ±0.02 45.17 ±0.08 45.09 ±0.06 34.90 ±0.01 50.78 ±0.24 48.08 ±0.07

Motion blur 39.60 41.26 ±0.09 62.61 ±0.17 62.54 ±0.23 57.10 ±0.10 62.62 ±0.15 64.31 ±0.02

Zoom blur 35.75 34.93 ±0.02 65.36 ±0.03 65.29 ±0.05 62.90 ±0.07 63.81 ±0.08 66.24 ±0.25

Snow 42.05 43.58 ±0.20 52.82 ±0.27 52.31 ±0.16 54.97 ±0.03 55.84 ±0.12 58.70 ±0.10

Frost 31.44 32.67 ±0.12 51.92 ±0.09 51.79 ±0.23 54.60 ±0.16 55.46 ±0.06 58.55 ±0.11

Fog 30.96 35.95 ±0.12 55.78 ±0.05 55.91 ±0.28 55.80 ±0.09 51.39 ±0.07 57.73 ±0.17

Brightness 61.80 64.84 ±0.03 66.20 ±0.06 66.47 ±0.06 73.25 ±0.06 66.71 ±0.11 71.36 ±0.10

Contrast 12.31 15.50 ±0.04 60.84 ±0.15 60.91 ±0.19 60.97 ±0.09 54.67 ±0.05 61.53 ±0.20

Elastic transform 53.06 51.32 ±0.13 56.38 ±0.04 56.43 ±0.33 53.51 ±0.04 59.44 ±0.27 60.25 ±0.04

Pixelate 26.08 27.65 ±0.02 58.21 ±0.14 58.19 ±0.22 50.39 ±0.05 60.75 ±0.09 61.17 ±0.33

JPEG compression 52.19 49.95 ±0.07 51.65 ±0.16 51.30 ±0.16 49.62 ±0.09 59.94 ±0.12 55.69 ±0.09

Average 31.37 31.68 54.53 54.48 51.43 56.70 57.68

Table 2. Accuracy (%) on CIFAR-100-C dataset with Level 5 corruption for NC-TTT and the works from the state-of-the-art.

on CIFAR-100-C, as our technique outperforms the clos-

est competitor on the majority of the corruptions, and ob-

tains an average improvement of 26.31% with respect to

ResNet50. Based on the above, NC-TTT can approximate

the source information even when: a) the number of classes

increases, and b) the auxiliary task works at a smaller scale

as the main classification task.

Figure 7 demonstrates the impact of NC-TTT during

adaptation through t-SNE plots showcasing the target fea-

ture maps before and after adaptation, along with the as-

sociated model predictions. The challenging corruption of

shot noise becomes more manageable with the assistance of

NCE, contributing to improved predictions by refining the

clustering of diverse class samples within the target dataset.

5.2. Image classification on simtoreal domain shift

For adaptation on VisDA-C, the first encoder’s layer block

is chosen for the auxiliary task. The obtained results concur

with previous works [7, 23], in that the first layers of the

network’s encoder are sufficient for adaptation.

As shown in Table 3, NC-TTT obtains a competitive per-

formance with respect to previous works on VisDA-C. The

severe domain shift in this dataset makes it a very chal-

lenging scenario, as can be seen when testing the source

model. NC-TTT obtains a gain of 16.19% in accuracy, and

surpasses previous methods by an important margin.

6. Conclusions

We proposed NC-TTT, a Test-Time Training method based

on the popular theory of Noise-Contrastive Estimation. Our
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(a) Prediction (before adaptation) (b) Prediction (after adaptation)

(c) Ground truth (before adaptation) (d) Ground truth (after adaptation)

Figure 7. t-SNE visualizations depict shot noise characteristics in the features extracted from NC-TTT. Panels (a) and (b) illustrate the

model predictions without and with 20 iterations of adaptation, respectively. Panels (c) and (d) showcase the ground truth labels in the

absence of adaptation and for the adapted representations, respectively.

Method Acc. (%)

ResNet50 46.31

LAME-L [2] 22.02 ±0.23

LAME-K [2] 42.89 ±0.14

LAME-R [2] 19.33 ±0.11

PTBN [17] 60.33 ±0.04

TENT [25] 60.34 ±0.05

TTT [23] 40.57 ±0.02

ClusT3 [7] 61.91 ±0.02

NC-TTT (ours) 62.71 ±0.09

Table 3. Results on VisDA-C.

method learns a proximal representation of the source do-

main by discriminating between noisy views of feature

maps. The entire model can be added on top of any given

layer of a CNN’s encoder, and comprises only a linear pro-

jector and a classifier.

The proposed experiments support already established

hypothesis of TTT, which states that adaptation in the first

encoder’s layer blocks (e.g. first or second) is often suffi-

cient to recover the model’s performance on a new domain.

NC-TTT is evaluated on different challenging benchmarks,

and its performance is compared against recent state-of-the-

art methods in the field.

This work leads to interesting questions that can be ad-

dressed as future work. First, different types of added noise

could be explored to analyze their impact in the learning of

the auxiliary task. A similar framework can eventually be

derived for different distributions. Moreover, and as an open

question partaking all the existent TTT methods, the ex-

act mechanisms that allow auxiliary tasks to learn domain-

related information are unclear. This is especially intriguing

considering that the scale of such tasks is small compared

to the classification task. Their properties and their relation

with the models’ performance a suitable research direction.
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