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Figure 1. In urban scenes, statistical approach [33] mistakes complex backgrounds for moving objects (top) and fails to remove small
moving objects (bottom). On the other hand, Entity-NeRF can reconstruct complex backgrounds and remove small moving objects.

Abstract

Recent advancements in the study of Neural Radiance
Fields (NeRF) for dynamic scenes often involve explicit
modeling of scene dynamics. However, this approach faces
challenges in modeling scene dynamics in urban environ-
ments, where moving objects of various categories and
scales are present. In such settings, it becomes crucial to ef-
fectively eliminate moving objects to accurately reconstruct
static backgrounds. Our research introduces an innova-
tive method, termed here as Entity-NeRF, which combines
the strengths of knowledge-based and statistical strate-
gies. This approach utilizes entity-wise statistics, leverag-
ing entity segmentation and stationary entity classification
through thing/stuff segmentation. To assess our methodol-
ogy, we created an urban scene dataset masked with mov-
ing objects. Our comprehensive experiments demonstrate
that Entity-NeRF notably outperforms existing techniques
in removing moving objects and reconstructing static urban
backgrounds, both quantitatively and qualitatively. 1

1. Introduction
Novel view synthesis is rapidly evolving, which enables
the creation of new visual content such as the immersive

1Our project page is available at https://otonari726.github.io/entitynerf/

views found in Google Maps and the free-viewpoint visual-
izations in sports broadcasts. However, a key innovation in
this field, Neural Radiance Fields (NeRF) [19], faces chal-
lenges when dealing with urban scenes whose complexity
is inherently high due to a large number of dynamic ele-
ments present, such as moving vehicles, pedestrians, chang-
ing lighting conditions, and varying shadows. The ability
to accurately render and reconstruct such scenes is crucial
for several applications including autonomous navigation,
surveillance, and virtual urban exploration among others.

The challenge of handling dynamic scenes has been a no-
table point of extension within the domain of Neural Radi-
ance Fields, and two major approaches prevail. The first in-
volves explicit modeling of scene dynamics, which concur-
rently encodes both static and dynamic information, exem-
plified by methods such as D-NeRF [27], HyperNeRF [24],
and RoDynRF [16]. The second approach adopts a more
statistical perspective, treating scene dynamics as outliers
in relation to the static elements [33]. The elimination of
dynamic elements in the scene contributes to a reduction in
clutter, enhances the comprehension of the scene, and im-
proves visual fidelity.

Despite the progress in research on novel-view synthe-
sis of dynamic scenes, to our knowledge, there is no effec-
tive method for unbounded scenes like urban environments,
where a multitude of moving objects of various categories
and scales, such as people, cars, and bicycles, coexist. For
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instance, current methods in the former category often tar-
get specific objects, deal with a minority of moving objects
within a scene, and are restricted to narrow scene bound-
aries. Moreover, while the latter approach can handle mul-
tiple objects simultaneously, it solely relies on the statistics
of reconstruction errors for outlier separation and does not
function effectively when dynamic objects vary in scale or
when the background is complex, as shown in Fig. 1.

In this work, we address the task of learning static NeRFs
of dynamic urban scenes. To identify a multitude of moving
objects of various categories and scales, we propose a hy-
brid method that integrates the strengths of both knowledge-
based and statistical approaches with Entity-wise Average
of Residual Ranks (EARR) and stationary entity classifi-
cation. EARR identifies distractors by entity-wise statis-
tics based on entity segmentation [17]. In addition, the sta-
tionary entity classification using the thing/stuff segmenta-
tion [53, 60] enables more efficient learning by incorporat-
ing complex backgrounds such as building from the early
stages of learning.

To evaluate our proposed method, we annotated moving
objects in three videos captured in urban scenes with chal-
lenging settings and rendered images using a static NeRF
which removed the masked moving objects. Using the over-
all Peak Signal-to-Noise Ratio (PSNR) of the image to mea-
sure whether moving objects, which constitute only a small
portion of the image, have been appropriately removed is
challenging. Therefore, we evaluate the moving object re-
moval (foreground PSNR) and the static background recon-
struction (background PSNR) separately. Our experiments
demonstrate that our method effectively removes moving
objects and reconstructs static backgrounds in urban scenes,
while still maintaining accuracy on existing datasets.

2. Related Works
2.1. NeRF on Dynamic Scenes

NeRF [19] represents coordinate-based neural networks
that predict the radiance from a specific view and opacity
at any given 3-D coordinate. To render novel views of a
scene via ray-tracing, NeRF is trained by minimizing the
difference between each pixel’s rendered and observed col-
ors given calibrated multi-view images of the scene.

In the original NeRF, handling dynamic scenes is
challenging due to the inherent assumption that the entire
scene remains static. To address this issue, subsequent
research has proposed methods that either explicitly learn
scene dynamics by category-specific methods [6, 8, 14, 15,
25, 26, 30, 34, 37, 46, 50, 57], detection [10, 22], deforma-
tion [18, 23, 24, 27, 41, 44, 48, 54, 56], flow [4, 5, 7, 12, 55],
multiple synchronized videos [11, 47, 58], depth-based
approaches [52], or treat moving objects as outliers in a
robust approach [33].

Detection-based Approach: Neural Scene Graphs [22]
and Panoptic Neural Fields [10] provide a structured
approach to explicitly detecting and modeling individual
dynamic objects within dynamic scenes. While these
methods facilitate object-level manipulation, moving object
detection is hindered by occlusions, diverse object types,
and scales in the urban environment.

Deformation-based Approach: Without object de-
tection, some methods such as D-NeRF [27], Nerfies [23]
and HyperNeRF [24] represent scenes using a deforma-
tion field, mapping observations to neighboring frames
or a canonical scene. However, they are limited to
small-motion, object-centric scenes due to challenges in
representing entire sequences with a single canonical voxel.

In recent efforts, D2NeRF [51] separates moving ob-
jects, static backgrounds, and shadows into three fields us-
ing regularization. DynIBaR [13] aggregates multi-view
image features in a motion-adjusted ray space, while Ro-
DynRF [16] uses a time-dependent MLP and single-view
depth priors. FSDNeRF [45] uses data-driven optical flow
for backward deformation computation to handle rapid mo-
tion.

In urban settings, accurate optical flow estimation
faces challenges due to numerous cluttered objects of
varying scales, which often result in incorrect dynamics
modeling. Moreover, deformation-based methods struggle
with frames having large temporal steps, constraining
their urban modeling use from a discrete set of multi-view
images.

Robust Approach: Relatively little attention has been paid
to removing non-static elements from discrete multi-view
images rather than a continuous video stream. One straight-
forward approach is to segment and ignore pixels during
training that are likely to be transient objects [32, 39], for
example, by applying a data-driven segmentation model.
However, removing objects based on object semantics is
risky since semantic segmentation is far from perfect and
runs the risk of erroneously removing static objects that are
typically mobile (e.g., cars, pedestrians).

We can also use a robust estimator. RobustNeRF [33] has
proposed a purely statistical approach to remove moving el-
ements as outliers by analyzing the patch-wise statistics of
reconstruction errors. By formulating training as a form of
iterative reweighted least squares, this method can robustly
separate inliers and outliers, which are not limited to spe-
cific predefined categories, from photo collections rather
than videos. While effective, this method fixes the hyper-
parameters such as patch size, which becomes problematic
when applied to urban scenes where there is a variety of
moving objects of different types and scales.
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Figure 2. Overview of our Entity-NeRF pipeline. D(r) = 0 if Entity-wise Average of Residual Ranks (4.1) of the entities labeled ‘thing’
in the stationary entity classification (4.2) is greater than a threshold value T . The ‘thing’ label for the stationary entity classification is
given as s(r) = 0 and the ‘stuff’ label as s(r) = 1.

2.2. NeRF on Unbounded Scenes

The original NeRF struggles with unbounded scenes due
to sparse rays at greater distances. Adaptations like
NeRF++[59], which introduced inverted sphere parame-
terization, F2-NeRF[49] with its perspective warping, and
scene contraction approaches by MERF [31] and Mip-
NeRF 360 [2], have been developed to address this. Recent
developments, Zip-NeRF [3] and Nerfacto [40], further re-
fine these methods for unbounded environments.

For large city-scale scenes, Block-NeRF [39], Mega-
NeRF [42], and SUDS [43] segment scenes into blocks,
applying NeRF within each. SUDS notably integrates addi-
tional data types like LiDAR for dynamic city-scale scenes.

2.3. Entity Segmentation

Entity segmentation is a new class of image segmentation
tasks aiming to segment all entities in an image without pre-
dicting their semantic or instance labels [17, 28, 29, 36].
Eliminating the need for class labels is helpful for many
practical applications, such as image manipulation and edit-
ing, where the quality of segmentation masks is crucial, but
class labels are less important.

Recently, Qi et al. [17] presented a large-scale en-
tity segmentation dataset and proposed CropFormer, a
Transformer-based entity segmentation method. In our re-
search, we utilize this result for training NeRF on urban
dynamic scenes and demonstrate that Entity-wise Avarage
of Residual Ranks (EARR) overcomes most issues found in
patch-based counterparts in RobustNeRF [33].

3. Preliminaries

3.1. Problem Statement

In our context, there is no need to explicitly model moving
objects. Therefore, our goal is to simply detect and segment
out moving objects in the scene as distractors during the
basic training pipeline of arbitrary NeRF models [1, 19].
More concretely, we want to label the distractiveness D(r)
to each ray r and reflect labels in photometric reconstruction

losses in training NeRF as

Lr = D(r) · ✏(r)
✏(r) = kCgt(r)� Cpred(r)k22

(1)

where

D(r) =

(
0 if r passes through a distractor,
1 otherwise.

(2)

Here, Cpred and Cgt are rendered and observed pixel col-
ors and ✏(r) is the `2 residual of them. While the task is for-
mulated in a simple form, predicting D(r) in urban scenes
poses several fundamental challenges as detailed below.

3.2. Challenges in Urban Scenes
Firstly, prior knowledge of scene semantics is often incor-
porated to specify moving objects (e.g., [32, 39]), as it pro-
vides accurate masks along the object’s contours to a cer-
tain extent. However, relying solely on per-image scene
semantics to specify distractors is insufficient. Urban en-
vironments feature a wide variety of moving objects, rang-
ing from people, and vehicles, to minor elements like road-
side cans. These objects are not always covered by standard
semantic segmentation classes. Furthermore, even within
common classes such as vehicles and pedestrians, they can-
not always be identified as distractors based on class alone,
as a parked car, for instance, should not be classified as a
distractor.

In addition, a purely statistical approach (e.g., [33]) may
not always successfully identify distractors in urban scenes.
For instance, RobustNeRF [33] assigns inlier/outlier labels
to each non-overlapping 8 ⇥ 8 patch, considering only the
statistics of reconstruction errors within 16 ⇥ 16 neighbor-
ing pixels. Due to this heuristic, RobustNeRF is only ef-
fective when the background is relatively simple when the
reconstruction errors decrease rapidly, and the size of dis-
tractors is significantly larger than the predefined neighbor
system. However, in most complex urban scenes, the vary-
ing distances to moving objects and the diverse coverage of
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Original image Entity segmentation [17] Mask for moving objects RobustNeRF [33] EARR
Figure 3. D(r) of RobustNeRF [33] and our Entity-wise Average of Residual Ranks (EARR) at the end of training. Our EARR can
more efficiently incorporate the background into learning.

field-of-view may hinder the statistical method’s ability to
distinguish between inliers and outliers effectively.

To overcome these limitations, we propose a hybrid
method that integrates the strengths of both knowledge-
based and statistical approaches. Specifically, we leverage
the knowledge-based entity segmentation method’s ability
to generate accurate object contours and semantic segmen-
tation method to identify non-moving objects, while incor-
porating the capability of the statistical method in adap-
tively handling varied scene dynamics and object move-
ments. This synergy aims to create a more robust and ver-
satile system for identifying distractors in urban environ-
ments, addressing the limitations of each method when used
in isolation.

4. Method
In this section, we present our hybrid approach combin-
ing knowledge-based and statistical methods to identify
moving distractors of varying sizes in urban scenes. Con-
cretely, we introduce the method of distractor labeling using
Entity-wise Average of Residual Ranks (EARR) (4.1), uti-
lizing both data-driven segmentation networks and entity-
wise statistics of reconstruction losses. As the statistics of
reconstruction losses become highly unstable in complex
background areas, we incorporate knowledge of scene se-
mantics to identify the non-moving stuff, such as buildings
(4.2). The overall pipeline is illustrated in Fig. 2.

4.1. Entity-wise Average of Residual Ranks (EARR)
A pre-trained entity segmentation network [17] provides
high-quality segmentation for objects in real-world scenes
including urban scenes. This quality is maintained regard-

less of the objects’ semantics or sizes in the image. Al-
though it’s not possible to determine if an entity is mov-
ing based on the segmentation result alone, we can assume
that there is consistency in the distractor label across pixels
within the same entity. This observation leads to a depar-
ture from conventional methods. Instead of assigning mov-
ing distractor labels to rays that intersect each pixel [39] or
each patch [33], our approach labels individual entities.

To determine whether each entity is moving or not, we
utilize the statistics of reconstruction loss in each entity.
Similar to RobustNeRF [33], we follow the principle that
rays passing through distractors lead to a lack of consis-
tency across multiple viewpoints, resulting in larger recon-
struction loss.

To clarify, we denote ✏(i) as the `2 residual between ren-
dered and observed colors of a ray passing through the i-th
pixel. Considering N pixels (i.e., N rays) in a batch, we de-
fine a rank function R(✏(i)) that inputs ✏(i) and outputs an
ordered rank, with the largest residual assigned N and the
smallest assigned 1 among the N pixels. Then, the normal-
ized residual rank r̂(i) is calculated by normalizing these
ranks to the [0, 1] range and used for the distractor labeling
in the following steps. The use of normalized residual rank
instead of raw residual values is justified because, during the
initial stages of training, the residuals tend to be large. Re-
lying solely on the raw residual values for decision-making
can lead to excessive false detection of distractors. In con-
trast, by employing a rank function, it is possible to exclude
only a specific proportion of samples with large residual
values, while ensuring that all other samples are included
in the training process.

The normalized residual rank for each ray tends to be
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higher when the ray passes through a moving object, due to
an increase in the residual. However, even in static scenes,
the rank can become high if the ray passes through com-
plex backgrounds or geometric shapes. Therefore, instead
of using a single ray as the basis for decision-making, we
gather statistics on the Rank of each entity to use as a basis
for labeling.

However, since the shape and size of entities vary
greatly, it is not practical to sample rays passing through
all pixels of each entity during training. To address this,
we sample a patch of size k ⇥ k pixels (i.e., k should be
sufficiently large and we choose 64 in our implementation),
cluster the labels of entities within it, and then calculate sta-
tistical measures for each cluster. Specifically, for a set of
pixels corresponding to an entity ID (e) within a patch, des-
ignated as S(e), we calculate its average as follows.

¯̂re =
⌃i2S(e)r̂(i)

|S(e)| . (3)

where, the number of elements in each entity is denoted
as |S(e)|. This process is repeated for all entities in the
patch. If the average exceeds a certain threshold T , we as-
sign D(r) = 0 and otherwise D(r) = 1 to all rays passing
through pixels corresponding to that entity ID. The choice
of T is crucial and its choice will be discussed later.

Despite its simplicity, our approach, which combines
knowledge-based entity segmentation results and statistics
of residual ranks, functions much more robustly than meth-
ods based solely on statistics. As depicted in Fig. 3, our pro-
posed method has been shown to accurately detect nearly all
moving objects without excessively excluding inliers. This
is in contrast to RobustNeRF [33], a purely statistical ap-
proach, which is prone to excessively identify distractors.

4.2. Cooperative Stationary Entity Classification
In the early stages of training, all residuals are high, leading
to low reliability of residual ranks and their statistical mea-
sures. This is especially true in urban scenes where back-
grounds contain numerous elements, such as traffic signs
and complex building structures. These elements make
NeRF training difficult, resulting in many inliers being in-
cluded in samples above the rank threshold. These inliers
could potentially be excluded from training during large
training steps. To address this issue, for entities of classes
such as buildings, sky, and roads in urban scenes, which
are certainly stationary, we attempt to assign a value of 1
to D(r) to ensure their inclusion in the learning process re-
gardless of their residual ranks.

To implement this, we train a stationary entity classi-
fication network, which is an MLP with three linear lay-
ers and one classification layer. This network identifies
whether each entity belongs to a class of stationary objects.
The input to this network is a feature vector calculated for

each entity, and the output is a class label of the entity, ei-
ther ‘stuff’ or ‘thing’. ‘stuff’ and ‘thing’ are defined in
ADE20K [60] as non-accumulative and accumulative ob-
jects, respectively. Specifically, all movable object classes
are included in ‘thing’, and we can safely include ‘stuff’
entities in the training. Feature vectors for individual enti-
ties are computed by averaging pixel-wise features within
each entity. Concretely, feature maps are extracted from an
image by applying pre-trained SAM [9] and DINOv2 [21]
encoders, individually.

For training this network, we also adopt a cooperative
approach combining prior knowledge and statistics. Specif-
ically, instead of training the stationary entity classifica-
tion network entirely on ADE20K, we adapt the network
for individual scenes. This adaptation is done by continu-
ously fine-tuning the MLP using pixels classified as station-
ary (D(r) = 1) during the training, based on the ranked
residuals described above. Concretely, we first train Seg-
Former [53] on ADE20K to output ‘stuff’/‘thing’ labels,
then apply it to each scene in which NeRF is trained to gen-
erate initial pseudo ground truth labels for stationary entities
specific to each scene. Note that the labels for each entity
are determined based on the voting of pixel-wise labels for
each entity. The four-layer MLP is then pre-trained based
on these pseudo ground truth labels. Every 100 steps of
NeRF training, the MLP is fine-tuned using the entities that
have been determined as D(r) = 1 based on the ranked
residuals. Entities for which the stationary entity classifica-
tion network assigns ‘stuff’ labels are consistently included
in the NeRF training, whereas entities assigned ‘thing’ la-
bels are trained solely based on ranked residuals.

5. Results
5.1. Implementation Details

Our framework for labeling moving objects can be applied
to all NeRF models that use photometric reconstruction loss
similar to other robust approaches (e.g., RobustNeRF [33]).
In this paper, we incorporated our method into both Mip-
NeRF 360 [2] and Nerfacto [40]. The implementation of
each method is as follows. Note that we used the hyper-
parameter values from the original implementations. Mip-
NeRF 360 trained on two Tesla A100 units and Nerfacto on
one, using 16,384 samples during every iteration.
Mip-NeRF 360: Mip-NeRF 360 addresses challenges pre-
sented by unbounded scenes using a non-linear scene pa-
rameterization. We used the official implementation code
from MultiNeRF [20], which contains an implementation
of Mip-NeRF 360 [2] and RobustNeRF [33]. The models
were trained for 250,000 iterations for each scene, taking
approximately 24 hours.
Nerfacto: Nerfacto is implemented in NeRFStudio [40],
which is a combination of various methods, rather than a
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Model Loss foreground
PSNR"

background
PSNR" PSNR" SSIM" LPIPS#

Nerfacto [40]

Mean-squared error (MSE) 12.10 25.07 24.96 0.87 0.10
RobustNeRF [33] 17.63 21.74 23.19 0.84 0.12

Entity-NeRF (only EARR) 19.48 23.68 24.63 0.84 0.13
Entity-NeRF 19.82 24.00 24.93 0.85 0.12

Mip-NeRF 360 [2]

Mean-squared error (MSE) 11.40 27.36 24.22 0.88 0.13
RobustNeRF [33] 20.15 22.52 22.87 0.83 0.18

Entity-NeRF (only EARR) 20.20 25.49 25.21 0.85 0.14
Entity-NeRF 20.74 25.50 25.23 0.84 0.15

Table 1. Quantitative comparison with RobustNeRF [33] using Mip-NeRF 360 [2] and Nerfacto [40] on MovieMap Dataset.

Figure 4. MovieMap Dataset. Only moving objects in the video
are masked. Therefore, parked cars and stationary people are not
masked.

single published work, that has proven effective in real-
world applications. The models were trained for 30,000
iterations for each scene, taking approximately 30 minutes.

The most important hyperparameter in our method is the
threshold parameter for the averaged residual rank, T . If
this value is too high, it includes too many outliers as inliers,
and if too low, it excludes inliers as outliers. To prevent the
inclusion of outliers excessively as inliers during training,
we set the threshold value to T = 0.8. This decision is
based on 78 manually annotated images from three scene
images, with an average ratio of inliers being approximately
90.4%. The impact of this value is also evaluated in the next
chapter.

5.2. Datasets
The proposed method was quantitatively evaluated using
two real-world datasets. The first dataset is an urban scene
dataset (MovieMap Dataset), generated from 360° videos
from Movie Map [38], while the second comprises non-
urban scenes published in [33] (RobustNeRF Dataset).
Please see the supplementary for more details on Robust-
NeRF Dataset and quantitative comparisons.
MovieMap Dataset: Movie Map [38] offers an immer-

Original image D2NeRF [51] RoDynRF [16] Entity-NeRF
Figure 5. Qualitative comparison with dynamic NeRF methods
(D2NeRF [51] and RoDynRF [16]) on MovieMap Dataset.

sive interface for walking through cities in Japan using
360° videos. Movie Map currently offers the exploration
of eight cities. From them, 360° videos of the Akihabara
scene are used to create the dataset. Akihabara is charac-
terized by an especially high number of pedestrians, vehi-
cles, bicycles, and various moving objects, even by global
standards. Additionally, the background comprises build-
ings of various shapes and colorful outdoor advertisements,
embodying all the typical urban characteristics that make
learning with Neural Radiance Fields (NeRF) challenging.

Our MovieMap Dataset comprises three different sub-
sets, containing 12, 15, and 51 images each, sampled from
the original 360° video in Movie Map. Manual annotation
of moving objects was performed on each 360° image. As
illustrated in Fig. 4, stationary cars and pedestrians are not
labeled as distractors. For evaluation, we generated images
without distractors by using Nerfacto [40] with annotated
distractor labels to exclude moving objects from the train-
ing. This process allows us to render images from the same
camera viewpoints to create background-only images.

In this study, we extract 14 perspective images from
each 360° image, utilizing their degree of field (DoF) as
input parameters for NeRF training. A full description of
MovieMap Dataset is in the supplementary material.
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Nerfacto [40] Mip-NeRF 360 [2]
Figure 6. The trade-off between the foreground/background
PSNR. The values in the figure indicate the threshold of inliers.

Figure 7. Sensitivity to patch size (k) and threshold (T ).

5.3. Evaluation with dynamic NeRF models on
MovieMap Dataset

To show urban environments’ unsuitability for NeRF
models encoding static and dynamic data, we tested
D2NeRF [51] and RoDynRF [16] as dynamic NeRF meth-
ods. For RoDynRF, designed solely for monocular video,
we converted 360° images into 90° perspective images from
the image center.

Fig. 5 demonstrates the qualitative results using D2NeRF
and RoDynRF in urban settings with motion. Both mod-
els struggle with moving objects and static background re-
construction, due to their limitations in handling excessive
movement, complex motion, and scale variations. This
makes developing dynamic NeRF models for urban scenes
problematic. Subsequent experiments compare our work
with RobustNeRF, which ignores moving objects.

5.4. Evaluation on MovieMap Dataset
Qualitative comparison: A comparison of Robust-
NeRF [33] and our proposed method using Nerfacto [40]
and Mip-NeRF 360 [2] on urban scenes is shown in Table 1.
The mean-squared error (MSE) of incorporating all static
backgrounds and moving objects into training enhances the
PSNR of the backgrounds, which make up a larger per-
centage, leading to an increased overall PSNR. Therefore,
it is crucial to evaluate foreground and background PSNR
separately. Our proposed method achieved a background
PSNR close to the mean-squared error while exceeding
existing methods in foreground PSNR. The comparison
with RobustNeRF showed consistent improvements.

Figure 8. Difference in the
training curves.

Figure 9. Histogram of the
average D(r) per entity.

Sensitivity of hyperparameters: RobustNeRF and our
proposed method present a trade-off between the fore-
ground PSNR and background PSNR, influenced by a hy-
perparameter that determines the inlier to the residual ratio
(denoted by T in our EARR). This trade-off is shown in the
Fig. 6. Raising the inlier ratio improves background PSNR,
but risks including moving objects in the learning, decreas-
ing foreground PSNR. Similarly, lowering the inlier ratio
worsens background PSNR, but removes many moving ob-
jects, boosting foreground PSNR. Entity-NeRF shows con-
sistent improvements in foreground PSNR for Nerfacto and
in background PSNR for Mip-NeRF 360. In addition, while
RobustNeRF is biased toward improving one of the metrics,
Entity-NeRF achieves more balanced results by increasing
both metrics.

In addition, we performed a detailed sensitivity analysis
on hyperparameters (i.e., patch size k and threshold T in
EARR). As shown in Fig. 7, increasing k improved the
foreground PSNR with only a minor background PSNR
impact. The choice of T proved less sensitive than k,
provided it remains below the typical inlier ratio in urban
scenes (e.g., 90.4% in MovieMap dataset).

Effects of stationary entity classification: We conducted
an analysis comparing the training curves of Entity-NeRF
with and without stationary entity classification. As
shown in Fig. 8, stationary entity classification not only
significantly boosts training efficiency but also enhances
final PSNR.

Validity of entity segmentation: To confirm the stable
performance of our entity segmentation across various
images, we calculated the average of annotated labels for
each segmented entity using all images in the MovieMap
dataset. Then, we constructed a histogram representing
these average values for all entities. As depicted in Fig. 9,
the distribution is noticeably skewed towards either 0 or
1, which indicates that entities are clearly segmented into
moving (= 0) or static (= 1) entities.

Qualitative comparison: A qualitative comparison with
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Original image Rendered Entity Seg. [17] RobustNeRF [33] RobustNeRF [33] Entity-NeRF Entity-NeRF
ground-truth D(r) D(r)

Figure 10. Qualitative comparison including Entity Seg. [17] on MovieMap Dataset. D(r) is calculated at the end of the training.

Original image Original image Entity-NeRF
Figure 11. Limitations. Entity-NeRF cannot handle shadows.

RobustNeRF [33] is shown in Fig. 10. Our Entity-NeRF
successfully reconstructed complex building walls that Ro-
bustNeRF mistakenly removed (Fig. 10-top three items). It
also effectively removed moving objects that RobustNeRF
failed to remove (Fig. 10-bottom two items). Thus, Entity-
NeRF is clearly superior to RobustNeRF in both removing
moving objects and reconstructing static backgrounds.

6. Conclusion
We address the problem of identifying and removing
multiple moving objects of various categories and scales to
build a NeRF for dynamic urban scenes. To solve this prob-
lem, we introduce Entity-wise Average of Residual Ranks
designed to identify moving objects using entity-wise statis-
tics and the stationary entity classification with thing/stuff

segmentation to remove complex backgrounds in the early
stages of NeRF training. Our evaluation using an urban
scene dataset, where existing methods fail to model scene
dynamics or remove moving objects, shows quantitatively
and qualitatively that the proposed method works very well.

Limitations: While Entity-NeRF demonstrates outstanding
performance in urban environments, it is subject to a few
limitations. Firstly, if a large moving object dominates the
image and thereby obscures the background from another
perspective, there might be difficulty in successfully recon-
structing the background hidden by the moving object. This
issue, however, could potentially be mitigated by integrat-
ing existing inpainting techniques.

Moreover, as shown in Fig. 11, since shadows are not ex-
plicitly managed in the current framework, shadows cast by
moving objects might be inadvertently incorporated into the
training process. This issue may be resolved by using seg-
mentation that includes shadows or by removing shadows
in post-processing.
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