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Abstract

Face Image Quality Assessment (FIQA) is pivotal for
guaranteeing the accuracy of face recognition in uncon-
strained environments. Recent progress in deep quality-
fitting-based methods that train models to align with qual-
ity anchors, has shown promise in FIQA. However, these
methods heavily depend on a recognition model to yield
quality anchors and indiscriminately treat the confidence of
inaccurate anchors as equivalent to that of accurate ones
during the FIQA model training, leading to a fitting bot-
tleneck issue. This paper seeks a solution by putting for-
ward the Confidence-Calibrated Face Image Quality As-
sessment (CLIB-FIQA) approach, underpinned by the syn-
ergistic interplay between the quality anchors and objective
quality factors such as blur, pose, expression, occlusion,
and illumination. Specifically, we devise a joint learning
framework built upon the vision-language alignment model,
which leverages the joint distribution with multiple quality
factors to facilitate the quality fitting of the FIQA model.
Furthermore, to alleviate the issue of the model placing ex-
cessive trust in inaccurate quality anchors, we propose a
confidence calibration method to correct the quality distri-
bution by exploiting to the fullest extent of these objective
quality factors characterized as the merged-factor distribu-
tion during training. Experimental results on eight datasets
reveal the superior performance of the proposed method.

1. Introduction
Face Image Quality Assessment (FIQA) aims at predicting
the quality of face images to reflect the variability in sam-
ple recognizability, thereby ensuring consistent accuracy for
face recognition systems in uncontrolled real-world envi-
ronments [7, 47, 50]. In line with standards for biomet-
ric quality assessment [2, 19], face recognizability is influ-
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Figure 1. Illustration of the core idea of previous and the pro-
posed FIQA schemes. Previous Quality Fitting-Driven Solution
only considers the quality anchor provided by the dependent Face
Recognition (FR) model. Our Proposed Scheme engages various
quality factors to both facilitate the training of the FIQA model
and calibrate the confidence of the quality distribution.

enced by specific quality factors, such as blur, pose, expres-
sion, occlusion, and illumination. These quality factors play
an essential role in the effectiveness of recognition systems
and are also key considerations in FIQA.

Nevertheless, in the era of deep learning, the evolution
of FIQA is primarily shaped by strategies that exploit qual-
ity anchors for quality fitting [8, 12, 13, 21, 44, 64] or
compute quality scores derived from the embedding prop-
erty [5, 6, 38, 55, 56]. Herein, although quality-fitting-based
FIQA training schemes have demonstrated promising per-
formance [8, 44, 64] in recent years, they rest upon an as-
sumption during training that quality anchors obtained from
the dependent recognition model possess the same level of
confidence. Regrettably, this assumption is flawed due to in-
consistent quality variation among different classes within
the training set. For instance, for samples with relatively
low intra-class quality variation, their quality anchors may
tend to be overall higher because of the minor fluctuations
in intra-class recognition features. These inaccurate anchors
will further lead to the fitting bottleneck challenge during
the training of the FIQA model.

A potentially effective strategy is to utilize quality fac-
tors to aid in the training of the FIQA model. This is be-
cause the judgment of quality factors can be executed in-
dependently from the recognition model, thereby offering
objective quality information [3, 30]. In the prior deep
method, FaceQnet [21], diverse quality factors are collated
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to select samples with top intra-class quality as the refer-
ence. Quality anchors are then computed using the Eu-
clidean distance between the embeddings of the target and
reference samples. The scheme then refined new quality re-
gression layers from the recognition model to finalize the
FIQA model. However, this scheme is suboptimal as it did
not fully leverage the information from the quality factors
during training and still adhered to the assumption that qual-
ity anchors have the same confidence. Thus, how to effec-
tively utilize quality factors of FIQA to calibrate the confi-
dence of quality anchors is a worthwhile research question.

To delve deeply into this issue, we propose the
Confidence-Calibrated Face Image Quality Assessment
(CLIB-FIQA) method built upon the Contrastive Lan-
guage–Image Pre-training (CLIP) [49], an aligned vision
and language model that has been trained on an extensive
collection of image-text pairs. The principal idea of our
and previous quality-fitting-based approaches is illustrated
in Fig. 1. Contrary to previous quality-fitting-driven ap-
proaches [8, 21, 44, 64], which primarily trust the quality
anchors provided by the dependent face recognition model
as being entirely accurate and treat them with identical con-
fidence during learning, the proposed CLIB-FIQA lever-
ages objective quality factors to facilitate the training of
the FIQA model. Meanwhile, our method compares the
merged-factor distribution derived from the joint distribu-
tion of quality factors with the quality distribution to cali-
brate the confidence of the quality distribution. To this end,
the proposed CLIB-FIQA achieves impressive performance
on eight benchmarks.

Our contributions can be summarized as follows:
1) We introduce a novel confidence calibration method in

FIQA. This method determines confidence by compar-
ing merged-factor and quality distributions, alleviating
the quality fitting bottleneck issue due to the inaccurate
quality anchors provided by the recognition model.

2) We devise a new FIQA framework that aligns the vi-
sion and language modalities with quality factors by
CLIP, which provides evidence of the potential of en-
hancing FIQA model performance by incorporating dif-
ferent multimodal prior knowledge.

3) We pioneer the full exploit of quality factors in facilitat-
ing the training of the FIQA model to achieve impres-
sive performance through a joint learning strategy in the
deep FIQA methods, which offers fresh perspectives on
the development of modern FIQA schemes.

2. Related Work

2.1. Face Image Quality Assessment

Deep FIQA solutions can be broadly classified into two
groups: unsupervised and quality-fitting-based strategies.
Unsupervised-based FIQA Approaches. This type of

FIQA approach involves deriving quality predictions from
recognition embeddings through the learned uncertainty or
robustness computation. For example, Shi and Jain [55] in-
troduced Probabilistic Face Embedding (PFE), the first at-
tempt that factors in sample uncertainty for quality eval-
uation. Following this, Chang et al. [11] further refined
PFE by concurrently learning the mean and uncertainty of
the Gaussian embedding distribution. Terhorst et al. [56]
determined the mean Euclidean distance of embeddings,
which are generated from a recognition model with an ac-
tive dropout operator as quality predictions. MagFace [38]
was proposed by Meng et al., an approach that applies an
adaptive margin and regularization based on feature magni-
tude to gauge face quality. Currently, Žiga et al. proposed
FaceQAN [5] and DifFIQA [6] sequentially, in which dif-
ferent quality aggregation functions are designed via lever-
aging characteristics of generated examples.

Quality-fitting-based FIQA Approaches. This scheme
endeavors to compute quality anchors with the aim of train-
ing an individual FIQA model for quality prediction. In the
associated literature, Best-Rowden and Jain [7] made use
of partial or complete human efforts to generate quality an-
chors and assessed the efficiency of FIQA regressors trained
with these anchors. Hernandez-Ortega et al. [21] proposed
to compute Euclidean distances of intra-class recognition
embeddings as quality anchors, subsequently training the
new regression layers on the recognition model to fit these
anchors. PCNet was devised by Xie et al. [64], a method
leveraging mated pairs to garner quality anchors essential
for FIQA network training. Drawing inspiration from PC-
Net, Chen et al. [12] introduced identification quality and
knowledge distillation losses to decouple the FIQA network
from the recognition model to fit pairwise binary quality
anchors in accordance with similarities. Ou et al. [44] pro-
posed SDD-FIQA, where the Wasserstein metric is engaged
to generate quality anchors by measuring the similarity dis-
tribution distances, followed by the fine-tuning of a quality
network from the dependent recognition model. CR-FIQA
was proposed by Boutros et al. [8], which exploits the fea-
ture representation of the sample in angular space relative to
its class center and the nearest negative class center to ob-
tain a quality score and then learns a regressor concurrently
with the training of the recognition model.

While quality-fitting-based methods have shown poten-
tial, existing strategies lean heavily on quality anchors and
prior knowledge derived from recognition models for qual-
ity fitting, without adequately capitalizing on information
associated with quality factors. We introduce a novel FIQA
strategy that utilizes joint learning with quality factors. Fur-
thermore, these quality factors are incorporated into the
quality fitting process for confidence calibration, effectively
mitigating the fitting bottleneck caused by inaccurate qual-
ity supervision derived from the recognition model.
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Figure 2. Illustration of the overall framework of the proposed CLIB-FIQA. Specifically, a face image along with its corresponding textual
expression of quality factors are processed through the CLIP model. Then, the output is decomposed into the joint distribution of the
quality factor and the predicted quality distribution. Herein, we leverage the joint learning strategy, enabling the classification information
of quality factors to aid in fitting the quality distribution derived from the Face Recognition (FR) model. In the subsequent stage, to calibrate
the confidence of the quality distribution, we use a Multilayer Perceptron (MLP) to transform the joint distribution of quality factors into
a merged-factor distribution. The confidence is then computed based on the distance between the merged-factor and predicted quality
distributions. Finally, the confidence-calibrated quality distribution is leveraged to refine the model in order to solve the fitting bottleneck
caused by the uncertain quality supervision from the FR model. In the inference phase, an image of a face and the total possible textual
expressions are fed into the CLIP for quality prediction.

2.2. Quality Factors in FIQA

Numerous published standards [1–3, 19] indicate that qual-
ity factors, including pose, expression, illumination, blur,
and occlusion, can impact the accuracy of face recogni-
tion models and need to be measured as considerations for
FIQA [39]. Historically, these standards pertaining to the
definition of quality factors have influenced the develop-
ment of many traditional face quality assessment methods
based on analysis and handcrafted features [4, 16, 24, 30,
60]. For instance, In [30], Kim et al. proposed extracting
objective quality feature vectors in terms of pose, blur, and
brightness, and combining them with relative quality mea-
sures to learn a quality assessor by AdaBoost. In addition,
Dutta et al. [16] used a Bayesian framework to tie together
different quality features to predict sample recognition util-
ity. Meanwhile, the contributions of these quality factors
in FIQA have been validated and further explored in some
recent studies[10, 20, 23].

However, in existing deep FIQA methods, these qual-
ity factors are primarily considered to select high-quality
samples as a reference for training FIQA models [21, 22].
To the best of our knowledge, no existing deep FIQA ap-
proaches have fully leveraged these quality factors to fa-
cilitate the training of the FIQA model. Our proposed
CLIB-FIQA method fills this research gap by leveraging a
vision-language alignment approach to enhance model per-
formance by interlinking multi-quality factors. Addition-
ally, our method demonstrates that even without fine-tuning
the face recognition model for quality fitting, excellent per-
formance can be achieved with multimodal prior knowledge
and information on quality factors.

2.3. Vision-Language Alignment

The integration of language supervision with images has
sparked significant interest in the computer vision com-
munity [66]. These vision-language alignment models,
as opposed to those trained exclusively on image supervi-
sion, encapsulate a wealth of rich multimodal representa-
tions [28, 61–63, 69]. Herein, image-language pre-training
is aimed at bolstering the performance of subsequent vision
and language tasks by pre-training these alignment models
on a vast collection of image-text pairs [27, 29, 70]. The
landmark work of CLIP [49] has elicited widespread ac-
claim due to its remarkable capabilities in zero-shot recog-
nition and its superior transferability in all sorts of down-
stream classification tasks. This can be attributed to its
training regimen, which leveraged a staggering 400 million
image-text pairs to train its text and image encoders within
the aligned multimodal latent space. Although pre-trained
vision-language alignment models capture generalized rep-
resentations, their effective adaptation to downstream tasks
remains a formidable challenge. Existing literature is re-
plete with studies showcasing improved performance in
downstream tasks such as image recognition [48, 67], vi-
sual perception [59, 72], and object detection [18, 74]
through applying customized methods to adapt these vision-
language alignment models.

In this work, we pioneer the first attempt to introduce a
new CLIP-based Face Image Quality Assessment (FIQA)
method. By implementing elaborately designed joint learn-
ing and confidence calibration schemes, we effectively en-
able CLIP to adapt to the FIQA task, thereby achieving im-
pressive performance.
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3. Methodology

We propose the CLIB-FIQA, a methodology that exploits
multi-quality factors to facilitate the FIQA model training
and calibrate the confidence of the quality distribution via
vision-language alignment. An illustrative overview of the
framework is provided in Fig. 2. In our approach, a two-
stage training strategy is deployed to finalize the vision-
language-based FIQA model. During the initial stage, joint
learning incorporating multiple quality factors is utilized to
fit the quality distribution and learn the joint distribution of
these quality factors. In the following stage, the computa-
tion of confidence is devoted to the calibration of the quality
distribution’s confidence, with the ultimate aim of refining
the CLIP model. In the following, we first initially eluci-
date the preliminaries for the proposed CLIB-FIQA. Subse-
quently, we outline the elaboration of each key component
within the framework of our method.

3.1. Preliminaries

Given a set of face images X , a corresponding set of iden-
tity labels Y , and a set of quality factors H, we can construct
the training set D as D = {(xi, yi, Hi)}Ni=1 ⊂ X ×Y ×H,
where N denotes the total number of samples. The ob-
jective in training a quality-fitting-based FIQA model is to
ensure the predicted quality of xi ∈ RN aligns closely
with the quality anchor qi ∈ R provided by the recogni-
tion model. In order to adapt the CLIP to the FIQA task,
we employ a Likert-scale of five-level quality classification
[43, 45, 46, 54], hq

i ∈ {“bad”, “poor”, “fair”, “good”, “per-
fect”}, to map qi into a quality distribution Pqi : R 7→ R5.
Herein, Pqi is associated with the corresponding five-level
anchors A = {an}5n=1 using the soft-mapping function:

q̂ni =
exp (−β∥qi − an∥)∑5
n=1 exp (−β∥qi − an∥)

, (1)

where q̂ni ∼ Pqi and β is the shape parameter. The final pre-
dicted quality score q̃ for a given sample x can be computed
as follows:

q̃ (x,A) =

5∑
n=1

Gq (n|x)× an, (2)

in which Gq (n|·) is interpreted as the marginal probability
as estimated by the FIQA model denoted as Gq . To en-
sure that the predicted quality score q̃ lies within the range
of [0, 1], we set the values in the set A as {0.1, 0.3, 0.5,
0.7, 0.9}. Inspired by [72], we introduce a multi-quality
factor identification task for a sample xi, which considers
blur, pose, expression, occlusion, and lighting factors, col-
lectively represented as Hi, where Hi = {(hm

i )}5m=1. For
the blur and pose factors, we categorize them into three

classifications respectively, with h1
i ∈ {“hazy”, “blurry”,

“clear”} and h2
i ∈ {“profile”, “slight angle”, “frontal”}. To

streamline the assessment of quality based on expression,
occlusion, and lighting, these factors are considered two
categories individually. Specifically, h3

i ∈ {“obstructed”,
“unobstructed”}, h4

i ∈ {“exaggerated expression”, “typical
expression”}, and h5

i ∈ {“extreme lighting”, “normal light-
ing”}. Subsequently, we create a textual expression of xi

that combines labels from these tasks, which serves as the
textual input for the CLIP model: “A photo of a [h1

i ], [h
2
i ],

and [h3
i ] face with [h4

i ] under [h5
i ], which is of [hq

i ] quality”.

3.2. Joint Learning with Multi-Quality Factors

With the face image and the corresponding textual descrip-
tion, we introduce a joint learning approach to leverage fac-
tor factors and enhance quality fitting through CLIP that
comprises two encoders: an image encoder and a language
encoder. As a key component of the CLIP design, the im-
age encoder EI processes input image xi that conforms to
a predefined spatial size. To this end, we employ bilinear
interpolation to ensure the input images meet this size re-
quirement. Then, xi is fed into EI to extract the image em-
bedding eIi ∈ RK , where K denotes the dimension of the
embedding. In addition, inspired by the successful appli-
cation of CLIP to other downstream tasks as demonstrated
in previous work [26, 68], we utilize the frozen and pre-
trained language encoder ET . Herein, ET operates on a
lower-cased byte pair encoding representation [53] of the
text, using a vocabulary of size 49,152, to generate the text
embedding matrix eT ∈ RL×K , where L represents the to-
tal count of possible textual expressions.

We then calculate the cosine similarity Sim(·) between
the eIi and the j-th vector of eT (denoted as eTj ), in which j
is determined in the concatenation of tuples hq

i and Hi (de-
noted as Si = hq

i ||Hi). Upon mapping the xi to all poten-
tial textual expressions, as suggested in [66], we implement
a softmax function to compute a joint distribution involving
a learnable temperature parameter τ by

P (Si|xi) =
exp

(
Sim

(
eIi , e

T
j

)
/τ

)∑
Si

exp
(
Sim

(
eIi , e

T
j

)
/τ

) . (3)

Subsequently, the predicted quality distribution P (hq
i |xi)

and the predicted joint distribution of quality factors
P (Hi|xi) can be obtained via marginalization of P (Si|xi).
Similarly, the predicted distribution of quality factors for
each type PHi(h

m
i |xi) can be further marginalized by inte-

grating over all other dimensions than the target one.
By the joint learning, the optimization for the weighted

parameter of EI and τ proceeds in two directions: min-
imizing the statistical distance between P (hq

i |xi) and Pqi

for quality fitting, and reducing the discrepancy between
PHi

(hm
i |xi) and the corresponding quality factor label.
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Quality Fitting. We employ a frozen and well-trained face
recognition model Gfr to calculate the quality anchor based
on [8] for quality fitting. Specifically, we compute the sim-
ilarity between the target sample feature efri and the posi-
tive center C|yi

in the classification space center, referred
to as Sim(efri , C|yi

). In a similar vein, we compute the
similarity between efri and the nearest negative center C|yk

,
symbolized as Sim(efri , C|yk). The quality anchor qi can
be computed by Norm[Sim(efri , C|yi

)/Sim(efri , C|yk)],
where Norm(·) denotes max-min normalization opera-
tor. Consequently, the probability Pqi is naturally derived
through Eq (1). Then, we employ the Earth Mover’s Dis-
tance as the loss function, denoted as LEMD(·), to minimize
the statistical distance between P (hq

i |xi) and Pqi , which is
described by

arg min
EI , τ

LEMD(P (hq
i |xi), Pqi ;EI , τ) =∑

z=1

||Fz(P (hq
i |xi))− Fz(Pqi)||,

(4)

where Fz represents the values of the z-th dimension as de-
termined by the Cumulative Distribution Function (CDF)
for a given distribution.
Classification of Multiple Quality Factors. Regarding the
quality factors in the dataset, we observe an imbalance in
the number of samples across different categories. To mit-
igate the impact of this class imbalance on model learning,
we employ the Focal Loss function [33] to optimize our
model parameters for the task of Multi-label classification
of quality factors, where the loss denoted as LMFL(·). The
optimization objective is formulated as follows:

arg min
EI , τ

LMFL(PHi
(hm

i |xi), h
m
i ;EI , τ) =

1

|Hi|
∑
m=1

(1− pυ)
γCE(PHi

(hm
i |xi), h

m
i ),

(5)
where

pυ = exp(−CE(PHi(h
m
i |xi), h

m
i )), (6)

and CE(·) represents the Cross-Entropy function, | · | is the
cardinality of a set, and γ indicates the focusing parameter,
which is set to a default value of 2.
Overall Optimization Objective. In summary, the overall
optimization goal of our FIQA model during training can be
described as minimizing the overall loss function LALL(·),
which is given by

arg min
EI , τ

LALL(P (Si|xi), h
m
i ;EI , τ) =

LMFL(PHi
(hm

i |xi), h
m
i ) + λLEMD(P (hq

i |xi), Pqi),
(7)

where λ serves as a balancing factor to manage the rela-
tive significance of the quality fitting component within the
combined function.

3.3. Confidence Calibration

In this phase, our objective is to calibrate the confidence
of the quality distribution and leverage it to guide model
training further. Evidently, if the quality level of a sam-
ple cannot be justified by its quality factors, then the con-
fidence in the quality anchor is low. As such, we can
use the relationship between the predicted joint distribu-
tion of quality factors P (Hi|xi) and the predicted qual-
ity distribution P (hq

i |xi) to probe the confidence. To ad-
dress this, we introduce a learned Multilayer Perceptron
(MLP) that maps P (Hi|xi) to the merged-factor distribu-
tion P̃ (Hi|xi): R3×2×3×2×2 7→ R5, thereby aligning the
topology of P̃ (Hi|xi) with P (hq

i |xi).
Furthermore, for the confidence to be effective, it should

satisfy three properties: 1) Its value range needs to be con-
vergent; 2) It should exhibit different tolerances for varying
degrees of distribution discrepancies; 3) It should decrease
as the distribution distance increases. To achieve this, we
employ the Jensen-Shannon divergence JS(·) and design a
customized sigmoid function to compute the confidence ρi,
as shown below:

ρi =
1

1 + exp(β · dϖ)
+ ϵ (8)

where,
dϖ = JS(P (hq

i |xi)||P̃ (Hi|xi)), (9)

and ϵ is set to 0.5 to ensure the value range of the confidence
lies within [0.5, 1]. With the confidence measure ρi, we can
calibrate the quality distribution to refine the CLIP. As de-
fined by Eq. (1), an intuitive approach is to adjust the shape
parameters of the soft-mapping function using confidence.
Therefore, the β in Eq. (1) is substituted with β × ρi to
generate confidence-calibrated quality distribution Pci for
quality fitting in the subsequent training stage.

4. Experiments
In this section, we first describe the experimental settings
including the dataset description and details of the imple-
mentation and evaluation. Subsequently, we present the ex-
perimental results, offering a thorough demonstration and
analysis of the effectiveness of the proposed CLIB-FIQA.

4.1. Experimental Setups

Dataset Description. For the training set, as suggested
in most FIQA methods [8, 38, 44, 55], we employ the
MS1MV2 [15] to train our FIQA and recognition models.
We adopt automatic labeling to generate the annotations of
quality factors in this million-scale dataset, where different
generation methods of quality are referred to [3, 23, 34].
Specifically, for the blur factor, we employ the CPBD met-
ric [41] to obtain the CPBD scores for the facial regions
within images. Then, samples with scores less than 0.35,
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Figure 3. Illustration of EVRC results on eight benchmarks. All methods are separately tested under the ArcFace (Row#1-Row#2),
CosFace (Row#3-Row#4), and AdaFace (Row#5-Row#6) as the deployed face recognition models. The grey and red shaded areas
represent the regions considered for the calculation of pAUC and AUC, respectively.

between 0.35 and 0.7, and greater than 0.7 are respectively
categorized into “hazy”, “blur”, and “clear” classes. For the
pose factor, we calculate the Euler angles of a face in an
image and empirically categorize samples with a yaw an-
gle less than 10 degrees, between 10 and 25 degrees, and
greater than 25 degrees into “frontal”, “slight angle”, and
“profile1” categories, respectively. For the occlusion, ex-
pression, and lighting factors, inspired by [34], leveraging
CNN classifiers trained on the WiderFace dataset [65] to as-
certain the respective labels for these three factors. Further-
more, we test FIQA models across eight widely-recognized
benchmark datasets including LFW [25], CFP-FP [52],
CPLFW [57], CALFW [73], AgeDB [40], XQLFW [32],
Adience [17], and TinyFace [14]. It is worth mentioning
that due to the fact that IJB-C [37] has been discontin-
ued distribution as detailed in [42], as done in [9, 31, 51],
we employ the TinyFace dataset in our experiments. The
dataset serves as a challenging test for FIQA models due to

1The profile contains the definition of half and full profile.

its large-scale, highly realistic, and very low-resolution face
images. All face images are aligned2 and resized to 112 ×
112 pixels with five landmarks [71].
Implementation. To facilitate a fair comparison with exist-
ing FIQA methods, we opt for the CLIP model built on the
image encoder EI with the ResNet50 backbone. Further,
the architecture of the MLP within our framework is defined
as FC(72)-PReLU-FC(128)-PReLU-FC(64)-PReLU-FC(5),
where FC(n) and PReLU denote a fully connected layer
with n nodes and the parametric rectified linear unit, re-
spectively. The model undergoes a training process for 25
total epochs with a batch size of 256, which employs the
AdamW optimizer [36] under a decoupled weight decay
regularization of 1E−3 scheduled by a cosine annealing
rule [35]. Herein, the initial five epochs comprise the first
training phase, aiming to obtain the confidence, while the
subsequent 20 epochs constitute the second training phase,

2Given that the face images are already aligned, the label generation
of pose factor only takes into account the yaw angle for the classification.
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Table 1. pAUC and AUC results under the ArcFace.

Methods
pAUC(↓)@FMR=1E−3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
PFE [55] 0.779 0.433 0.579 0.799 0.925 0.744 0.510 0.943 0.714

SER-FIQ [56] 0.666 0.747 0.679 0.901 0.978 0.901 0.644 0.994 0.814
MagFace [38] 0.789 0.696 0.664 0.905 0.897 0.837 0.593 0.967 0.793
FaceQAN [5] 0.721 0.345 0.491 0.795 0.877 0.803 0.547 0.963 0.693
FaceQnet [21] 0.833 0.623 0.601 0.737 0.989 0.861 0.694 0.900 0.780

PCNet [64] 0.857 0.578 0.621 0.693 0.864 0.808 0.545 0.918 0.736
SDD-FIQA [44] 0.850 0.540 0.567 0.684 0.886 0.847 0.576 0.936 0.736

CR-FIQA [8] 0.793 0.315 0.492 0.661 0.877 0.786 0.507 0.849 0.660
CLIB-FIQA (Ours) 0.836 0.303 0.488 0.647 0.868 0.712 0.499 0.827 0.648

Methods
AUC (↓)@FMR=1E−3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
PFE [55] 0.864 0.241 0.305 0.380 0.808 0.489 0.333 0.707 0.516

SER-FIQ [56] 0.642 0.479 0.389 0.713 0.926 0.746 0.406 0.965 0.658
MagFace [38] 0.547 0.360 0.379 0.766 0.807 0.488 0.360 0.903 0.576
FaceQAN [5] 0.646 0.159 0.268 0.342 0.812 0.542 0.337 0.563 0.459
FaceQnet [21] 0.931 0.488 0.410 0.368 0.938 0.645 0.458 0.629 0.608

PCNet [64] 0.820 0.309 0.313 0.321 0.814 0.597 0.356 0.579 0.514
SDD-FIQA [44] 0.682 0.262 0.325 0.306 0.814 0.662 0.369 0.565 0.498

CR-FIQA [8] 0.793 0.162 0.265 0.280 0.742 0.488 0.280 0.437 0.431
CLIB-FIQA (Ours) 0.567 0.179 0.268 0.252 0.778 0.422 0.299 0.422 0.398

designed to refine the model with the confidence-calibrated
quality distribution. The parameter β in Eq. (1) and Eq. (8)
and λ in Eq. (7) are separately set to 32 and 10. We conduct
the model training using PyTorch on a machine equipped
with a single NVIDIA GeForce RTX 4090 Ti GPU.
Performance Evaluations. For performance comparison
with the proposed CLIB-FIQA, we employ eight existing
FIQA approaches, including FaceQnet [21], PFE [55], PC-
Net [64], SER-FIQ [56], SDD-FIQA [44], MagFace [38],
FaceQAN [5], and CR-FIQA [8]. To ensure a fair com-
parison, all competing models are trained on the training
set using the ResNet50 backbone, either following their
publicly accessible official implementations or directly ap-
plying their well-trained models procured from the official
source. In order to more effectively assess the generaliza-
tion capability of FIQA, we adopt the cross-model setting
in FIQA as recommended in [5, 8, 44]. This setting stipu-
lates that the recognition model deployed for testing differs
from the one relied upon during the FIQA training. Herein,
we employ different deployed recognition models for test-
ing, including AdaFace [31] trained on WebFace4m, Arc-
Face [15] trained on MS1MV3, and CosFace [58] trained
on Glint360k. In terms of evaluation metrics, we adopt the
Error Versus Reject Characteristics (EVRC) curve to illus-
trate the False Non-Match Rate (FNMR) under different Ra-
tios of Unconsidered Images (RUI) at a specific False Match
Rate (FMR). Moreover, according to recommendations pro-
vided by [3, 44, 51], we also report the Area Under Curve
(AUC) and the partial AUC (pAUC) results in the exper-
iments. Herein, the AUC is calculated using the formula
AUC =

∫ b

a
g(φ)dφ, where g(φ) represents the FNMR at

the RUI φ. The lower and upper bounds of RUI, a and b, are
preset at 0 and 0.95, respectively. The pAUC assesses the
FIQA performance at a lower rejection ratio b, providing an
evaluation that more closely mirrors the practical applica-
tion scenario of FIQA. In the experiment, following [6, 51],
b is se to 0.3 to compute the pAUC value.

Table 2. pAUC and AUC results under the CosFace.

Methods
pAUC(↓)@FMR=1E−3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
PFE [55] 0.743 0.463 0.600 0.874 0.942 0.764 0.525 0.934 0.731

SER-FIQ [56] 0.633 0.731 0.684 0.990 0.990 0.940 0.641 1.008 0.827
MagFace [38] 0.748 0.746 0.681 0.939 0.923 0.898 0.600 0.980 0.814
FaceQAN [5] 0.731 0.423 0.557 0.805 0.904 0.861 0.536 0.932 0.718
FaceQnet [21] 0.857 0.596 0.620 0.838 0.988 0.883 0.699 0.883 0.796

PCNet [64] 0.787 0.558 0.628 0.771 0.900 0.857 0.553 0.923 0.747
SDD-FIQA [44] 0.874 0.582 0.640 0.761 0.897 0.921 0.570 0.953 0.775

CR-FIQA [8] 0.809 0.376 0.557 0.753 0.903 0.751 0.510 0.846 0.688
CLIB-FIQA (Ours) 0.792 0.352 0.551 0.718 0.891 0.740 0.503 0.773 0.665

Methods
AUC (↓)@FMR=1E−3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
PFE [55] 0.798 0.272 0.376 0.429 0.821 0.531 0.363 0.709 0.537

SER-FIQ [56] 0.591 0.568 0.367 0.781 0.945 0.879 0.428 1.000 0.695
MagFace [38] 0.504 0.391 0.391 0.907 0.833 0.523 0.377 0.939 0.608
FaceQAN [5] 0.607 0.215 0.339 0.354 0.835 0.581 0.346 0.500 0.472
FaceQnet [21] 0.912 0.561 0.372 0.416 1.021 0.675 0.469 0.600 0.628

PCNet [64] 0.748 0.346 0.338 0.365 0.858 0.643 0.376 0.534 0.526
SDD-FIQA [44] 0.650 0.371 0.371 0.343 0.843 0.701 0.389 0.519 0.523

CR-FIQA [8] 0.745 0.223 0.303 0.320 0.774 0.465 0.297 0.388 0.439
CLIB-FIQA (Ours) 0.528 0.231 0.357 0.283 0.815 0.463 0.313 0.362 0.419

4.2. Experimental Results

4.2.1 Comparison with the State-of-the-Art Methods

The EVRC curves of the FIQA method under evaluation
with ArcFace, CosFace, and AdaFace as the deployed face
recognition models are depicted in Fig. 3. As illustrated
by the red and gray shaded areas, the proposed CLIB-
FIQA surpasses other FIQA methods on the majority of test
datasets. At the same time, the performance of the proposed
method on the standard LFW test set is comparable to other
state-of-the-art methods, exhibiting a rebound trend when
RUI exceeds 80%.

Conversely, for CFP-FP, CPLFW, and Adience datasets,
our method rapidly descends to a low FNMR, especially
when the RUI is less than 40%. Notably, on the TinyFace
dataset, the EVRC curve of the proposed CLIB-FIQA sig-
nificantly deviates from other FIQA methods. This sug-
gests that our method possesses a substantial advantage on
the dataset with extreme-quality samples. According to the
pAUC and AUC results reported in Table 1, our method
demonstrates a reduction of 1.81% and 7.6% in the average
pAUC and AUC scores, respectively, compared to the best-
performing competitors. The pAUC and AUC results un-
der CosFace are reported in Table 2. Clearly, apart from the
LFW dataset, our method outperforms other methods on the
pAUC metric, including unsupervised and quality fitting-
based methods. Regarding the AUC metric, our average
AUC score also significantly surpasses the most competi-
tive methods, with an overall AUC score reduction of about
3.34% compared to CR-FIQA. Similarly, the results under
AdaFace (Table 3) show that our method also has impres-
sive average pAUC and AUC scores than other methods.

These findings suggest that our method can deliver satis-
factory results under different datasets with different princi-
pal quality factors, thanks to the consideration of joint learn-
ing with multi-quality factors during training.
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4.2.2 Ablation Study and Analysis

Effect of Different Optimization Objectives. To inves-
tigate the efficacy of the different components of the pro-
posed CLIB-FIQA, we perform the ablation study for dif-
ferent optimization objects, including using different com-
binations of quality factors and confidence calibration. The
pAUC results of this study are presented in Table 4, where
the pAUC is computed by the mean of eight testing bench-
marks under the AdaFace model. Our study yielded the
following key observations: 1) Reasonable results can be
obtained by predicting quality solely based on the merged-
factor quality distribution learned from different quality fac-
tors, 2) different quality factors can enhance the perfor-
mance of CLIP on FIQA tasks to varying degrees, and 3)
confidence calibration can further improve model perfor-
mance, thereby overcoming the qualifying fitting bottleneck
previously experienced by CLIP. This demonstrates the ef-
fectiveness of the joint learning strategy with different qual-
ity factors and confidence calibration.
Analysis of Parameter Sensitivity. To evaluate the im-
pact of hyperparameters on the performance and estab-
lish suitable hyperparameter values, we conduct the ex-
periment on the XQLFW dataset to evaluate the results of
pAUC@FMR=1E−3 with varying values for the shape pa-
rameter β in Eq. (1) and Eq. (8). The statistical results are
shown in Fig. 4. We can observe that the pAUC reaches its
optimum at β = 25. Additionally, to determine the number
of epochs (Epo) for training in the first stage, we analyze the
average training loss per epoch. The results indicate that the
loss in the first stage tends to converge at Epo#5. Therefore,
we set β and the number of training epochs for the first stage
as 32 and 5, respectively.
Analysis of Quality Correlation. Here, we further conduct
an analysis to investigate the correlations between differ-
ent quality predictions from different quality distributions

Table 3. pAUC and AUC results under the AdaFace.

Methods
pAUC(↓)@FMR=1E−3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
PFE [55] 0.904 0.462 0.595 0.817 0.923 0.749 0.537 0.903 0.736

SER-FIQ [56] 0.739 0.680 0.693 0.949 0.970 0.890 0.655 1.014 0.824
MagFace [38] 0.911 0.686 0.701 0.887 0.886 0.787 0.603 0.932 0.799
FaceQAN [5] 0.920 0.388 0.509 0.778 0.871 0.800 0.547 0.917 0.716
FaceQnet [21] 0.838 0.601 0.587 0.776 0.964 0.865 0.716 0.843 0.774

PCNet [64] 0.958 0.599 0.627 0.691 0.884 0.811 0.550 0.877 0.750
SDD-FIQA [44] 0.999 0.546 0.586 0.709 0.897 0.842 0.577 0.875 0.754

CR-FIQA [8] 0.985 0.344 0.508 0.677 0.859 0.789 0.502 0.800 0.683
CLIB-FIQA (Ours) 0.960 0.313 0.507 0.650 0.838 0.737 0.522 0.787 0.664

Methods
AUC (↓)@FMR=1E−3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
PFE [55] 0.970 0.271 0.337 0.388 0.834 0.476 0.360 0.643 0.535

SER-FIQ [56] 0.710 0.516 0.424 0.759 0.938 0.778 0.438 0.967 0.691
MagFace [38] 0.611 0.404 0.419 0.773 0.780 0.426 0.366 0.887 0.583
FaceQAN [5] 0.750 0.204 0.291 0.340 0.767 0.550 0.357 0.541 0.475
FaceQnet [21] 0.888 0.466 0.384 0.382 0.941 0.589 0.465 0.555 0.584

PCNet [64] 0.908 0.352 0.353 0.320 0.797 0.571 0.366 0.539 0.526
SDD-FIQA [44] 0.777 0.306 0.380 0.305 0.800 0.604 0.381 0.493 0.506

CR-FIQA [8] 0.905 0.200 0.306 0.276 0.707 0.505 0.285 0.420 0.451
CLIB-FIQA (Ours) 0.640 0.227 0.304 0.245 0.727 0.435 0.314 0.407 0.412

Table 4. Ablation study for different optimization objectives.
NQF◁ M-F▷

CC♢ pAUC(↓)@FMR=
Avg.

Pose Blur Lighting Expression Occlusion 1E−2 1E−3 1E−4

✓ 0.703 0.705 0.666 0.691
✓ ✓ ✓ ✓ ✓ 0.774 0.763 0.742 0.760

✓ ✓ 0.697 0.698 0.657 0.684
✓ ✓ ✓ 0.696 0.693 0.654 0.681
✓ ✓ ✓ ✓ 0.692 0.691 0.650 0.678
✓ ✓ ✓ ✓ ✓ 0.684 0.688 0.648 0.673
✓ ✓ ✓ ✓ ✓ ✓ 0.682 0.685 0.641 0.669
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.668 0.664 0.631 0.654

◁ NQF means that only Pqi is considered for training for naive quality fitting.
▷ M-F represents that quality factors are leveraged to learn merged-factor distribution PHi

(hm
i |xi)

♢ CC indicates that Pci is fitted for confidence calibration.

learned by our model. Statistical results on the Adience
datasets are presented in Fig. 5. It is worth noting that the
definitions of the terms NQF, M-F, and C-C, as marked in
the figure, are defined consistently with their counterparts
in Table 4. Noticeably, NQF distribution shifts right com-
pared to C-C. The Z-standardized quality scores for C-C
center around 0, indicating that confidence calibration can
effectively counter the model’s tendency to overtrust qual-
ity anchors provided by the recognition model, leading to
inflated quality scores. Meanwhile, since the merged-factor
distribution is predicated on the classification task between
high and low quality factors, the quality distribution exhibits
a bimodal pattern. Additionally, the scatter plot of quality
predictions further demonstrates that M-F is able to serve
as a credible quality score, which suggests its potential as a
reliable metric for confidence calculation.

5. Conclusion
This paper has proposed a novel Confidence-Calibrated
Face Image Quality Assessment (CLIB-FIQA) method,
which fully exploits quality factors on vision and language
modalities to facilitate the training of the FIQA model.
The key insight of our approach is to devise a Contrastive
Language-Image Pre-training (CLIP)-based joint learning
as well as confidence calibration strategies to overcome
quality-fitting bottlenecks. Experimental results demon-
strate the effectiveness of the proposed CLIB-FIQA and
present excellent performance in various test benchmarks.
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