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Abstract

As a problem often encountered in real-world scenarios,
multi-view multi-label learning has attracted considerable
research attention. However, due to oversights in data col-
lection and uncertainties in manual annotation, real-world
data often suffer from incompleteness. Regrettably, most
existing multi-view multi-label learning methods sidestep
missing views and labels. Furthermore, they often neglect
the potential of harnessing complementary information be-
tween views and labels, thus constraining their classifica-
tion capabilities. To address these challenges, we propose a
view-category interactive sharing transformer tailored for
incomplete multi-view multi-label learning. Within this net-
work, we incorporate a two-layer transformer module to
characterize the interplay between views and labels. Addi-
tionally, to address view incompleteness, a KNN-style miss-
ing view generation module is employed. Finally, we in-
troduce a view-category consistency guided embedding en-
hancement module to align different views and improve the
discriminating power of the embeddings. Collectively, these
modules synergistically integrate to classify the incomplete
multi-view multi-label data effectively. Extensive experi-
ments substantiate that our approach outperforms the ex-
isting state-of-the-art methods.

1. Introduction
The proliferation of data sources, coupled with advance-
ments in data collection techniques, enables the extraction
of diverse types of features, extending beyond a single per-
spective. This leads to an intriguing research question:
how to effectively integrate multi-view features and extract
meaningful features from them. Simultaneously, it is ob-
served that single-label data often falls short in encapsulat-
ing the complexities of real-world scenarios. For example,
an image of a flower may also warrant labels like ‘leaf’ or
‘garden’, illustrating that multi-labels provide a richer cate-
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gory feature space and more accurately preserve inter-label
relationships [8]. Given its practical relevance, the field of
multi-view multi-label learning emerges as a domain of sub-
stantial research interest.

In the field of multi-view learning, multi-view multi-
label classification (MVMLC) poses a significant challenge.
Considering the consistency across views and the complex-
ity of labels, it is essential for methods to simultaneously
align views and extract diverse features from an integrated
representation. In recent years, numerous researchers have
made strides towards this objective. One such effort is the
introduction of a multi-view label embedding model [30],
which employs the Hilbert-Schmidt Independence Criterion
[4] to establish a link between view feature and category
feature spaces. Concurrently, deep neural networks have
been employed in this realm. A noteworthy development
is the SIMM neural network [3], which utilizes adversar-
ial and label losses to identify shared features while imple-
menting regularization to capture view-specific details.

While MVMLC has attracted considerable research at-
tention, it often operates under the presumption that all
views and labels are complete. This assumption does not
consistently align with real-world scenarios. For instance, a
video might lack audio or text content. Multimedia data
shared on social media networks might lack comprehen-
sive annotations from users. Such instances culminate in
the pervasive challenge of missing multi-view features and
incomplete category information within real-world datasets.
Some methods aim to address this problem by either mask-
ing or restoring the missing views [9, 20, 22, 25]. Although
these approaches for handling incomplete multi-view or
multi-label learning have achieved notable results, they of-
ten fall short in simultaneously addressing both types of in-
completeness. To handle the double incomplete multi-view
multi-label learning problem (DIMVMLC), several deep
contrastive networks are proposed [10, 16]. Furthermore, an
incomplete multi-view multi-label learning method based
on transformers have been proposed [11], showing adapt-
ability to multi-view and multi-label datasets.

However, most existing methods for double incomplete
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multi-view multi-label classification overlook two critical
aspects. Firstly, while some methods recognize the im-
portance of complementary information across multiple
views, they often underestimate the complementarity be-
tween multi-view features and categories. Efficiently facili-
tating interaction between views and categories can dramat-
ically enhance the ability to counteract the simultaneous ab-
sence of both multi-view feature and category information.
Secondly, these methods frequently overlook the issue of
missing multi-view features and do not consider completing
missing multi-view features. This negligence makes them
susceptible to vulnerabilities in insufficient view features,
thereby limiting their classification performance.

To overcome the prevailing challenges in double incom-
plete multi-view multi-label learning, we propose the View-
category Interactive Sharing Transformer (VIST), as shown
in Fig. 1. VIST is an architecturally advanced framework
specifically designed to exploit the synergy between mul-
tiple views and categories and adeptly generate missing
views. The dual capability of this method not only am-
plifies the effectiveness of multi-view embeddings through
high-level semantics of categories but also significantly en-
hances the precision of multi-label classification by utiliz-
ing these enriched embeddings. This advancement inher-
ently fortifies the method’s resilience, particularly in sce-
narios characterized by the lack of specific views and labels,
thereby ensuring robust and reliable performance. VIST in-
tegrates three key components: view-category interactive
sharing transformer, missing view generation, and view-
category consistency guided embedding enhancement. The
view-category interactive sharing transformer, a compact
two-layer network with four transformer blocks, fosters an
interaction between multi-view and category information,
uncovering their complementary potential. The missing
view generation, adopting a KNN-style approach, adeptly
completes missing views in line with each sample’s distri-
bution. The view-category consistency guided embedding
enhancement module utilizes contrastive learning strat-
egy to sharpen the discriminative strength of embeddings
and boost classification accuracy. Extensive experiments
demonstrate the excellent performance of VIST. In sum-
mary, this paper makes the following contributions:

• We introduce a novel view-category interactive sharing
transformer for incomplete multi-view multi-label learn-
ing. Our method can effectively exploit the complemen-
tary information between views and categories through
the interaction between multi-view feature and category
information, thereby effectively counteracting the chal-
lenges posed by incomplete views and labels.

• We propose a missing view generation method specifi-
cally designed for the incomplete multi-view multi-label
learning task. This method combines the KNN strategy
with a multivariate Gaussian distribution, ensuring a sta-

tistically sound imputation of missing views that are co-
hesively aligned with the corresponding samples.

• To bolster the discriminating power of the multi-view em-
beddings, we develop a view-category consistency guided
embedding enhancement module. It adopts contrastive
learning to align embeddings across different views and
leverages category information to guide embedding learn-
ing process, significantly boosting the effectiveness of the
resulting embeddings and the performance of multi-label
classification.

2. Related Work
Many methods have been proposed for the MVMLC task.
lrMMC [12] ensures the common subspace remains low
rank, making it compatible with matrix completion, while
also learning combination weights to tap into the distinct
strengths of each view. Matrix factorization is utilized to
draw out complementary data across different views [27].
Despite their strengths, these models struggles with han-
dling datasets that have missing views or labels. To solve
this, MVL-IV [23] delves into incomplete multi-view learn-
ing by leveraging the relationships between views. The
iMSF model is another incomplete multi-view single-label
learning approach. It ingeniously splits the incomplete
multi-view classification responsibilities into several com-
plete subtasks [26]. However, both MVL-IV and iMSF
have a common shortcoming: they only address view in-
completeness. Conversely, MvEL targets the extraction of
context and neighborhood consistency but is tailored only
for the incomplete multi-label scenario [29].

On the other hand, for double incomplete multi-view
multi-label learning task, iMvWL [14] and NAIML [9],
have ventured into addressing the incompleteness in both
views and labels. iMvWL aligns multi-view features and
multi-label data into a shared subspace, enriched by a cor-
relation matrix that bolsters the projection from label space
to the embedding subspace. NAIML addresses this dual
incompleteness by leaning on the low-rank assumption of
the sub-label matrix, subtly harnessing sub-class correla-
tions. In recent years, deep learning models have been em-
ployed to address this issue. DDINet [21], DICNet [10] and
LMVCAT [11] are deep learning models for DIMVMLC.
DDINet is the first deep learning model which contains
a view-specific decoder network, successfully preserving
the key information of raw views. DICNet is the first
deep learning model for DIMVMLC which employs con-
trastive learning at the instance-level, guiding model to ex-
tract deep cross-view features. LMVCAT is a transformer-
based double incomplete multi-view multi-label learning
framework, consisting of two transformers specifically tai-
lored for views and categories, and constructs a graph on
incomplete labels to guide the encoder in extracting view-
specific features.
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3. Methodology

3.1. Problem Definition

Given n multi-view data points from V views, they can
be represented as a set of matrices {Xv}Vv=1, with Xv ∈
Rn×dv . Here, dv denotes the dimension of the v-th view.
The label matrix for all samples is denoted by Y ∈
{0, 1}n×L, where L is the number of categories. If Yi,j =
1, it indicates that the i-th sample belongs to category j;
if Yi,j = 0, it indicates non-membership in this category.
To denote multi-view data with missing features, we intro-
duce the missing-view indicator matrix W ∈ {0, 1}n×V .
Wi,j = 1 means that the j-th view of the i-th sample is
available, whereas Wi,j = 0 indicates unavailable. Sim-
ilarly, we define the missing-label indicator matrix U ∈
{0, 1}n×L, where Ui,j = 1 indicates that the j-th category
of the i-th sample is available, and Ui,j = 0 signifies the
opposite. During the data pre-processing phase, all miss-
ing information for view Xv and label Y is assigned the
value 0. The objective of our double incomplete multi-view
multi-label learning task is to train a model capable of ac-
curately predicting multiple categories for each sample. In
subsequent sections, the detailed mechanisms of the pro-
posed VIST are presented.

3.2. View-Category Interactive Sharing Trans-
former

Different views harbor complementary information, neces-
sitating their interaction for effective utilization. Further-
more, category information embodies the data’s high-level
semantics, serving to augment the discriminative capabil-
ity of multi-view representations. Inversely, multi-view fea-
tures can remedy inaccuracies in label information compre-
hension due to incomplete labels. To this end, we introduce
a view-category interactive sharing transformer. This novel
transformer is designed to enhance information exchange
between views and categories, consequently boosting the
discriminative strength of multi-view representations and
refining the precision of multi-label classification.

The view-category interactive sharing transformer com-
prises two key layers. The first layer focuses on extract-
ing shared features that captures correlations among multi-
ple views and categories. An essential preliminary step in-
volves embedding the multi-view data Xv ∈ Rn×dv . This
embedding process ensures the homogenization of feature
dimensions across views. For a given sample xv ∈ Rdv

from Xv , the embedding vector ev ∈ Rde can be denoted
as ev = Embedding(xv), where de denotes the dimen-
sion of embedding space, and Embedding(·) is a fully con-
nected neural network. Then we stack the embedding vec-
tors to obtain an original multi-view embedding sequence
E = [e1, e2, . . . , eV ] ∈ RV×de , which is further used as
input vectors for the transformer. Noted that for the incom-

plete multi-view data, we adopt missing view generation
method (as detailed in Sec. 3.3) to produce embeddings of
missing views, ensuring that E is complete across all views.

The structure of our transformer is the encoder module
of the classical transformer [18]. A transformer block is
denoted by Transformer(Φ), and the input of the trans-
former is Φ ∈ Rt×dt , where t and dt denote the number of
tokens and the dimension of tokens. The first layer consists
of two transformer blocks, denoted as Transformersv and
Transformersc. By discerning correlations among orig-
inal views, Transformersv serves to complement infor-
mation across original views and get multi-view embedding
Ẽ, which is the enhanced representation of original views.
It can be illustrated as follows:

Ẽ = Transformersv(E) (1)

where Ẽ = [ẽ1, ẽ2, . . . , ẽV ] ∈ RV×de . Here, an adaptive
fusion layer is introduced to fuse the information from mul-
tiple views into a shared view feature sv . The fusion process
is formulated as follows:

sv =

V∑
v=1

eθ
ϵ
v ẽv∑
j e

θϵ
j

(2)

where ẽv ∈ Rde is the v-th row of Ẽ, θv denotes the learn-
able weight and ϵ is a adjustment factor. By interacting
with the shared view feature sv and discerning correlations
among original categories, Transformersc serves to com-
plement information across original categories and get cat-
egory vectors C̃, which can be illustrated as follows:

[̃sv, C̃] = Transformersc([sv,C]) (3)

where [·, ·] denotes the concatenation operation and C ∈
RL×de denotes original category vectors which are ran-
domly initialized. Subsequently, the output feature of
Transformersc, s̃v , is propagated into the second layer.

The second layer is designed to extract advanced shared
features, which is achieved by promoting the interaction
and fusion between view and category information based on
the features extracted from the first layer, thereby obtain-
ing a more discriminative multi-view data representation.
This layer incorporates two transformer blocks, denoted as
Transformerav and Transformerac. Transformerav
is employed to complement information across views and
extract advanced multi-view embedding Ē, which is the
enhanced representation of views, by interacting with the
shared category feature sc and discerning view correlations,
as represented below:

sc = Projcv (̃sv) (4)

[̄sc, Ē] = Transformerav([sc, Ẽ]) (5)
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Figure 1. An overview of our method VIST. It comprises three modules, namely View-Category Interactive Sharing Transformer Module,
Missing View Generation Module, and View-Category Consistency Guided Embedding Enhancement Module. Different colors represent
different samples, while different shapes signify different features.
where Projcv(·) is a linear layer as a projection function
designed to map vectors from the category feature space to
the view feature space, Ē = [ē1, ē2, . . . , ēV ] ∈ RV×de .
Correspondingly, Transformerac is employed to comple-
ment information across categories and extract advanced
category vectors C̄ by leveraging the advanced shared fea-
ture pv and discerning category correlations, as illustrated
below:

pv = Projvc(̄sc) (6)

[p̄v, C̄] = Transformerac([pv, C̃]) (7)

where Projvc(·) is a linear layer as a projection function
to map vectors from the view feature space to the category
feature space. Through the propagation of vectors sv , sc,
and pv among the transformer blocks, we facilitate the shar-
ing of information between the view and category feature
spaces, thereby extracting more refined and effective fea-
tures of views and categories.

3.3. Missing View Generation

Considering the absence of views in the dataset, an intuitive
consideration is that the proper completion of these miss-
ing views can enhance the model’s performance. Through
the contrastive learning process mentioned in Sec. 3.4, the
distance between views of a sample tends to be relatively
proximate. Thus, generating missing views utilizing the ex-
isting ones is a plausible approach. We adopt a method
analogous to k-nearest neighbors, leveraging original cat-
egory vectors C = [c1, c2, . . . , cL] to assist in generating
the missing views. Specifically, for a certain sample i, let
E = {v|Wi,v = 1} denote the index of existing views, and
M = {v|Wi,v = 0} denote the index of missing views. To

complete the missing features of sample i with its original
multi-view embedding E, we first find the k nearest neigh-
bors in the projected category feature space. The set of the
neighbors D is constructed as follows:

D = {d|TopK(
∑
j∈E

∥ej − cd∥2, d ∈ {1, 2, 3, . . . , L})}

(8)
where TopK(·) is a function designed to identify the in-
dices of the top k categories, based on the smallest distance
between embedding vectors and category vectors. Then,
we employ a statistical method to describe the distribution
of the missing views. We hypothesize that these missing
views {em}m∈M adhere to a multivariate Gaussian distri-
bution N (µ,Σ), with a mean vector and covariance matrix
denoted as:

µ =

∑
d∈D cd

|D|
(9)

Σ =
1

|D| − 1

∑
d∈D

(cd − µ)(cd − µ)T (10)

For the missing views, we sample from this distribution
|M| times and substitute the missing views with the sam-
pled results. Consequently, we can obtain the complete
embeddings for the incomplete multi-view data. By recon-
structing the absent multi-view data, our method further en-
hances its performance in category predictions.

3.4. View-Category Consistency Guided Embed-
ding Enhancement

Through the aforementioned view-category interactive
sharing transformer, we extract three multi-view embed-
dings E, Ẽ and Ē from different layers. In order to obtain
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better classification performance, enhancing the discrimi-
nating power and effectiveness of these embeddings is of
great importance. Specifically, predicated on the view con-
sistency assumption [10, 24], the embedding E of a sam-
ple on different views should be aligned. Moreover, to im-
prove the discriminating power of Ẽ and Ē, the consistency
between category correlations and feature correlations of
multi-view data can be leveraged. In light of these factors,
we introduce view-category consistency guided embedding
enhancement.

To learn more effective embedding E, we use contrastive
learning to align the embeddings of the same sample across
different views. According to [13, 17], the loss function of
contrastive learning can be formulated as follows:

− log
esim(x,x+)

esim(x,x+) +
∑

x−∈F(x) e
sim(x,x−)

≈ −sim(x, x+) + log
∑

x−∈F(x)

esim(x,x−)
(11)

where x, x+, x− denotes the anchor sample, its positive
sample and negative sample. F(x) denotes the set of neg-
ative pairs. sim(·, ·) calculates the similarity between two
samples.

Evidently, our objective is to maximize the similarity
sim(x, x+) while simultaneously minimizing the similarity∑

x−∈F(x) e
sim(x,x−). We denote ei,v as the embedding of

the v-th view for the i-th sample, then F(x) can be rewrited
as F(i, v) = {j, w|

∑L
yi ◦ ui ◦ yj ◦ uj = 0,Uj,w = 1},

where ◦ denotes Hadamard product, ui denotes the miss-
ing vector of the i-th sample from U . As for maximizing
esim(x,x+), we use the following loss function:

Lpos =

V∑
v1=1

V∑
v2=1,v2 ̸=v1

1

de
∥n(ei,v1)− n(ei,v2)∥22 (12)

where n(·) denotes L2 normalization function. To minimize∑
x−∈F(x) e

sim(x,x−), the following loss function can be
adopted:

Lneg =

V∑
v1=1

∑
j,v2∈F(i,v1)

−1

de
∥n(ei,v1)− n(ej,v2

)∥22 (13)

To further improve the effectiveness of Ẽ and Ē, we uti-
lize the category information to guide the learning process
of these embeddings. We enhance the consistency of data
correlations in the view feature space and the category fea-
ture space as detailed below:

G1
v(i, j) = (n(ẽi,v)(n(ẽj,v))

T + 1)/2 (14)

G2
v(i, j) = (n(ēi,v)(n(ēj,v))

T + 1)/2 (15)

H = ((Y ◦U)(Y ◦U)T )./(UUT ) (16)

where G1
v , G2

v and H are the correlation matrices of Ẽ,
Ē and labels respectively. ei,v and ēi,v represent the fea-
ture of the v-th view of the i-th sample from Ẽ and Ē re-
spectively. Through the cross-entropy loss function, we can
align the data correlations across view feature space and cat-
egory feature space so that more discriminative embedding
can be obtained:

Laux =
−1

2nV

V∑
v=1

n∑
i=1

n∑
j ̸=i

(Hi,j(logG
1
v(i, j) + logG2

v(i, j))

+(Ui,j −Hi,j)(log(1−G1
v(i, j)) + log(1−G2

v(i, j))))
(17)

Considering the above factors, the loss function for view-
category consistency guided embedding enhancement can
be summarized as:

Lc = Lpos + Lneg + αLaux (18)

where α is a weight parameter. Through optimizing the
above loss function, the learned data embeddings become
more discriminative, laying a solid foundation for subse-
quent multi-label classification.

3.5. Overall Loss Function

To achieve multi-label classification results, we partition the
output [p̄v, C̄] of Transformerac into p̄v and C̄. Specif-
ically, for sample i, p̄i

v passes through a linear layer to
yield pi

f ∈ [0, 1]L, representing the final complementary
information between views and categories. C̄i is processed
through a set of category-aware linear layers, resulting in
zi ∈ [0, 1]L, which signifies category-aware predictions.
With the assistance of pi

f , we get the final prediction ŷi:

ŷi = classifier(pi
f + zi) (19)

where classifier(·) is a linear classifier. We utilize the
masked cross-entropy function to compute the multi-label
classification loss:

Lm =

∑n
i=1

∑L
l=1(Yi,l log ŷ

i
l + (1−Yi,l) log(1− ŷi

l))Ui,l

−
∑

i,l Ui,l

(20)
It is important to note that class imbalance is an inher-
ent characteristic of multi-label data, impacting the gen-
eralization performance of multi-label prediction [15, 28].
Typically, for certain class labels, the instances of positive
label assignments in training data are significantly fewer
than those of negative assignments. To address this class-
imbalance issue, we introduce a masked asymmetric loss
function:

Li
l = (max(ŷi

l −0.5, 0))2 log(1−max(ŷi
l −0.5, 0)) (21)
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La =

∑n
i=1

∑L
l=1(Yi,l log ŷ

i
l + (1−Yi,l)L

i
l)Ui,l

−
∑

i,l Ui,l
(22)

Ultimately, we derive the overall loss function of the model
as follows:

Lo = Lm + βLa + γLc (23)

where β, γ denotes different weight parameters. By opti-
mizing Lo, our method proficiently learns the embeddings
for incomplete multi-view data and consequently produces
accurate multi-label classification results.

4. Experiments
4.1. Experimental Setting

4.1.1 Datasets

We follow [9, 11, 14] and evaluate the performance of the
proposed VIST on five datasets. These datasets encompass:
• Corel 5k [1]: The Corel5k dataset is a standard dataset

frequently utilized in image annotation and retrieval re-
search, which has 5000 images with 260 types of tags.

• Pascal07 [2]: Pascal07, also known as PASCAL VOC
2007, is a renowned dataset for visual object classes, in-
strumental in object recognition and classification. It con-
sists of 9963 images and 20 types of tags.

• Espgame [19]: The Espgame dataset is derived from an
online game where participants generate labels for im-
ages, which contains 20770 samples and 268 types of
tags.

• IAPRTC12 [5]: IAPRTC12 is an international image an-
notation dataset, comprising approximately 20,000 im-
ages and 290 categories. These images cover a wide range
of subjects and scenes, each accompanied by detailed de-
scriptive text.

• Mirflickr [7]: The Mirflickr dataset consists of 25,000
images and 38 types of tags sourced from Flickr. Selected
from the public domain, these images include a variety of
themes and scenes.

We adopt the multi-view feature extraction method outlined
in [6]. The images in these datasets undergo a comprehen-
sive preprocessing procedure that transforms them into six
distinct views. These views are GIST, HSV, HUE, LAB,
RGB, and SIFT. Each of these views offers a unique per-
spective on the image data, capturing different aspects of
visual information.

4.1.2 Implementation Details

For datasets, in line with [14], we process the five datasets
to emulate an incomplete scenario as described below: For
every view, we randomly exclude 50% of the samples, en-
suring that each sample retains at least one view. Within

each category, we arbitrarily designate 50% of both positive
and negative tags as missing labels. For parameter settings,
we choose de = 512, α = 0.1, β = 0.1, γ = 0.1 and
k = 20 for all the experiments. The model are trained for
500 epochs with a batch-size of 128 via SGD optimizer on
an NVIDIA RTX A6000 GPU. To ensure the credibility of
the results, we repeat the experiments 10 times and record
the mean and variance of the outcomes.

4.1.3 Compared Methods

We choose ten representative methods for comparison. Out
of these, eight methods - lrMMC, MVL-IV, iMSF, iMvWL,
NAIML, DDINet, DICNet and LMVCAT - are detailed in
Sec. 2. Additionally, we incorporate GLOCAL [31], to
broaden the assessment spectrum. Because iMvWL and
NAIML cater to datasets with missing views and labels, we
have to modify other methods for consistency. Drawing in-
spiration from [14] and [9], we input average values from
accessible views into lrMMC for the non-operational ones.
For MVL-IV and iMSF, absent tags are treated as negative.
GLOCAL are executed individually for each view, and we
highlight their optimal outcomes. We adhere to the recom-
mended settings for these comparative techniques, as men-
tioned in their respective publications or code repositories,
to maintain an impartial evaluation.

4.1.4 Evaluation Metrics
Similar to [11], we employ Average Precision (AP), Rank-
ing Loss (RL) and Area Under Curve (AUC). For a conve-
nient comparison, we adopt 1-RL for evaluation. A larger
value indicates superior model performance.

4.2. Experimental Results

In Tab. 1, we show the experimental results of all the meth-
ods on five datasets with 70% training samples, 50% miss-
ing views and missing labels. Based on the results from
Tab. 1, our method exhibits a distinct advantage across most
metrics. For instance, on the AP metric for dataset Corel5k,
our method surpasses the second-best method, LMVCAT,
by 3%. Besides, the performance of DDINet, DICNet and
LMVCAT surpasses that of the first six methods. This
can be attributed to their applicability specifically to the
DIMVMLC issue. Additionally, they are both deep learning
models, their superior outcomes underscore the vast poten-
tial deep learning holds for addressing this particular chal-
lenge.

While our method primarily addresses the DIMVMLC
issue, we also evaluate the model’s performance in the full-
view and full-label context. The results are presented in
Tab. 2. It can be observed that the model still exhibits
superior performance in this scenario, suggesting that our
method can be effectively applied in MVMLC.
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Table 1. Experimental results of different methods on the five datasets with 70% training samples, 50% missing instances and missing
labels. The best results are marked in bold. For simplicity, percent sign is omitted in the following section.

Dataset Metric lrMMC MVL-IV iMSF GLOCAL iMvWL NAIML DDINet DICNet LMVCAT VIST

Corel5k
AP 24.0±0.2 24.0±0.1 18.9±0.2 28.5±0.4 28.3±0.7 30.9±0.4 36.4±0.1 38.1±0.4 38.4±0.4 41.5±0.2

1-RL 76.2±0.2 75.6±0.1 70.9±0.5 80.4±0.3 86.5±0.3 87.8±0.2 87.1±0.0 88.2±0.4 88.0±0.2 90.2±0.2
AUC 76.3±0.2 76.2±0.1 66.3±0.5 84.3±0.3 86.8±0.3 88.1±0.2 87.5±0.1 88.4±0.4 88.3±0.2 90.6±0.1

Pascal07
AP 42.5±0.3 43.3±0.2 32.5±0.0 49.6±0.4 44.1±1.7 48.8±0.3 53.6±0.2 50.5±1.2 51.9±0.5 53.9±0.3

1-RL 69.8±0.3 70.2±0.1 56.8±0.0 76.7±0.4 73.7±0.9 78.3±0.1 80.7±0.1 78.3±0.8 81.1±0.4 85.6±0.1
AUC 72.8±0.2 73.0±0.1 68.6±0.5 62.0±0.1 78.6±0.3 76.7±1.2 82.7±0.0 87.6±0.2 83.4±0.4 88.3±0.2

Espgame
AP 18.8±0.0 18.9±0.0 10.8±0.0 22.1±0.2 24.2±0.3 24.6±0.2 28.3±0.1 29.7±0.2 29.4±0.4 30.7±0.3

1-RL 77.7±0.1 77.8±0.0 72.2±0.2 78.0±0.4 80.7±0.1 81.8±0.2 81.5±0.0 83.2±0.1 82.8±0.2 84.4±0.0
AUC 78.3±0.1 78.4±0.1 67.4±0.3 78.4±0.4 81.3±0.2 82.4±0.2 82.0±0.1 83.2±0.1 82.8±0.2 85.0±0.1

IAPRTC12
AP 19.7±0.0 19.8±0.0 10.1±0.0 25.6±0.2 23.5±0.4 26.1±0.1 30.3±0.2 32.3±0.1 31.7±0.3 33.9±0.2

1-RL 80.1±0.0 79.9±0.1 63.1±0.0 82.5±0.2 83.3±0.3 84.8±0.1 85.3±0.1 87.3±0.1 87.0±0.1 88.4±0.2
AUC 80.5±0.0 80.4±0.1 66.5±0.1 83.0±0.1 83.6±0.2 85.0±0.1 85.4±0.0 87.4±0.1 87.2±0.1 88.6±0.1

Mirflickr
AP 44.1±0.1 44.9±0.1 32.3±0.0 53.7±0.2 49.5±1.2 55.1±0.2 59.8±0.2 58.9±0.5 59.4±0.5 60.4±0.3

1-RL 80.5±0.0 80.4±0.1 66.5±0.1 83.2±0.1 83.6±0.2 85.0±0.1 86.3±0.0 86.3±0.4 86.5±0.3 87.9±0.1
AUC 80.6±0.1 80.7±0.0 76.1±0.1 82.8±0.1 79.4±1.5 83.7±0.1 85.2±0.1 84.9±0.4 85.3±0.3 86.9±0.1

Table 2. Experimental results of different methods on the five
datasets with 70% training samples, full views and labels. The
best results are marked in bold.

Dataset Metric NAIML DICNet LMVCAT VIST

Corel5k
AP 32.7 50.9 52.1 55.4

1-RL 89.0 92.9 92.8 93.5
AUC 89.3 93.1 93.0 94.2

Pascal07
AP 49.6 60.8 62.9 65.5

1-RL 79.5 85.9 87.8 89.4
AUC 82.2 87.6 89.2 91.2

Espgame
AP 25.1 39.1 38.5 40.1

1-RL 82.5 87.1 87.6 87.7
AUC 83.0 87.4 88.0 89.6

IAPRTC12
AP 26.7 41.8 43.6 45.7

1-RL 82.5 91.2 91.8 92.7
AUC 83.0 91.1 91.8 92.0

Mirflickr
AP 55.5 65.9 68.4 70.4

1-RL 84.7 89.5 90.5 91.3
AUC 83.9 87.6 88.9 89.3

Fig. 2 illustrates the performance of the model under var-
ious missing ratios. It is interesting that while both incom-
plete views and incomplete labels detrimentally affect the
model’s performance, the latter has a more pronounced im-
pact. Moreover, despite our efforts in view imputation, the
model’s accuracy noticeably diminishes as the view missing
ratio escalates. This is primarily due to our reliance on ex-
isting views for imputing the missing views. As the number
of missing views increases, the imputation algorithm tends
to degrade towards random generation.

Fig. 3 depicts the performance of the model under vari-
ous training sample ratios. While the ratio’s impact on the
model is not markedly significant, a general trend is ob-
served: as the ratio increases, there is a corresponding im-
provement in the model’s performance. Thus, selecting a
70% training sample ratio for our experiments is a proper
choice.
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Figure 2. The results on the Corel5k dataset are presented with
(a) different missing-view ratios accompanied by a 50% missing-
label ratio and (b) a consistent 50% missing-view ratio paired with
different missing-label ratios.
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Figure 3. The results of different training sample ratios on (a)
Corel5k dataset and (b) Espgame dataset with 50% missing-view
ratio and 50% missing-label ratio.

4.3. Parameter Analysis

We evaluate four hyperparameters in our model, i.e, α, β, γ
and k. To assess the influence of these hyperparameters on
model performance, we adjust their values within their re-
spective ranges and test their combinations based on the AP
metric on different dataset with 50% missing views, 50%
missing labels and 70% training sample ratio. Note that
k is inherently related to the number of labels, thus, the
actual value of k̂ utilized in computation should be deter-
mined by k̂j = ki

Li
Lj , where i and j represents the i-th
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(a) Corel5k (b) Pascal07

(c) Espgame (d) IAPRTC12

Figure 4. The results of different value combinations of hyperpa-
rameter β and γ on different datasets. α and k are respectively set
to default values of 0.1 and 20.

and j-th dataset. Based on Fig. 4, β and γ exhibit compar-
atively favorable performances within the ranges of [5e-2,
5e-1] and [5e-2, 1e0] respectively on dataset Corel5k. This
indicates that the values of β and γ should neither be exces-
sively large nor too small, and the optimal value of β ap-
proximated around 0.1, the optimal value of γ should also
be selected in the vicinity of 0.1.

As for α and k, we assess the impact of varying α and k
on the model under fixed conditions of β = 0.1 and γ = 0.1
by measuring metrics AP and AUC. As illustrated in Fig. 5,
on datasets Corel5k and Espgame, both the AP and AUC
metrics remain within a narrow range, indicating that the
model is not highly sensitive to α and k. This might be
because they operate on the deep-layer mechanism, varia-
tions within certain ranges do not significantly impact the
model’s performance.

4.4. Ablation Study

In the ablation study, we evaluate the performance of each
module of VIST on three representative datasets, the results
are shown in Tab. 3. We can observe that view-category
interactive sharing transformer module plays a pivotal role
in enhancing the model’s performance. Furthermore, the
view-category consistency guided embedding enhancement
module is able to improve the discriminating power of em-
beddings and boost the classification performance. The
missing view generation module also contributes to the
model’s overall efficacy. Additionally, upon the removal of
La, there is a noticeable decline in the model’s metrics, par-
ticularly in the AUC. This suggests that the masked asym-
metric loss indeed addresses issues associated with imbal-
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Figure 5. The results of different value of hyperparameter α and k
on different datasets. β and γ are respectively set to default values
of 0.1 and 0.1.

anced data. The ablation study demonstrates the effective-
ness and reasonableness of each proposed module.

Table 3. Results of ablation experiments on the three represen-
tative datasets. Vanilla Transformer denotes the encoders of four
vanilla transformers, M1 represents base view-category interac-
tive sharing transformer module, M2 signifies the view-category
consistency guided embedding enhancement module and M3 de-
notes missing view generation module.

Method
Corel5k Espgame IAPRTC12
AP AUC AP AUC AP AUC

Vanilla Transformer 34.9 87.8 27.6 83.4 28.1 87.2
M1 39.5 89.6 29.4 84.1 31.6 87.8
M1 +M2 40.4 90.1 29.6 84.7 32.7 88.3
M1 +M2 +M3 41.5 90.2 30.7 85.0 33.9 88.6
w/o La 40.6 89.8 29.6 84.5 32.4 88.2

5. Conclusion
In this paper, we propose a novel view-category interactive
sharing transformer VIST for addressing the DIMVMLC
challenge. Our method leverages a two-layer view-category
transformer architecture to extract deep representations of
both views and labels. Additionally, we employ a KNN-
style approach with the multivariate Gaussian distribution to
complete the missing views. To further enhance the efficacy
of our model, a view-category consistency guided embed-
ding enhancement module is integrated, significantly boost-
ing the embedding quality and classification accuracy. Our
comprehensive experimental analysis convincingly demon-
strates that our method outperforms existing state-of-the-art
approaches.
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