








the contrary. For the finer resolution, the point is mapped by
the hash function,

h(xl
3D) =

(
⊕d

i=1xiπi

)
mod T, (3)

where ⊕ denotes the bit-wise XOR operation and {πi} are
unique large prime numbers following [28].

The output color value at coordinate x for frame t can be
computed as

c = C(D(γ3D(x, t))). (4)

This output can be supervised using the ground truth color
present in the input frame.

3.2. Model Design

The proposed representation can effectively model and
reconstruct both the canonical content and the temporal
deformation for an arbitrary video. However, it faces
challenges in meeting the requirements for robust video
processing. In particular, while 3D hash deformation
possesses powerful fitting capability, it compromises the
smoothness of temporal deformation. This trade-off makes
it notably difficult to maintain the inherent semantics of
the canonical image, creating a significant barrier to the
adaptation of established image algorithms for video use.
To achieve precise video reconstruction while preserving
the inherent semantics of the canonical image, we pro-
pose the use of annealed multi-resolution hash encoding.
To further enhance the smoothness of deformation, we
introduce flow-based consistency. In challenging cases,
such as those involving large occlusions or complex multi-
object scenarios, we suggest utilizing additional semantic
information. This can be achieved by using semantic masks
in conjunction with the grouped deformation fields.
Annealed 3D Hash Encoding for Deformation. For the
finer resolution, the hash encoding enhance the complex
deformation fitting performance but introducing the discon-
tinuity and distortion in canonical field (Seen in Fig. 7).
Inspired by the annealed strategy utilized in dynamic
NeRFs [31], we employ the annealed hash encoding tech-
nique for progressive frequency filter for deformation.
More specifically, we use a progressive controlling weights
for those features interpolated in different resolution. The
weight for the jth layer in training step k is computed as

wj(k) =
1− cos(π · clamp(m(k −Nbeg)/Nstep − j, 0, 1))

2
,

(5)
where Nbeg is a predefined step for beginning annealing
and m represents a hyper parameters for controlling the
annealing speed, and Nstep is the number for annealing step.
Flow-guided Consistency Loss. Corresponding points
identified by flows with high confidence should be the
same points in the canonical field. We compute the flow-
guided consistency loss according to this observation. For
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Figure 3. Qualitative comparison between layered neural at-
las [15] and our CoDeF regarding video reconstruction, which
reflects the capacity of the video representation and also plays
a fundamental role in faithful video processing. Details are best
appreciated when zoomed in.

two consecutive frames Ii and Ii+1, we employ RAFT[52]
to detect the forward flows Fi→i+1 and backward flows
Fi+1→i. The confident region of a frame Ii can be defined
as

Mflow = |Warp(Warp(Ii,Fi→i+1),Fi+1→i)−Ii| < ϵ, (6)

where ϵ represents a hyperparameter for the error threshold.
This loss can be formulated as

Lflow =
∑

∥D(γ3D(x, t))−D(γ3D(x+ Fx
t→t+1, t+ 1))−Fx

t→t+1∥ ∗Mx
flow,
(7)

where Fx
t→t+1 and Mx

flow are the optical flow and the
flow confidence at x . The flow loss efficiently regularize
the smoothness of the deformation field especially for the
smooth region.
Grouped Content Deformation Fields. Although the
representation can learn to reconstruct a video using a
single content deformation field, complex motions arising
from overlapped multi-objects may lead to conflicts within
one canonical. Consequently, the boundary region might
suffer from inaccurate reconstruction. For challenging
instances featuring large occlusions, we propose an option
to introduce the layers corresponding to multiple content
deformation fields. These layers would be defined based
on semantic segmentation, thereby improving the accuracy
and robustness of video reconstruction in these demanding
scenarios. We leverage the Segment-Anything-track (SAM-
track) [5] to attain the segmentation of each video frame
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Figure 6. Limitations on more complicated video seqeunces.

T
ra

n
sf

er
re

d
 

C
a
n

o
n

ic
a
l 

Im
a
g
e

C
a
n

o
n

ic
a
l 

Im
a
g
e

Figure 7. Ablation study on the effectiveness of annealed
hash. The unnaturalness in the canonical image will harm the
performance of downstream tasks.

A-Video [63]. As Text2LIVE [1] is optimized using CLIP
loss, it is inevitable that the CLIP-based measurement is
higher. For the user study, we present participants with both
the original and translated videos alongside the text prompt.
Participants are asked to rate the translation results based on
temporal consistency and textual alignment on a scale from
1 to 5, with 5 being the best possible score. From the 1120
responses gathered from 56 users, our method outperforms
all other baselines.
Video Object Tracking. Using the segmentation algorithms

on the canonical image, we are able to facilitate the
propagation of masks throughout all video frames. As
illustrated in Fig. 5, our pipeline proficiently yields masks
that maintain consistency across all frames.

4.3. Ablation Study

To validate the effect of the proposed modules, we conduct
an ablation study. On substituting the 3D hash encoding
with positional encoding, there is a notable decrease in the
reconstruction PSNR of the video by 3.1 dB. In the absence
of the annealed hash, the canonical image loses its natural
appearance, as evidenced by the presence of multiple hands

in Fig. 7. Furthermore, without incorporating the flow
loss, smooth areas are noticeably affected by pronounced
flickering. We also investigate how varying the group
number K affects outcomes in Tab. 1, which shows that
larger K results in better reconstruction results.

4.4. Limitation

We address the limitations of our method with examples
from the OVIS [36] dataset. Fig. 6 clearly showcases the
method’s shortcomings in creating a coherent canonical
image of complex scenes. We show three challenging
examples: a significant scale change from distant to close-
up views (as with “Trucks”), the sudden emergence of new
objects within the scene (“Rabbits”), and the presence of
multiple, rapidly-moving small entities (“Elephants”). In
these tests, our approach can occasionally yield a blurred
canonical representation, omit finer details, or fail to main-
tain the semantic integrity of the objects’ shapes.

5. Conclusion and Discussion

In this paper, we investigate representing videos as content
deformation fields, focusing on achieving temporally
consistent video processing. Our approach demonstrates
promising results in terms of both fidelity and temporal
consistency. However, there remain several challenges to be
addressed in future work. One of the primary issues pertains
to the per-scene optimization required in our methodology.
We expect that improvements in feed-forward implicit field
methods could be used in this area. Another challenge
arises in scenarios involving extreme changes in viewing
points. To tackle this issue, the incorporation of 3D
prior knowledge may prove beneficial, as it can provide
additional information and constraints. Lastly, the handling
of large non-rigid deformations remains a concern. To
address this, one potential solution involves employing
multiple canonical images. Despite the challenges,
our work provide great potential for future improvement.
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