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Figure 1. Versatile applications of CoDeF including (a) text-guided video-to-video translation (left half: translated frames, right
half: input frames), (b) video object tracking, and (c) video keypoint tracking. It is noteworthy that, with the proposed type of video
representation, we manage to directly lift image algorithms for video processing without any tuning on videos.

Abstract

We present the content deformation field (CoDeF) as
a new type of video representation, which consists of a
canonical content field aggregating the static contents in
the entire video and a temporal deformation field recording
the transformations from the canonical image (i.e., rendered
from the canonical content field) to each individual frame
along the time axis. Given a target video, these two fields
are jointly optimized to reconstruct it through a carefully
tailored rendering pipeline. We advisedly introduce some
regularizations into the optimization process, urging the
canonical content field to inherit semantics (e.g., the object
shape) from the video. With such a design, CoDeF naturally
supports lifting image algorithms for video processing, in

the sense that one can apply an image algorithm to the
canonical image and effortlessly propagate the outcomes to
the entire video with the aid of the temporal deformation
field. We experimentally show that CoDeF is able to
lift image-to-image translation to video-to-video translation
and lift keypoint detection to keypoint tracking without any
training. More importantly, thanks to our lifting strategy
that deploys the algorithms on only one image, we achieve
superior cross-frame consistency in processed videos com-
pared to existing video-to-video translation approaches,
and even manage to track non-rigid objects like water and
smog. Code is made available at https://qiuyu96.
github.io/CoDeF/.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The field of image processing has witnessed remarkable
advancements, largely attributable to the power of gener-
ative models trained on extensive datasets, yielding excep-
tional quality and precision. However, the processing of
video content has not achieved comparable progress. One
challenge lies in maintaining high temporal consistency,
a task complicated by the inherent randomness of neural
networks. Another challenge arises from the nature of
video datasets themselves, which often include textures of
inferior quality compared to their image counterparts and
necessitate greater computational resources. Consequently,
the quality of video-based algorithms significantly lags
behind those focused on images. This contrast prompts a
question: is it feasible to represent video in the form of an
image to seamlessly apply established image algorithms to
video content with high temporal consistency?

In pursuit of this objective, researchers have suggested
the generation of video mosaics from dynamic videos [40,
47] in the era preceding deep learning, and the utilization of
a neural layered image atlas [15, 22, 65] subsequent to the
proposal of implicit neural representations. Nonetheless,
these methods exhibit two principal deficiencies. First, the
capacity of these representations, particularly in faithfully
reconstructing intricate details within a video, is restricted.
Often, the reconstructed video overlooks subtle motion
details, such as blinking eyes or slight smiles. The second
limitation pertains to the typically distorted nature of the
estimated atlas, which consequently suffers from impaired
semantic information. Existing image processing algo-
rithms, therefore, do not perform optimally as the estimated
atlas lacks sufficient naturalness.

We propose a novel approach to video representation that
utilizes a 2D hash-based image field coupled with a 3D
hash-based temporal deformation field. The incorporation
of multi-resolution hash encoding [28] for the represen-
tation of temporal deformation significantly enhances the
ability to reconstruct general videos. This formulation
facilitates tracking the deformation of complex entities such
as water and smog. However, the heightened capability
of the deformation field presents a challenge in estimating
a natural canonical image. An unnatural canonical image
can also estimate the corresponding deformation field with
a faithful reconstruction. To navigate this challenge, we
suggest employing annealed hash during training. Ini-
tially, a smooth deformation grid is utilized to identify a
coarse solution applicable to all rigid motions, with high-
frequency details added gradually. Through this coarse-to-
fine training, the representation achieves a balance between
the naturalness of the canonical and the faithfulness of
the reconstruction. We observe a noteworthy enhancement
in reconstruction quality compared to preceding methods.
This improvement is quantified as an approximately 2.3

increase in PSNR, along with an observable increase in
the naturalness of the canonical image. Our optimization
process requires a mere approximate 300 seconds to esti-
mate the canonical image with the deformation field while
the previous implicit layered representations[15] takes more
than 10 hours.

Building upon our proposed content deformation field,
we illustrate lifting image processing tasks such as prompt-
guided image translation, super-resolution, and segmenta-
tion, to the realm of videos. Our approach to prompt-
guided video-to-video translation employs ControlNet [67]
on the canonical image, propagating the translated content
via the learned deformation. The translation process is
conducted on a single canonical image and obviates the
need for time-intensive inference models (e.g., Diffusion
models) across all frames. Our translation outputs exhibit
marked improvements in temporal consistency and texture
quality over the state-of-the-art zero-shot video translations
with generative models [35, 63]. When contrasted with
Text2Live, which relies on a neural layered atlas, our model
is proficient in handling more complex motion, producing
more natural canonical images, and thereby achieving
superior translation results. Additionally, we extend the
application of image algorithms such as super-resolution,
semantic segmentation, and keypoints detection to the
canonical image, leading to their practical applications in
video contexts. This includes video super-resolution, video
object segmentation, video keypoints tracking, among oth-
ers. Our proposed representation consistently delivers
superior temporal consistency and high-fidelity synthesized
frames, demonstrating its potential as a novel tool in video
processing.

2. Related Work
Implicit Neural Representations. Implicit representations
in conjunction with coordinate-based Multilayer Percep-
trons (MLPs) have demonstrated its powerful capability
in accurately representing images [4, 49, 51], videos [15,
20, 49, 65], and 3D/4D representations [25, 26, 30–33,
56]. These techniques have been employed in a range of
applications, including novel view synthesis [26], image
super-resolution [4], and 3D/4D Reconstruction [56, 61].
Furthermore, for the purpose of speeding up the training,
a various of acceleration [28, 46] techniques have been
explored to replace the original Fourier positional encod-
ing with some discrete representation like multi-resolution
feature grid or hash table. Moreover, the adoption of an
implicit deformation field [19, 31, 32, 34] has displayed a
remarkable capability to overfit dynamic scenes. Inspired
by these works, our primary objective is to reconstruct
videos by utilizing a canonical image which inherit seman-
tics for video processing purposes.
Consistent Video Editing. Our research is closely aligned
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Figure 2. Illustration of the proposed video representation, CoDeF, which factorizes an arbitrary video into a 2D content canonical
field and a 3D temporal deformation field. Each field is implemented with a multi-resolution 2D or 3D hash table using an efficient MLP.
Such a new type of representation naturally supports lifting image algorithms for video processing, in the way of directly applying the
established algorithm on the canonical image (i.e., rendered from the canonical content field) and then propagating the results along the
time axis through the temporal deformation field.

with the domain of consistent video editing [14, 15, 18, 22],
which predominantly features two primary approaches:
propagation-based methods and layered representation-
based techniques. Propagation-based methods [12–14, 43,
53, 59] center on editing an initial frame and subsequently
disseminating those edits throughout the video sequence.
While this approach offers advantages in terms of com-
putational efficiency and simplicity, it may be prone to
inaccuracies and inconsistencies during the propagation of
edits, particularly in situations characterized by complex
motion or occlusion. Conversely, layered representation-
based techniques [15, 22, 23, 40, 47] entail decomposing a
video into distinct layers, thereby facilitating greater control
and flexibility during the editing process. Text2Live [1]
introduces the application of CLIP [37] models for video
editing by modifying an optimized atlas [15] using text
inputs, thereby yielding temporally consistent video editing
results. Our work bears similarities to Text2Live in the con-
text of employing an optimized representation for videos.
However, our methodology diverges in several aspects: we
optimize a more semantically-aware canonical represen-
tation incorporating a hash-based deformable design and
attain higher-fidelity video processing.
Video Processing via Generative Models. The advance-
ment of diffusion models has markedly enhanced the
synthesis quality of text-to-image generation [6, 10, 50],
surpassing the performance of prior methodologies [24,
41, 64, 66]. State-of-the-art diffusion models, such as
GLIDE [29], Dall-E 2 [38, 39], Stable Diffusion [42], and
Imagen [45], have been trained on millions of images,
resulting in exceptional generative capabilities. While
existing text-to-image (T2I) models enable free-text gen-
eration, incorporating additional conditioning factors [2,
3, 8, 27, 44, 54, 57, 67] such as edge, depth map, and

normal map is essential for achieving precise control. In an
effort to enhance controllability, researchers have proposed
several approaches. InstructPix2Pix [2], on the other hand,
fine-tunes T2I models using synthesized image condition
pairs. ControlNet [67] introduces additional control con-
ditions for Stable Diffusion through an auxiliary branch,
thereby generating images that faithfully adhere to input
condition maps. A recent research direction concentrates
on the processing of videos utilizing text-to-image (T2I)
models exclusively. Approaches like Tune-A-Video [63],
Text2Video-Zero [16], FateZero [35], Vid2Vid-Zero [58],
and Video-P2P [21] explore the latent space of DDIM [50]
and incorporate cross-frame attention maps to facilitate
consistent generation. Nevertheless, these methods may
experience compromised temporal consistency due to the
inherent randomness of generation, and the control condi-
tion may not be achieved with precision.

Text-to-video generation has emerged as a prominent
research area in recent years, with prevalent approaches
encompassing the training of diffusion models or autore-
gressive transformers on extensive datasets. Although text-
to-video architectures such as NUWA [62], CogVideo [11],
Phenaki [55], Make-A-Video [48], Imagen Video [9], and
Gen-1 [7] are capable of generating video frames that
semantically correspond to the input text, they may exhibit
limitations in terms of precise control over video conditions
or low resolution due to substantial computational demands.

3. Method

Problem Formulation. Given a video V comprised of
frames {I1, I2, ..., IN}, one can naively apply the image
processing algorithm X to each frame individually for
corresponding video tasks, yet may observe undesirable
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inconsistencies across frames. An alternative strategy
involves enhancing algorithm X with a temporal module,
which requires additional training on video data. However,
simply introducing a temporal module is hard to guaran-
tee theoretical consistency and may result in performance
degradation due to insufficient training data.

Motivated by these challenges, we propose representing
a video V using a flattened canonical image Ic and a
deformation field D. By applying the image algorithm X
on Ic, we can effectively propagate the effect to the whole
video with the learned deformation field. This novel video
representation serves as a crucial bridge between image
algorithms and video tasks, allowing directly lifting of state-
of-the-art image methodologies to video applications.

The proposed representations ought to exhibit the fol-
lowing essential characteristics:
• Fitting Capability for Faithful Video Reconstruction.

The representation should possess the ability to accu-
rately fit large rigid or non-rigid deformations in videos.

• Semantic Correctness of the Canonical Image. A dis-
torted or semantically incorrect canonical image can lead
to decreased image processing performance, especially
considering that most of these processes are trained on
natural image data.

• Smoothness of the Deformation Field. The ensurance
of the smoothness in the deformation field is an essential
feature that guarantees temporal consistency and correct
propagation.

3.1. Content Deformation Fields

Inspired by the dynamic NeRFs [31, 32], we propose to rep-
resent the video in two distinct components: the canonical
field and the deformation field. These two components are
realized through the employment of a 2D and a 3D hash
table, respectively. To enhance the capacity of these hash
tables, two minuscule MLPs are integrated. We present our
proposed representation for reconstructing and processing
videos, as illustrated in Fig. 2. Given a video V comprising
frames {I1, I2, ..., IN}, we train an implicit deformable
model tailored to fit these frames. The model is composed
of two coordinate-based MLPs: the deformation field D and
the canonical field C.

The canonical field C serves as a continuous represen-
tation encompassing all flattened textures present in the
video V . It is defined by a function F : x → c,
which maps a 2D position x : (x, y) to a color c :
(r, g, b). In order to speed up the training and enable the
network to capture the high-frequency details, we adopt
the multi-resolution hash encoding γ2D : R2 → R2+F×L

to map the coordinate x into a feature vector, where L
is the number of levels for multi-resolution and F is the
number of feature dimensions for per layer. The function
γ2D(x) = (x,F1(x), ...,FL(x)) facilitates the model’s

ability to capture high-frequency details, where Fi(x) is
the features linearly interpolated by x at ith resolution. The
deformation field D captures the observation-to-canonical
deformation for every frame within a video. For a specific
frame Ii, D establishes the correspondence between the
observed and canonical positions. Dynamic NeRFs [31, 32]
implement the deformation field in 3D space by using the
Fourier positional encoding and an extra learnable time
code. This implementation ensures the smoothness of
the deformation field. Nevertheless, this straightforward
implementation can not be seamlessly transferred into video
representation for two reasons (i.e. low training efficiency
and inadequate representative capability). Therefore, we
propose to represent the deformation field as a 3D hash
table with a tiny MLP following. Specifically, an arbitrary
position x in the tth frame is first encoded by a 3D hash
encoding function γ3D(x, t) to get high-dimension features.
Then a tiny MLP D : (γ3D(x, t)) → x′ maps the embedded
features its corresponding position x′ in canonical field. We
elaborate our 3D hash encoding based deformation field in
detail as follows.
3D Hash Encoding for Deformation Field. Specifically,
an arbitrary point in the video can be conceptualized as a
position x3D : (x, y, t) within an orthogonal 3D space.We
represent our video space using the 3D hash encoding tech-
nique, as depicted on the left side of Fig. 2. This technique
encapsulates the 3D space as a multi-resolution feature
grid. The term multi-resolution refers to a composition of
grids with varying degrees of resolution, and feature grid
denotes a grid populated with learnable features at each
vertex. In our framework, the multi-resolution feature grid
is organized into L distinct levels. The dimensionality of
the learnable features is represented as F . Furthermore,
the resolution of the lth layer, denoted as Nl, exhibits
a geometric progression between the coarsest and finest
resolutions, denoted collectively as [Nmin, Nmax], using

Nl = ⌊Nmin · bl⌋, b = exp
(
lnNmax − lnNmin

L− 1

)
. (1)

Considering the queried points x3D at lth layer, the input
coordinate is scaled by that level’s grid resolution. And the
queried features of x3D are tri-linear interpolated from its
8-neighboring corner points(seen in Fig. 2). For attaining
the corner points of x3D, rounding down and up are first
operated as

⌊xl
3D⌋ = ⌊x3D ·Nl⌋, ⌈xl

3D⌉ = ⌈x3D ·Nl⌉, (2)

and we map its each corner to an entry in the level’s
respective feature vector array, which has fixed size of
at most T . For the coarse level, the parameters of low
resolution grid are fewer than T , where the mapping is 1 : 1.
Thus, the features can be directly looked up by its index. On
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the contrary. For the finer resolution, the point is mapped by
the hash function,

h(xl
3D) =

(
⊕d

i=1xiπi

)
mod T, (3)

where ⊕ denotes the bit-wise XOR operation and {πi} are
unique large prime numbers following [28].

The output color value at coordinate x for frame t can be
computed as

c = C(D(γ3D(x, t))). (4)

This output can be supervised using the ground truth color
present in the input frame.

3.2. Model Design

The proposed representation can effectively model and
reconstruct both the canonical content and the temporal
deformation for an arbitrary video. However, it faces
challenges in meeting the requirements for robust video
processing. In particular, while 3D hash deformation
possesses powerful fitting capability, it compromises the
smoothness of temporal deformation. This trade-off makes
it notably difficult to maintain the inherent semantics of
the canonical image, creating a significant barrier to the
adaptation of established image algorithms for video use.
To achieve precise video reconstruction while preserving
the inherent semantics of the canonical image, we pro-
pose the use of annealed multi-resolution hash encoding.
To further enhance the smoothness of deformation, we
introduce flow-based consistency. In challenging cases,
such as those involving large occlusions or complex multi-
object scenarios, we suggest utilizing additional semantic
information. This can be achieved by using semantic masks
in conjunction with the grouped deformation fields.
Annealed 3D Hash Encoding for Deformation. For the
finer resolution, the hash encoding enhance the complex
deformation fitting performance but introducing the discon-
tinuity and distortion in canonical field (Seen in Fig. 7).
Inspired by the annealed strategy utilized in dynamic
NeRFs [31], we employ the annealed hash encoding tech-
nique for progressive frequency filter for deformation.
More specifically, we use a progressive controlling weights
for those features interpolated in different resolution. The
weight for the jth layer in training step k is computed as

wj(k) =
1− cos(π · clamp(m(k −Nbeg)/Nstep − j, 0, 1))

2
,

(5)
where Nbeg is a predefined step for beginning annealing
and m represents a hyper parameters for controlling the
annealing speed, and Nstep is the number for annealing step.
Flow-guided Consistency Loss. Corresponding points
identified by flows with high confidence should be the
same points in the canonical field. We compute the flow-
guided consistency loss according to this observation. For
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Figure 3. Qualitative comparison between layered neural at-
las [15] and our CoDeF regarding video reconstruction, which
reflects the capacity of the video representation and also plays
a fundamental role in faithful video processing. Details are best
appreciated when zoomed in.

two consecutive frames Ii and Ii+1, we employ RAFT[52]
to detect the forward flows Fi→i+1 and backward flows
Fi+1→i. The confident region of a frame Ii can be defined
as

Mflow = |Warp(Warp(Ii,Fi→i+1),Fi+1→i)−Ii| < ϵ, (6)

where ϵ represents a hyperparameter for the error threshold.
This loss can be formulated as

Lflow =
∑

∥D(γ3D(x, t))−D(γ3D(x+ Fx
t→t+1, t+ 1))−Fx

t→t+1∥ ∗Mx
flow,
(7)

where Fx
t→t+1 and Mx

flow are the optical flow and the
flow confidence at x . The flow loss efficiently regularize
the smoothness of the deformation field especially for the
smooth region.
Grouped Content Deformation Fields. Although the
representation can learn to reconstruct a video using a
single content deformation field, complex motions arising
from overlapped multi-objects may lead to conflicts within
one canonical. Consequently, the boundary region might
suffer from inaccurate reconstruction. For challenging
instances featuring large occlusions, we propose an option
to introduce the layers corresponding to multiple content
deformation fields. These layers would be defined based
on semantic segmentation, thereby improving the accuracy
and robustness of video reconstruction in these demanding
scenarios. We leverage the Segment-Anything-track (SAM-
track) [5] to attain the segmentation of each video frame
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Original VideoOriginal Video OursOurs Text2LiveText2Live Tune-A-VideoTune-A-Video FateZeroFateZero

Text Prompt: Cyberpunk robotText Prompt: Cyberpunk robot

Text Prompt: Iron manText Prompt: Iron man

Text Prompt: Your name by Makoto Shinkai, handsome man and beautiful womanText Prompt: Your name by Makoto Shinkai, handsome man and beautiful woman

Figure 4. Qualitative comparison on the task of text-guided video-to-video translation across different methods, including Text2Live [1],
Tune-A-Video [63], FateZero [35], and directly lifting ControlNet [67] through our CoDeF. We strongly encourage the readers to see the
supplementary videos for a detailed evaluation of temporal consistency and synthesis quality.

Ii into K semantic layers with mask M i
0, ...,M

i
K−1. And

for each layer, we use a group of canonical fields and
deformation fields to represent those separate motion of
different objects. These models are subsequently formu-
lated as groups of implicit fields: D : {D1, ...,DK}, C :
{C1, ..., CK}. In theory, for semantic layer k in frame i, it
is sufficient to sample pixels in the region M i

k for efficient
reconstruction. However, hash encoding can result in
random and unstructured patterns in unsupervised regions,
which decreases the performance of image-based models
trained on natural images. To tackle this issue, we sample
a number of points outside of the region M i

k and train them
using L2 loss with the ground truth color. In this way,
we effectively regularize M̄ i

k with the background loss Lbg.
Consequently, the canonical image attains a more natural

appearance, leading to enhanced processing results.
Training Objectives. The representation is trained by
minimizing the objective function Lrec. This function
corresponds to the L2 loss between the ground truth color
and the predicted color c for a given coordinate x. To
regularize and stabilize the training process, we introduce
additional regularization terms as previously discussed. The
total loss is calculated using the following equation

L = Lrec + λ1 ∗ Lflow, (8)

where λ1 represents the hyper-parameters for loss weights.
It’s important to note that when training the grouped defor-
mation field, we include an additional regularizer, denoted
as λ2 ∗ Lbg.

8094



In
p

u
t 

V
id

eo
V

id
eo

 O
b

je
ct

 T
ra

ck
in

g

Figure 5. Video object tracking results achieved by lifting an
image segmentation algorithm [17] through our CoDeF.

3.3. Application to Consistent Video Processing

Upon the optimization of the content deformation field, the
canonical image Ic is retrieved by setting the deformation
of all points to zero. It is important to note that the
size of the canonical image can be flexibly adjusted to be
larger than the original image size depending on the scene
movement observed in the video, thereby allowing more
content to be included. The canonical image Ic is then
utilized in executing various downstream algorithms for
consistent video processing. We evaluated the following
state-of-the-art (SOTA) algorithms: (1) ControlNet [67]:
Used for prompt-guided video-to-video translation. (2)
Segment-anything (SAM) [17]: Applied for video object
tracking. (3) R-ESRGAN [60]: Employed for video super-
resolution. Additionally, the canonical image allows users
to conveniently edit the video by directly modifying the
image. We further illustrate this capability through multiple
manual video editing examples.

4. Experiments

4.1. Experimental Setup

We conduct experiments to underscore the robustness and
versatility of our proposed method. Our representation is
robust with a variety of deformations, encompassing rigid
and non-rigid objects, as well as complex scenarios such
as smog. The default parameters for our experiments are
set with the anneal begin and end steps at 4000 and 8000,
respectively. The total iteration step is capped at 10000.
On a single NVIDIA A6000 GPU, the average training
duration is approximately 5 minutes when utilizing 100
video frames. It should be noted that the training time varies
with several factors such as the length of the video, the
type of motion, and the number of layers. By adjusting the
training parameters accordingly, the optimization duration
can be varied from 1 to 10 minutes.

4.2. Evaluation

The evaluation of our representation is concentrated on two
main aspects: the quality of the reconstructed video with the
estimated canonical image, and the quality of downstream
video processing. Owing to the lack of accurate evaluation

metrics, conducting a precise quantitative analysis remains
challenging. Nevertheless, we include a selection of quan-
titative results for further examination.

Table 1. Quantitative comparison of video reconstruction.

Video LNA [15] CoDeF (K=1) CoDeF (K=2) w/o flow
Blackswan 29.92 31.51 31.97 31.47
Boat 31.51 34.13 34.73 34.28
Kite-surf 28.37 34.26 34.35 34.14

Reconstruction Quality. In a comparative analysis with
the Neural Image Atlas, our model, as demonstrated
in Fig. 3, exhibits robustness to non-rigid motion, effec-
tively reconstructing subtle movements with heightened
precision (e.g. eyes blinking, face textures). Quantitatively,
the video reconstruction PSNR of our algorithm on DAVIS
video datasets is 2.3 dB higher and we report the metrics of
some selected sequences in Tab. 1. In comparison between
the atlas and our canonical image, our results provide a
more natural representation, and thus, facilitate the easier
application of established image algorithms. Besides, our
method makes a significant progress in training efficiency,
i.e., 5 minutes (ours) vs. 10 hours (atlas).
Downstream Video Processing. We provide an expanded
range of potential applications associated with the pro-
posed representations, including video-to-video translation,
video keypoint tracking, video object tracking, video super-
resolution. (More results are attached in the supplement.)
Video-to-video Translation. By applying image translation
to the canonical image, we can perform video-to-video
translation. A qualitative comparison is presented encom-
passing several baseline methods that fall into three distinct
categories: (1) per-frame inference with image transla-
tion models, such as ControlNet [67]; (2) layered video
editing, exemplified by Text2LIVE [1]; and (3) diffusion-
based video translation, including Tune-A-Video [63] and
FateZero [35]. As depicted in Fig. 4, the per-frame image
translation models yield high-fidelity content, accompa-
nied by significant flickering. The alternative baselines
exhibit compromised generation quality or comparatively
low temporal consistency. A thorough comparison is better
appreciated by viewing the supplementary videos.

We further provide a quantitative comparison in Tab. 2,
using the same settings for the CLIP score [37] as in Tune-

Table 2. Quantitative comparison with baselines. *Note that
Text2LIVE [1] is optimized with CLIP loss.

Method
Frame Consisitency Textual Alignment

CLIP Score User Score CLIP Score User Score

Text2LIVE* [1] 99.17 4.21 30.72 2.32
FateZero [35] 96.75 3.75 23.21 3.34
Tune-A-Video [63] 94.40 2.12 26.02 3.89
CoDeF 98.54 4.76 27.43 4.13
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Frame T1 Reconstruction T1 Frame T2 Reconstruction T2 Frame T3 Reconstruction T3 Canonical Image

Figure 6. Limitations on more complicated video seqeunces.
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Figure 7. Ablation study on the effectiveness of annealed
hash. The unnaturalness in the canonical image will harm the
performance of downstream tasks.

A-Video [63]. As Text2LIVE [1] is optimized using CLIP
loss, it is inevitable that the CLIP-based measurement is
higher. For the user study, we present participants with both
the original and translated videos alongside the text prompt.
Participants are asked to rate the translation results based on
temporal consistency and textual alignment on a scale from
1 to 5, with 5 being the best possible score. From the 1120
responses gathered from 56 users, our method outperforms
all other baselines.
Video Object Tracking. Using the segmentation algorithms

on the canonical image, we are able to facilitate the
propagation of masks throughout all video frames. As
illustrated in Fig. 5, our pipeline proficiently yields masks
that maintain consistency across all frames.

4.3. Ablation Study

To validate the effect of the proposed modules, we conduct
an ablation study. On substituting the 3D hash encoding
with positional encoding, there is a notable decrease in the
reconstruction PSNR of the video by 3.1 dB. In the absence
of the annealed hash, the canonical image loses its natural
appearance, as evidenced by the presence of multiple hands

in Fig. 7. Furthermore, without incorporating the flow
loss, smooth areas are noticeably affected by pronounced
flickering. We also investigate how varying the group
number K affects outcomes in Tab. 1, which shows that
larger K results in better reconstruction results.

4.4. Limitation

We address the limitations of our method with examples
from the OVIS [36] dataset. Fig. 6 clearly showcases the
method’s shortcomings in creating a coherent canonical
image of complex scenes. We show three challenging
examples: a significant scale change from distant to close-
up views (as with “Trucks”), the sudden emergence of new
objects within the scene (“Rabbits”), and the presence of
multiple, rapidly-moving small entities (“Elephants”). In
these tests, our approach can occasionally yield a blurred
canonical representation, omit finer details, or fail to main-
tain the semantic integrity of the objects’ shapes.

5. Conclusion and Discussion

In this paper, we investigate representing videos as content
deformation fields, focusing on achieving temporally
consistent video processing. Our approach demonstrates
promising results in terms of both fidelity and temporal
consistency. However, there remain several challenges to be
addressed in future work. One of the primary issues pertains
to the per-scene optimization required in our methodology.
We expect that improvements in feed-forward implicit field
methods could be used in this area. Another challenge
arises in scenarios involving extreme changes in viewing
points. To tackle this issue, the incorporation of 3D
prior knowledge may prove beneficial, as it can provide
additional information and constraints. Lastly, the handling
of large non-rigid deformations remains a concern. To
address this, one potential solution involves employing
multiple canonical images. Despite the challenges,
our work provide great potential for future improvement.
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