
Explaining the Implicit Neural Canvas: Connecting Pixels to Neurons
by Tracing their Contributions

Namitha Padmanabhan∗ Matthew Gwilliam∗ Pulkit Kumar Shishira R Maiya
Max Ehrlich Abhinav Shrivastava

University of Maryland, College Park
https://namithap10.github.io/xinc

Abstract

The many variations of Implicit Neural Representations
(INRs), where a neural network is trained as a continuous
representation of a signal, have tremendous practical utility
for downstream tasks including novel view synthesis, video
compression, and image super-resolution. Unfortunately,
the inner workings of these networks are seriously under-
studied. Our work, eXplaining the Implicit Neural Canvas
(XINC), is a unified framework for explaining properties of
INRs by examining the strength of each neuron’s contribu-
tion to each output pixel. We call the aggregate of these
contribution maps the Implicit Neural Canvas and we use
this concept to demonstrate that the INRs we study learn to
“see” the frames they represent in surprising ways. For ex-
ample, INRs tend to have highly distributed representations.
While lacking high-level object semantics, they have a sig-
nificant bias for color and edges, and are almost entirely
space-agnostic. We arrive at our conclusions by examin-
ing how objects are represented across time in video INRs,
using clustering to visualize similar neurons across layers
and architectures, and show that this is dominated by mo-
tion. These insights demonstrate the general usefulness of
our analysis framework.

1. Introduction

Leveraging neural networks to represent data, where the
network computes feature maps and embeddings for var-
ious visual inputs, is central to computer vision. Re-
cently, implicit neural representations (INRs) have emerged
as an exciting, radically different approach where a multi-
layer perceptron (MLP) or convolutional neural network
(CNN) is overfit on an image as a generative network,
becoming a continuous approximation of the discrete vi-
sual data [39, 40, 44, 48, 49]. The most well-known

*Equal contribution

Figure 1. How do INRs “see” the images they represent? We
propose XINC, which we use to show what parts of a learned
visual signal are important to each neuron of an INR. Here, we
take a sample from the neural canvas, with contribution maps for
5 neurons sampled from the last layer of a NeRV trained on a
Cityscapes [11] video. Some neurons attend to colors and tex-
tures, while others focus on low-level features like edges.

type of INRs are Neural Radiance Fields, where a net-
work learns to represent a scene, allowing for continu-
ous scene representation for novel view synthesis, editing,
etc. [17, 35, 42, 54, 56]. However, INRs are useful for
many other tasks as well, in particular, visual data compres-
sion [5, 7–9, 13, 14, 19, 30, 32, 50, 57, 58].

In spite of their immense utility, the inner workings of
INRs remain relatively under-explored. While some stud-
ies shed light on MLP-based INRs [55], NeRF [56], and
the impact of hypernetworks [10, 55], the hidden details of
non-coordinate methods such as NeRV [7] are quite opaque.
This is not completely unique to INRs – explainability and
interpretability are still massive challenges for other areas
in vision as well [1, 2, 18, 38]. Nevertheless, there is a sig-
nificant gap for understanding INRs, considering that pop-
ular analysis techniques such as NetDissect [3] and Grad-
CAM [46] do not transfer to INRs in straightforward ways.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10957

Even analysis work for generative networks tends to focus
on control and manipulation [23], and the coordinate-to-
signal paradigm of INR is distinct enough from the genera-
tive noise-to-signal paradigm that most analysis work can-
not be trivially extended [37].

While understanding INRs would obviously be benefi-
cial for improving their representation, analyzing with the
intent to explain is valuable on its own. As INRs trend to-
wards commercial viability for tasks like compression, ex-
plaining their behaviors becomes critical for real-world en-
terprises to consider them as alternatives to standard codecs.
Traditional compression methods are not perfect, but their
failure modes are known and easily explainable. Deep INR
methods, by contrast, have failure modes that are some-
what unknown and quite opaque. Thus, beyond helping re-
searchers to improve the models’ performance, explaining
INRs will help with their actual adoption in the real world.

Our work proposes eXplaining the Implicit Neural Can-
vas (XINC) as a novel framework for understanding INRs.
Specifically, we propose a technique for dissecting INRs
to create contribution maps for each “neuron” (group of
weights), which connect neurons and individual pixels. To-
gether, these contribution maps comprise the “implicit neu-
ral canvas” for a given visual signal. XINC can thus be
used to help us understand the relationships between INRs
and the images and videos they represent.

We analyze MLP-based and CNN-based INRs. While
some other analysis works help explain MLP-based
INRs [55], our analysis of convolution-based INRs is first
of its kind. To demonstrate the utility of XINC we use it to
derive novel insights by characterizing INRs in 5 key ways.

Neuron Contributions Correlate with Colors and Edges
We show representative examples of contribution maps for
MLPs and CNNs, and show how they attend to objects in
terms of low-level features like edges and colors, while
lacking coordinate proximity-based correlations.

INRs Must Represent to Omit We use sums of contribu-
tion maps to show that the representations learned by INRs,
while intensity-biased, are not dictated by raw pixel magni-
tude alone. INRs must learn representations even for miss-
ing objects, where the final output colors are near zero.

Representation is Distributed We examine how many pix-
els each neuron represents, and to what extent, as well as
conversely how many neurons are involved in the represen-
tation of each pixel. We demonstrate that these representa-
tions are quite distributed in nature.

Motion Drives Contribution Change Over Time We
show how NeRVs handle objects and motion, demonstrat-
ing that contributions to a given object remain fairly con-
stant over time. This is true even with motion, and fluctua-
tions in our neural canvas across time for videos prove that
motion drives changes in neuron contributions for NeRV.

We Can Group Similar Neurons We cluster neurons from
various INRs to show how we can group neurons with sim-
ilar representation properties using contribution maps.

2. Related Work
Implicit Neural Representation is a way to represent and
compactly encode a variety of high resolution signals. The
key idea is to map a set of coordinates for a specific signal
to a function, by employing a neural network as the contin-
uous approximating function [7, 35, 45, 48, 53]. SIREN
[48] utilizes periodic activation functions in MLPs to fit
and map complicated signals, including images, 3D shapes
and videos using very small networks. COIN [13], the first
image-specific INR method, uses implicit neural represen-
tation for image compression tasks and COIN++ [14] ex-
tends this work to encode multiple images. In the chal-
lenging realm of videos, NeRV [7] is the first method to
scale video compression using image-wise implicit repre-
sentation. It uses convolution layers in addition to MLPs
and outputs all RGB values of a frame given the positional
embedding of frame index t as input. Other methods rely
on MLPs [27, 32]. Others [8, 9, 19, 58] compute em-
beddings on the actual frames by introducing a small en-
coder, thus improving performance over index-based meth-
ods. Meta-learning approaches try to address long per-item
fitting times by learning a hypernetwork for predicting net-
work weights [10, 25]. Others propose encoding weights as
vectors for a wide variety of downstream tasks [31].
Interpreting and Visualizing Deep Neural Networks is
a longstanding field of study in machine learning. A large
number of techniques aim to understand the internal repre-
sentations of convolutional neural networks and deep net-
works in general. Hoiem et al. analyzes effects of vari-
ous object characteristics on detection performance. Grad-
CAM [46] aims to provide visual explanations for the de-
cisions of CNNs. Using the gradients flowing into the fi-
nal convolutional layer from a target concept, Grad-CAM
and related subsequent works [6, 12, 15] generate a coarse
localization map that highlights crucial image regions con-
tributing to the prediction of the concept, and [24] proposes
a method for automatically captioning these regions to de-
scribe image features. Network Dissection [3] considers
each unit in a network as a concept detector and compares
their activity with human-interpretable pattern-matching
tasks such as the detection of object classes. GAN Dis-
section [4] extends these ideas to visualize and understand
GANs at the unit, object, and scene-level. Other works
characterize neuron behavior with natural language [21],
by combining NetDissect-style concepts [28, 36, 52], or in
terms of how they behave in conjunction with other closely-
related neurons [41]. Lindsay and Bau creates a comprehen-
sive test methodology that systematically perturbs model in-
puts and monitors the effect on model predictions, helping

10958

Layer i Layer i + 1

Weight w

Intermediate MapInput from
Previous Layer

Reshape

Kernel
Subgroup

Input
(Channel-Separated)

Repeat,
Rearrange,

Mask

Input

NeRV Head Layer

Prior NeRV Blocks

Feedforward MLP

Combine Activation

Activation,
Aggregation

PixelShuffleConv

Contribution Maps

Contribution MapsContribution Maps

Contribution Maps

Figure 2. (left) We dissect MLP-based INRs by aggregating their activations (weights multiplied by previous layer outputs) for each pixel
at each neuron. (right) We extend this core idea of pixel-to-neuron mapping for the CNN-based INR, NeRV, by computing intermediate
feature maps that are not yet summed on the input dimension. For layers prior to the head, we also account for the PixelShuffle and apply
an aggregation filter to account for the subsequent layer’s kernels, which propagate that neuron’s contribution to neighboring pixels. To
compute contributions for a given layer, we simply perform the shown steps in sequence for that layer and each subsequent layer.

identify potential instabilities. These works are insightful
for their target domains, but do not directly apply to INR.
So, we propose to analyze the relationships between various
parameters in MLP- and CNN-based INR networks and the
spatio-temporal locations of the reconstructed output.

3. Implicit Neural Canvases
In this section, we explain how we compute the contribution
maps that comprise the implicit neural canvas. These con-
tribution maps connect neurons to pixels in terms of their
activations (weights×inputs) that contribute to each pixel,
for INRs. We first explain how we do this computation for
MLP-based INRs in Section 3.1. We then explain how we
extend this for CNN-based INRs in Section 3.2.

3.1. Dissecting Multi-Layer Perceptrons

In this work, as a representative method for MLP-based
INRs, we use a Fourier Feature Network (FFN) [51] with
a Random Fourier Matrix [43] as the positional encoding,
followed by linear layers. At each MLP layer, the input
pixels are operated upon independently, without any spatial
rearrangement or sharing of information between the pixels.
Thus, we can obtain a mapping from the neurons in a layer
to the h×w spatial locations (pixels) in the output image.

For each neuron, η, we compute a mapping of how its
output contributes to all neurons in the next layer (or the
output channels, for the last layer). Consider a layer, l, with
a weight matrix W of shape m×n. We use i and j to denote
the weight connecting i-th neuron in the current layer to j-
th neuron in the next layer, which are also the indices of the
current neuron of interest, ηi, and some neuron in the next
layer, ηj , respectively. When we map a neuron, ηi, to the
MLP INR’s output, we are thus forming a mapping from the

weights {wi1, wi2, . . . , win} to the output. Now consider
the image the INR represents, I , of shape h×w×3. Let us
consider that the INR takes pixel location xk, yk as input,
and neuron ηi produces an output scalar, o. We compute
its contribution to pixel xk, yk as

∑n
j=1 o · wij . When we

compute this for all pixels, we obtain a map of shape h×w
for ηi, which we refer to as the contribution map for ηi.

3.2. Dissecting Convolutional Neural Networks

For CNNs, we consider kernels as neurons, and we use the
NeRV architecture [7], which has two types of layers. Ex-
cept for the last, all layers consist of a learned convolutional
layer, followed by a PixelShuffle [47] and a nonlinear acti-
vation function. The last layer consists of a convolutional
layer and an optional nonlinear activation function. For this
network, the construction of the contribution mapping is
less straightforward compared to MLP, since convolutions
operate over groups of pixels at each stage, and PixelShuf-
fles rearrange contributions. We first explain how to address
the head layer, and then how to extend this for earlier layers.

3.2.1 Head Layer

We begin by analyzing the contribution from kernels in
the convolutional head layer to the output RGB image pix-
els. Consider the head layer, lh, with input vin of shape
h×w×chin (chin and chout are the number of input and out-
put channels, respectively). We thus have a set of chin∗chout
convolutional kernels, meaning chin kernels per each R, G,
B channel of the output, and thus, chin ∗ 3 kernels that can
potentially contribute to each output pixel. We obtain the
individual contribution of each kernel by passing each ker-
nel in lh over vin and storing the outputs separately, yielding
a set of feature maps, h×w×(chin ∗ chout). To get the true

10959

output contribution, and thus the final contribution maps for
all chin ∗ 3 neurons, we pass these feature maps through the
lh activation (e.g. tanh).

3.2.2 Prior NeRV Blocks

All NeRV layers except the head layer perform some up-
sampling using PixelShuffle [47]. PixelShuffle upsamples
feature maps by moving elements from the channel dimen-
sion into the spatial dimension. Let the number of input
channels of the convolution preceding the PixelShuffle in
layer i be chi,in and the number of output channels be chi,out.
For upsampling factor r, the number of output channels
from the PixelShuffle, which is the same as the number of
input channels to the (i+ 1)th layer, is computed as

chi+1,in =
chi,out

r2
(1)

We require a contribution map of shape h×w×(chi,in ∗
chi,out). To obtain this, we first follow the same ap-
proach to the head layer and obtain a mapping of shape
h
r×

w
r ×chi,in×chi,out. Considering the penultimate NeRV

layer for the sake of simplicity, we can apply PixelShuffle
to this downsampled contribution map and obtain the map
of size h×w×chi,in×ch(i+1),in. However, the contributions
of distinct output kernels chi,out are now no longer separated
since they are moved into the spatial dimension.

To resolve this, we repeat the operation r2 times,
yielding a new map of size h×w×chi,in×ch(i+1),in×r2,
which has the same dimensions as a mapping of shape
h×w×chi,in×chi,out, if we substitute according to Equa-
tion 1. While this map has the dimensions we require for
further processing by downstream layers, we must take care
that each non-overlapping r×r block contains samples from
the same filter in order to preserve each filter’s contribution.
If nearby samples were from different filters, as in the tradi-
tional PixelShuffle, then the contribution of different filters
would be mixed and aggregated in future layers. We can
conveniently accomplish this with a simple re-arranging of
the repeated channels followed by masking such that each
r×r block contains only one non-zero element (to prevent
overcounting of the contribution of each kernel). The fi-
nal result is then passed through the activation layer before
proximity correction.

Layers before the penultimate layer differ only slightly.
For the layer in question, we treat it exactly like the penul-
timate layer. However, the result is not at the target output
resolution. So, we must perform the subsequent layers’ cor-
responding operations, with one minor adjustment – we use
nearest neighbor upsampling, instead of PixelShuffle, for all
layers after the initial layer. This is because the spatial cor-
respondences of the PixelShuffle are specific to the feature
map structure of the given subsequent layer, and have no
meaning for the earlier layer feature maps.

Table 1. Dataset Statistics. For these densely annotated datasets
we provide the typical number of annotated instances per video,
video length, and the portion of frames which are annotated.

Dataset Videos Instances Frames % Labeled Domain

Cityscapes-VPS [26] 500 2− 71 30 1/6th Streets
VIPSeg [34] 3536 1− 78 4− 81 All Open

3.2.3 Proximity Correction

Layers before the head layer do not contribute directly to
pixels. Instead, their outputs are the inputs to some later set
of convolution kernels. While we account for the upsam-
pling with how we handle PixelShuffle, we still must ad-
dress the fact that the subsequent kernels act on k×k neigh-
borhoods at each filter map. So, we use an aggregation fil-
ter to account for the fact that a given point in some inter-
mediate feature map contributes to a k×k neighborhood of
points in the next layer’s feature maps. This is a simple k×k
box filter for each layer.

4. Understanding Representations
4.1. Dataset and Training Details

To analyze the relationship between neurons and pixels
in encoded signals, we use videos from the Cityscapes-
VPS [26] (train and val) and VIPSeg [34] video panoptic
segmentation datasets. Table 1 provides the number of in-
stances per frame in each dataset, the percentage of anno-
tated frames and other information. To select a few videos
from these datasets, we look for examples containing ob-
jects of diverse shapes, sizes and categories, to afford di-
versity in analysis. Having instance and object category
level information enables us to answer questions pertaining
to whether INRs understand semantics and instances and
also helps analyze the distribution of representations for ob-
jects of different types. Further, it would help us determine
whether the groups of parameters attending to the same ob-
jects remains consistent across frames, whether the model
omits representing small objects, and investigate other im-
portant properties. We train our FFNs and NeRVs on down-
sampled images, to keep the model and contribution map
sizes small. Specifically, we resize and crop all videos to
128×256 resolution. We choose model sizes and training
times such that bits-per-pixel and reconstruction quality are
roughly equivalent across models and video frames. We
provide more details in the appendix.

4.2. Contributions Correlate with Colors and Edges

Figure 3 shows some example contribution maps for neu-
rons at different layers for both MLP-based and CNN-based
INRs. FFN and NeRV head layer neurons seem to learn
some form of whole scene representation, and the CNN

10960

FFN Layer 3 FFN Layer 2 NeRV Head Layer NeRV Block 3 NeRV Block 2

Figure 3. The implicit neural canvas. We show representative example contribution maps for various layers of FFN [51] and NeRV [7].
Notice how early layer FFN neurons manifest strong Fourier patterns, and how the last layers NeRV tend to resemble the image, with
NeRV head layer neurons being reminiscent of classical image processing filters.

Figure 4. Grouping contributions. We compute the variance of the difference from expected contribution for different groupings of
contributions - Instances of objects and background, RGB color-based clusters, Gabor filter-based clusters and regular gridcells. These
results suggest that INRs ignore space while preferring instances, color, and edge features.

penultimate layer has similar characteristics. The contri-
bution maps of the FFN layers suggest a progression from
representing Fourier features in early layers, to representing
more of the image in question, with Fourier artifacts, in the
last layer. For the NeRV layers, there seem to be a variety of
features captured by various neurons, including edges, tex-
tures, colors, and depth. The behavior of a neuron, in both
networks, is not simply to represent some pixels, instead, it
learns some low-level scene attributes.

We explore these behaviors quantitatively by aggregat-
ing neuron contributions to pixels, first in terms of in-
stances, and then also by clustering pixels by color value
(RGB Clusters), clustering on Gabor filter features [16, 33]
(Gabor Clusters, details in appendix), and clustering pixels
spatially (taking equal size rectangular gridcells). We hy-
pothesize that for a type of pixel clustering to be meaning-
ful for neurons, each neuron should tend to have high acti-
vation in some clusters, and little to no activation in others.
Quantitatively, the variance of contributions across clusters
would be high. However, using raw variance of contribu-
tions would give massive bias to clusterings that form large
and small regions, where some contributions would be triv-
ially small. So instead, we first compute the expected con-
tribution for each cluster, which is the contribution over the

whole image, normalized by size of the given cluster.

contexpected =

(
areacluster
areaimage

)
∗ contimage (2)

We then obtain the actual contributions to each cluster,
contactual by summing the contributions of a neuron to the
pixel values in the cluster, and contribution deltas are taken
as δcont = contexpected − contactual. We then normalize each
δcont by dividing by contexpected such that they are percent-
age differences between actual and expected neuron contri-
butions to each cluster. Finally, we compute the variance
(standard deviation) of the normalized percentage differ-
ences. The above is repeated for all neurons in a layer.

We plot the result of performing this computation for in-
stances, RGB, Gabor, and gridcell clusters, across all neu-
rons, in Figure 4. This computation reveals quantitatively
what Figure 3 hints at – there is relatively little meaningful
correlation between contributions and space, as seen in the
low variances of gridcell representations. Instead there is in
general a surprisingly high variance for neurons when we
group their contributions using instance masks, which sug-
gests that they learn some type of object semantics. Given
that the variances for RGB and Gabor clusters are also quite
high, we suggest that these are low-level semantics, a com-
bination of color and edge features. There is also an inter-

10961

Frame FFN Layer 3 FFN Layer 2 NeRV Head Layer NeRV Block 3 NeRV Block 2

Total Intensity Map

Frame

Total Intensity Map

C
ontribution M

agnitude
H

igher C
ontribution H

igher Intensity

Figure 5. Contribution vs. intensity. We compare contribution and intensity in alternating rows. In the top row, we sum all contribution
maps for the indicated layer. In the next row, we show the difference between this, and the raw image intensity (sum of all color channels)
to show when contribution does and does not correlate with intensity. The next two rows repeat this for a frame from another video.

Neurons Sorted Independently for each Layer

Pi
xe

ls
 a

bo
ve

 T
hr

es
ho

ld

Figure 6. Pixels per neuron. We compute the pixels activated for
each neuron in each layer, with each layer sorted independently by
order of increasing number of pixels, for frames from two videos.

esting trend with the NeRV Block 3, where it seems to have
some meaningful correlation with gridcells. However, we
note that the top 25% of variances for Instances, RGB, and
Gabor, are almost all higher than even the highest gridcell
variance, and therefore we believe the intuition holds.

4.3. Contribution is not Intensity

Furthermore, we observe an interesting property that not all
pixels require equal representation. Figure 5 shows the sum

of absolute contributions over all neurons for distinct lay-
ers of the FFN and NeRV. We compare these aggregated,
layer-level contribution maps to the total intensity (sum-
ming over color channels) of the image they correspond to.
The heatmaps reveal a correspondence between the areas of
large contributions and the areas of high intensity in the in-
put image. This suggests that the neurons of an INR largely
attend to higher intensities in the image.

While there is naturally some intensity bias, as a result
of the pixelwise loss functions used by these networks, this
does not fully explain the behavior of the representation.
To discover other concepts that the INR potentially pays at-
tention to, we subtract the intensity image from the contri-
bution heat map. In Figure 5, this reveals that in addition
to intensity, the INR layers also pay attention to other low-
level information such as edges and textures. We note that
the NeRV layers and the FFN layer 2 have a tendency to
over-represent the people in the second image, relative to
intensity, while the FFN layer 3 contributions are largely
consistent with intensity. Additionally, not all edges are
treated equally, with NeRV having large contributions for
some edges, and small contributions for others.

4.4. Representation is Distributed

When training an INR, one might wonder, since there are
more pixels than neurons, how many pixels are represented
by each neuron, and if this representation tends to be dis-
tributed. To analyze the manner in which neuron-to-pixel
contributions are distributed, we compute the ratio of a neu-
ron’s contribution to a pixel to the total contribution across
neurons at a pixel. We threshold on this ratio to determine

10962

FFN Layer 3 FFN Layer 2 NeRV Head Layer NeRV Block 3

T
hreshold 10%

NeRV Block 2

T
hreshold 50%

0.2

0.5

0.8

%
 N

eurons that C
ontribute

Figure 7. Neurons per pixel. We show how many neurons represent significant portions of each pixel, as a percentage of the total neurons
in the indicated layer, at two different thresholds for “activation.”

C
on

tr
ib

ut
io

ns
C

on
tr

ib
ut

io
ns

FFN Layers NeRV Head Layer

Layer 1 Layer 2 Layer 3
Sampled Neurons

NeRV Block 3

Time Time Time Time

Layer 1 Layer 2 Layer 3

Neuron 1 Neuron 2 Neuron 1 Neuron 2

Figure 8. Neuron contributions to things and stuff. We aggregate the contributions of neurons to the instances (things) and background
(stuff) in a frame from 2 videos. For FFN, we sample 3 neurons from each layer and for NeRV, we sample 2 neurons each from the last 2
layers. Instances belonging to the same category are depicted by distinct markers of the same color. For FFNs, we show contributions only
for the given frames, whereas for NeRVs, we show these contributions over time for 6 frames from the source video.

whether a pixel receives a significant portion of its contri-
bution from a specific neuron or not. The threshold used
is a simple reciprocal of the number of neurons in a layer.
We then compute the total number of pixels that a specific
neuron contributes to meaningfully and sort this across neu-
rons, repeating this analysis individually for different layers
of the FFN and NeRV.

We show these contribution counts in Figure 6. Since
different layers have different numbers of neurons, we re-
sample the neurons of each layer to a common length using
linear interpolation to preserve their trends. Notice how the
outermost layers of the FFN and NeRV (layer 3 and head
layer respectively) show the highest trends with a decreas-
ing trend towards the earlier layers of both networks. Note
that nearly 50% of the neurons in FFN Layer 2 have al-
most no contributions, producing a flat line in the first half.
The presence of these dead neurons in this and other layers
points to the suitability of these networks for data compres-
sion, and helps explain why extensive model pruning can be
done with limited impact on reconstruction quality [7].

To further understand how the learned INRs distribute
the image representations, we compute at each spatial im-
age location, the density of neurons that contribute to it

above a threshold, τ . To set τ for a certain layer, consider
the sorted raw contributions of all neurons across locations
of the image. We find that a large portion of the contri-
butions are small and the number of larger contributions is
fewer in comparison. For an illustration of this, see Fig-
ure 18. We obtain the raw contribution value that lies at
the x-th percentile of this curve, i.e., the contribution of the
neuron to the left of which lies x% of the area under the
curve. The value corresponding to this percentile is chosen
as the threshold for all neuron contribution maps. We show
this for the 10th and 50th percentile thresholds in Figure 7,
which shows the regions of the image with a higher density
of dedicated neurons.

High intensity and highly textured areas not only have
high contributions as seen earlier in Figure 5, but they also
have a large portion of neurons dedicated to them. Increas-
ing the threshold highlights the image areas with the high-
est neuron density, and this reveals an overwhelming bias
for edges with NeRV. However, all these trends are greatly
subdued for the FFN at both its head and penultimate layers,
suggesting that while the magnitude of its contributions cor-
relates almost perfectly with the image intensity, its actual
representation is more evenly distributed by comparison.

10963

Frame Flow Head Layer Block 3

Figure 9. Neurons and motion. We show the correlation between
motion and changes in neuron contribution over time by comput-
ing optical flow between two frames and the difference in contri-
bution maps between those same frames. We plot both of these.
Fluctuation is driven by motion, and it seems the areas revealed by
motion matter equally to the objects that are actually moving.

4.5. Objects, Categories, and Motion

To analyze whether INRs have meaningful representations
in terms of objects, we aggregate neuron contributions over
pixels in each instance’s segmentation map. Consider the
two sample videos shown in Figure 8. Each has a differ-
ent set of objects with some categories having multiple in-
stances. Instances may move, disappear and reappear over
time. For the FFN, we sample three neurons each from
the three layers and depict each neuron’s normalized con-
tributions to every instance (as a percentage of contribu-
tions to all instances) in the first frame of the video. Notice
how contributions to instances of the same category are not
grouped together. This is related to our findings in Figure 4,
and motivates our claim that these networks learn low-level
object features, but lack class-level semantics.

For NeRV, we sample two neurons each from the head
layer Block 3, and track the normalized per-instance con-
tributions over multiple frames of the video. We see that
a neuron’s contributions to an instance remains relatively
static over time. When there is fluctuation, we notice that
this is often correlated with instances that move, such as
persons. Another thing to note is how contributions to high
intensity instances such as sky are higher, which is in agree-
ment with our earlier observations.

Further delving into how neurons in NeRV respond to
motion, we visualize the optical flow map and the fluctu-
ation of total contribution in the last 2 layers of a NeRV.
Figure 9 depicts this for two different time steps in each
video (the flow and contribution fluctuation are computed
between a specific frame and the immediately preceding
frame). We see that the changes in contributions are focused
more in areas around the regions of flow. It appears that
when a moving object reveals new background, this causes
fluctuations in the spatially proximal pixels, even though
they technically contain no motion themselves. Thus, we

see that in spite of its lack of high-level object semantics,
the changes in how a NeRV represents a video across time
are dominated by the motion of the entities in the video.

4.6. Neurons can be Clustered by Contributions

Figure 10. UMAP for INRs. We plot the neurons from the head
layers of NeRVs with different seeds, and show the contribution
maps corresponding to the neurons indicated.

We propose a unique approach for computing a vector
representation of INR neurons. Inspired by the relatively
high variance for Gabor clusters in Figure 4, we take the
pixels in each frame of each video, and cluster them ac-
cording to Gabor filter features with k clusters. We then ag-
gregate the contribution map values according to the clus-
ters, yielding a k dimensional vector representation of ev-
ery neuron. We can then project these representations with
UMAP to allow for plotting them in 2D space, which we
do in Figure 10. As this figure shows, there are many dif-
ferent “types” of neurons when we separate them according
to edge contributions. This representation mechanism we
develop with XINC provides another powerful method for
visualizing and examining the internals of INR.

5. Conclusion
In this paper, we propose XINC, a novel framework for an-
alyzing INRs for image and video representation. Using
XINC, we find interesting trends with CNNs and MLPs,
such as how while they lack high-level object semantics,
they do have biases that mimic object representation, par-
ticularly with edges and colors. We also show how fluctu-
ations in contribution for NeRV are driven by motion. We
show how our framework can help us identify interesting
groups of related neurons. We provide both the framework
and these findings to help drive future research for INRs.
Acknowledgements. We would like to thank Soumik
Mukhopadhyay for his helpful feedback while we prepared
the manuscript. This project was partially funded by NSF
CAREER Award (#2238769) to AS.

10964

References
[1] Amina Adadi and Mohammed Berrada. Peeking inside the

black-box: a survey on explainable artificial intelligence
(xai). IEEE access, 6:52138–52160, 2018. 1

[2] Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier
Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,
Salvador Garcı́a, Sergio Gil-López, Daniel Molina, Richard
Benjamins, et al. Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward
responsible ai. Information fusion, 58:82–115, 2020. 1

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 6541–6549, 2017. 1, 2

[4] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,
Joshua B Tenenbaum, William T Freeman, and Antonio Tor-
ralba. Gan dissection: Visualizing and understanding genera-
tive adversarial networks. arXiv preprint arXiv:1811.10597,
2018. 2

[5] Lorenzo Catania and Dario Allegra. Nif: A fast implicit im-
age compression with bottleneck layers and modulated sinu-
soidal activations. In Proceedings of the 31st ACM Inter-
national Conference on Multimedia, page 9022–9031, New
York, NY, USA, 2023. Association for Computing Machin-
ery. 1

[6] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader,
and Vineeth N Balasubramanian. Grad-CAM++: Gener-
alized gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). IEEE, 2018. 2

[7] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,
and Abhinav Shrivastava. Nerv: Neural representations for
videos. Advances in Neural Information Processing Systems,
34:21557–21568, 2021. 1, 2, 3, 5, 7, 12

[8] Hao Chen, Matt Gwilliam, Bo He, Ser-Nam Lim, and Abhi-
nav Shrivastava. Cnerv: Content-adaptive neural representa-
tion for visual data, 2022. 2

[9] Hao Chen, Matthew Gwilliam, Ser-Nam Lim, and Abhi-
nav Shrivastava. Hnerv: A hybrid neural representation
for videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10270–
10279, 2023. 1, 2, 12

[10] Yinbo Chen and Xiaolong Wang. Transformers as meta-
learners for implicit neural representations, 2022. 1, 2

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding, 2016. 1

[12] Rachel Lea Draelos and Lawrence Carin. Use hirescam in-
stead of grad-cam for faithful explanations of convolutional
neural networks, 2021. 2

[13] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye
Teh, and Arnaud Doucet. Coin: Compression with implicit
neural representations. arXiv preprint arXiv:2103.03123,
2021. 1, 2

[14] Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam
Golinski, Yee Whye Teh, and Arnaud Doucet. Coin++:
Data agnostic neural compression. arXiv preprint
arXiv:2201.12904, 1(2):4, 2022. 1, 2

[15] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo,
Yinghui Gao, and Biao Li. Axiom-based grad-cam: Towards
accurate visualization and explanation of cnns, 2020. 2

[16] D. Gabor. Theory of communication. part 1: The analysis
of information. Journal of the Institution of Electrical Engi-
neers - Part III: Radio and Communication Engineering, 93:
429–441(12), 1946. 5, 12

[17] Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu,
and Jonathan Li. Nerf: Neural radiance field in 3d vision, a
comprehensive review, 2023. 1

[18] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa,
Michael Specter, and Lalana Kagal. Explaining explana-
tions: An overview of interpretability of machine learning.
In 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA), pages 80–89. IEEE, 2018.
1

[19] Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen,
Shuaiyi Huang, Yixuan Ren, Ser-Nam Lim, and Abhinav
Shrivastava. Towards scalable neural representation for di-
verse videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6132–6142, 2023. 1, 2

[20] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2023. 12

[21] Evan Hernandez, Sarah Schwettmann, David Bau, Teona
Bagashvili, Antonio Torralba, and Jacob Andreas. Natural
language descriptions of deep visual features. In Interna-
tional Conference on Learning Representations, 2022. 2

[22] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun
Dai. Diagnosing error in object detectors. In European con-
ference on computer vision, pages 340–353. Springer, 2012.
2

[23] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols, 2020. 2

[24] Neha Kalibhat, Shweta Bhardwaj, Bayan Bruss, Hamed
Firooz, Maziar Sanjabi, and Soheil Feizi. Identifying inter-
pretable subspaces in image representations, 2023. 2

[25] Chiheon Kim, Doyup Lee, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Generalizable implicit neural represen-
tations via instance pattern composers. arXiv preprint
arXiv:2211.13223, 2022. 2

[26] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
Kweon. Video panoptic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020. 4

[27] Subin Kim, Sihyun Yu, Jaeho Lee, and Jinwoo Shin. Scal-
able neural video representations with learnable positional
features. In Advances in Neural Information Processing Sys-
tems, 2022. 2

[28] Biagio La Rosa, Leilani H. Gilpin, and Roberto Capobianco.
Towards a fuller understanding of neurons with clustered
compositional explanations. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. 2

10965

[29] Grace W Lindsay and David Bau. Testing methods of neu-
ral systems understanding. Cognitive Systems Research, 82:
101156, 2023. 2

[30] Shangdong Liu, Puming Cao, Yujian Feng, Yimu Ji, Jiayuan
Chen, Xuedong Xie, and Longji Wu. Nrvc: Neural represen-
tation for video compression with implicit multiscale fusion
network. Entropy, 25(8), 2023. 1

[31] Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pier-
luigi Zama Ramirez, Samuele Salti, and Luigi Di Stefano.
Deep learning on implicit neural representations of shapes,
2023. 2

[32] Shishira R Maiya, Sharath Girish, Max Ehrlich, Hanyu
Wang, Kwot Sin Lee, Patrick Poirson, Pengxiang Wu, Chen
Wang, and Abhinav Shrivastava. Nirvana: Neural implicit
representations of videos with adaptive networks and au-
toregressive patch-wise modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14378–14387, 2023. 1, 2

[33] R. Mehrotra, K.R. Namuduri, and N. Ranganathan. Ga-
bor filter-based edge detection. Pattern Recognition, 25(12):
1479–1494, 1992. 5, 12

[34] Jiaxu Miao, Yunchao Wei, Yu Wu, Chen Liang, Guangrui Li,
and Yi Yang. Vspw: A large-scale dataset for video scene
parsing in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4133–4143, 2021. 4

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 1, 2

[36] Jesse Mu and Jacob Andreas. Compositional explanations of
neurons, 2021. 2

[37] Vineel Nagisetty, Laura Graves, Joseph Scott, and Vijay
Ganesh. xai-gan: Enhancing generative adversarial networks
via explainable ai systems, 2022. 2

[38] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen,
Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice
van Keulen, and Christin Seifert. From anecdotal evidence
to quantitative evaluation methods: A systematic review on
evaluating explainable ai. ACM Computing Surveys, 55(13s):
1–42, 2023. 1

[39] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision, 2020.
1

[40] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space, 2019. 1

[41] Chris Olah, Nick Cammarata, Ludwig Schubert,
Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020.
https://distill.pub/2020/circuits/zoom-in. 2

[42] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 1

[43] Ali Rahimi and Benjamin Recht. Random features for large-
scale kernel machines. Advances in neural information pro-
cessing systems, 20, 2007. 3

[44] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion, 2019. 1

[45] Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha
Balakrishnan, Ashok Veeraraghavan, and Richard G. Bara-
niuk. Wire: Wavelet implicit neural representations, 2023.
2

[46] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 1, 2

[47] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network,
2016. 3, 4

[48] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in neural
information processing systems, 33:7462–7473, 2020. 1, 2

[49] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations, 2020. 1

[50] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool,
and Federico Tombari. Implicit neural representations for
image compression. In ECCV, 2022. 1

[51] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020. 3, 5

[52] Andong Wang, Wei-Ning Lee, and Xiaojuan Qi. Hint: Hier-
archical neuron concept explainer, 2022. 2

[53] Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and
Zhangyang Wang. Signal processing for implicit neural rep-
resentations, 2022. 2

[54] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2021. 1

[55] Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and
Pascal Frossard. A structured dictionary perspective on im-
plicit neural representations, 2022. 1, 2

[56] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 1

[57] Yunfan Zhang, Ties van Rozendaal, Johann Brehmer,
Markus Nagel, and Taco Cohen. Implicit neural video com-
pression, 2021. 1

[58] Qi Zhao, M. Salman Asif, and Zhan Ma. Dnerv: Model-
ing inherent dynamics via difference neural representation

10966

for videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2031–2040, 2023. 1, 2

10967

