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Abstract

Visual-inertial odometry (VIO) has demonstrated re-
markable success due to its low-cost and complementary
sensors. However, existing VIO methods lack the general-
ization ability to adjust to different environments and sen-
sor attributes. In this paper, we propose Adaptive VIO,
a new monocular visual-inertial odometry that combines
online continual learning with traditional nonlinear opti-
mization. Adaptive VIO comprises two networks to pre-
dict visual correspondence and IMU bias. Unlike end-
to-end approaches that use networks to fuse the features
from two modalities (camera and IMU) and predict poses
directly, we combine neural networks with visual-inertial
bundle adjustment in our VIO system. The optimized esti-
mates will be fed back to the visual and IMU bias networks,
refining the networks in a self-supervised manner. Such
a learning-optimization-combined framework and feedback
mechanism enable the system to perform online contin-
ual learning. Experiments demonstrate that our Adaptive
VIO manifests adaptive capability on EuRoC and TUM-VI
datasets. The overall performance exceeds the currently
known learning-based VIO methods and is comparable to
the state-of-the-art optimization-based methods.

1. Introduction

Obtaining reliable motion estimation in unknown environ-
ments is critical to many vision and robotics tasks, such as
augmented reality (AR), unmanned aerial vehicle (UAV),
and autonomous driving. Simultaneous localization and
mapping (SLAM) is one of the critical approaches that em-
ploys onboard sensors to estimate agent trajectory and build
a map of local environments. Researchers have extensively
investigated visual-inertial SLAM (VI-SLAM) and visual-
inertial odometry (VIO) due to their low-cost and comple-
mentary sensors. It often presents a more accurate and ro-
bust trajectory estimation than visual odometry (VO) or in-
ertial odometry (10).
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Figure 1. Frameworks of different VIO methods. Learning-based
modules are colored in orange. Traditional computational modules
are colored in green. (a) Classic optimization-based method. (b)
End-to-end learning-based method. (c¢) Learning-optimization-
combined method with online continual learning (ours).

A classic VIO system is mainly composed of visual as-
sociation, IMU preintegration, and back-end nonlinear opti-
mization [16, 24, 30, 37, 42] (or filtering [16, 17]), as shown
in Fig.1(a). Classic methods are featured in the systematic
framework and fine-grained pipeline, working well in favor-
able conditions. However, they are less accurate and may
even fail in challenging scenarios (e.g. low-light condition,
abrupt movement), which can be attributed to the reliance
on low-level and hand-crafted visual features. In addition,
trajectory drift caused by IMU bias is also one of the critical
reasons affecting the system’s performance, while tradition-
ally modeling IMU bias as a random walk is insufficient to
reflect its evolutionary patterns.
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In order to overcome the shortcomings of classic meth-
ods that rely on pre-defined features, many learning-based
approaches have been proposed. End-to-end learning-based
VO can extract features from image streams and directly
generate pose and depth estimation without explicit op-
timization, which has shown promising results in recent
years. Similarly, some end-to-end learning-based VIO
methods are developed. As shown in Fig.1(b), these meth-
ods typically use two separate networks to extract image
and IMU features, fuse them through a fusion network, and
subsequently get pose and depth estimations from networks.
Nonetheless, these methods suffer from poor generaliza-
tion in complex motion scenarios, with lower accuracy than
classic methods.

In this paper, we propose a novel VIO system named
Adaptive VIO. As shown in Fig.1(c), unlike classic meth-
ods or end-to-end learning-based VIO, our approach inte-
grates learning with classic computations. We leverage the
strengths of neural networks in predicting visual correspon-
dence and IMU bias, replacing the traditional optical flow
or hand-craft feature matching and random walk modeling
for IMU bias. On the other hand, the refined estimates ob-
tained through classic optimization serve as feedback infor-
mation, generating loss functions for the predictor network,
thus enabling self-supervised learning. Finally, thanks to
the learning-optimization-combined framework and feed-
back mechanism, we can conduct online continual learning,
enabling the VIO system to adapt across different environ-
ments and achieve better tracking performance.

Our main contributions can be summarized as follows:

* We propose a novel learning-optimization-combined
VIO, which predicts visual correspondence and IMU bias
through learning approaches and obtains accurate state
estimation through classic nonlinear optimization.

¢ We introduce a feedback mechanism for the system, uti-
lizing the estimation from nonlinear optimization to con-
struct loss functions, updating the networks in a self-
supervised manner.

* We develop online continual learning to refine the net-
works in different scenarios. Experiments demonstrate
the strong generalization and adaptive capabilities of our
method, yielding overall results comparable to state-of-
the-art VIO systems.

2. Related Work
2.1. Classic VIO

In the past decade, VIO has been an active topic in the field
of SLAM. Due to the complementary sensors, VIO exhibits
enhanced robustness compared to VO across various sce-
narios and makes scale observable in monocular setups.
Classic VIO systems are mainly based on tightly cou-
pled approaches, wherein visual and IMU constraints are

fused through filtering or nonlinear optimization. Filter-
based methods, such as MSCKEF [17, 22], and ROVIO [2],
use the extended Kalman filter (EKF) to propagate and up-
date the current state. While nonlinear-optimization-based
methods, like VINS [24, 25], ORB-SLAM3 [6] and DM-
VIO [30], adopt local visual-inertial bundle adjustment for
the state estimation, achieving more accurate pose tracking.

Classic VIO uses optical flow or hand-craft features for
visual association, constructing motion constraints based on
photometric or reprojection errors. As for IMU processing,
modeling IMU bias as the random walk is a common prac-
tice [11]. Classic VIO methods have gained widespread
application, but the manually defined data association and
IMU bias modeling are often inaccurate in challenging sce-
narios, leading to suboptimal results or even failure.

2.2. Learning-based VO and VIO

In recent years, learning-based methods in VO, IO, and VIO
have been extensively researched[1, 4, 45], yielding promis-
ing results.

End-to-end learning-based VO utilizes pose and depth
estimation networks to replace classic modules of track-
ing and mapping, trained in either a supervised [40, 43] or
self-supervised [ 18, 45] manner. Some end-to-end learning-
based VIO approaches have also been proposed [9, 14, 28].
For instance, SelfVIO [1] leverages networks to encode
and adaptively fuse visual and IMU information, estimat-
ing depth and pose by self-supervised learning as VO.

Despite promising results on some datasets, end-to-end
learning-based VO and VIO exhibit lower accuracy than
classic approaches, particularly struggling to get accurate
pose estimates under complex motions. Therefore, some
propose to combine learning techniques with traditional
modules [3, 7, 32]. DROID-SLAM [33] and DPVO [35]
combine iterative visual correspondence updates with dif-
ferentiable bundle adjustment, demonstrating excellent per-
formance across multiple datasets. iISLAM [12] combines
learning-based VO with graph optimization, further enhanc-
ing performance through self-supervised learning. From
the IMU perspective, learning-based data preprocessing and
bias estimation techniques are also proposed [4, 7, 21, 44].
Zhang et al. [44] learn to denoise IMU measurements and
use preintegration loss derived from ground truth poses to
train the network. Buchanan et al. [4] explicitly propose
models for the dynamics of bias by networks and incor-
porate them into factor graph optimization, replacing tra-
ditional random walk models.

These methods combining learning with classic compu-
tations provide us with significant inspiration. To the best
of our knowledge, our approach is the first to simultane-
ously integrate learning-based visual association and IMU
bias modeling into a VIO framework and refine them by
self-supervised learning.
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Figure 2. The tracking pipeline of our VIO. The green modules (B, E, F) denote manually designed algorithms. The yellow (A) and orange
(C, D) trapezoids represent modules implemented by neural networks, and orange modules can get online continual learning.

2.3. Online continual learning

Generally speaking, classic VO/VIO algorithms are manu-
ally pre-defined, and learning-based ones are usually pre-
trained on dedicated datasets and then inference on scenes
with similar distribution. These methods may suffer from
domain shift problems if directly applied to a different sce-
nario, leading to inferior performance.

To address this issue, Li et al. [19, 20] propose an online-
learning VO framework to generalize better on unseen envi-
ronments and use meta-learning techniques to facilitate fast
adaptation. Vodisch et al. [36, 38] introduce online con-
tinual learning for SLAM, incorporating a replay buffer to
prevent catastrophic forgetting and using asynchronous net-
work updates to optimize system efficiency.

While these online learning methods have shown
adaptability in autonomous driving scenarios such as
Cityscape[10] and KITTI [13], they often fail in complex
environments and under complex motions. In our method,
the states from optimization provide feedback signals to the
networks, enabling self-supervised online continual learn-
ing, which has proved effective in EuRoC [5] and VI-TUM
datasets [27].

3. Method

In this section, we introduce our monocular VIO method in
detail. We start with the unique framework design, which
combines classic optimization with deep learning tech-
niques (Sec.3.1). Next, we present the feedback mechanism
and self-supervised updates for the networks (Sec.3.2). Fi-
nally, we delve into more details of the VIO system, focus-
ing on online continual learning, which is pivotal for the

system to adapt to diverse scenarios and achieve improved
performance gradually (Sec.3.3).

3.1. Learning-optimization-combined framework

The tracking pipeline of our VIO system is illustrated in
Fig.2, featured by the framework that integrates learning
and classic optimization. The orange shapes in the diagram
represent computations performed by the neural network,
while the blue shapes indicate traditional manual calcula-
tions.

(A) Feature encoder receives the latest RGB image
frame and encodes it into feature maps by convolutional
neural networks, providing stable feature encoding for sub-
sequent visual correspondence.

(B) Feature map sampling module randomly selects
several feature points and their neighborhood from the fea-
ture map, generating feature patches. These patches are
considered as keypoints, facilitating subsequent matching
and depth and pose estimation. The module can be dif-
ferentiable [35], which made the gradient backpropagation
possible.

(C) Visual correspondence predictor predicts visual
matching relationship among the keyframes in the factor
graph. It takes initial matches generated by reprojection as
input and outputs the updates relative to the initial match-
ing, which can also be viewed as reprojection residuals. The
pose and depth estimation are generated from IMU state
propagation or visual-inertial bundle adjustment, which will
be detailed in the following content.

(D) IMU bias predictor takes IMU bias estimation from
the previous time step, along with the accelerometer and gy-
roscope measurements between previous and current image
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frames, as inputs to predict the IMU bias Ba, Bg for the cur-
rent time step. The IMU timestamps and bias configuration
follow the settings in [6, 24]. Specifically, we synchronize
the IMU preintegration interval with the timestamps of the
image frames, assuming that the bias remains fixed within
the interval.

(E) Differentiable IMU preintegration integrate IMU
data in body poses of the previous image frame, which is
independent of the initial conditions and can be treated as a
single observation between two adjacent image frames. As-
suming the timestamps of i*" and i + 1" IMU frames are
between the timestamps of k' and k + 1" image frames.
Let a BL , ’hk represent the preintegration of transla-
tion, ve1001ty and rotation until the i*» IMU frame, where
by, denotes the preintegration is under the body coordinate
at the k*" image frame. The body coordinate aligns with
the IMU coordinate. Then, the preintegration until 7 + 1
IMU frame can be expressed in the following form[24]:

N 1
abr = &b+ Bl ot + -R(fyfk)aiat? (1)
By = B + R(3;")aot 2)
Hih =4 @ F"’f‘”] 3)

where a;, w; are acceleration and angular velocity mea-
surements of z”‘ IMU frame, after subtracting the network-
predicted bias ba. Bg, respectively. ® represents the prod-
uct in quaternion.

The propagation from i to i + 1! IMU frame is differ-
entiable with respect to &; and @;. Henceforth, the preinte-
gration from the k™ to k + 1'" image frame is also dif-
ferentiable, which allows the gradient backpropagate from
preintegration to the IMU bias predictor.

The propagation of covariance and approximate bias up-
date techniques are also adopted in our system, which are
detailed in [11]. The differentiation and backpropagation of
Lie Group can refer to [29, 34, 39].

(F) Visual-inertial bundle adjustment (VIBA) are
standard techniques for solving state variables in classic
VIO systems, which we also adopt with some distinctions.

Our factor graph comprises states within a sliding win-
dow of n image frames, incorporating visual constraints,
IMU constraints, and their interrelations. The full state vec-
tor in the factor graph is:

X = {P;)anb 7V;)Uaba7bg:d0..m}0..n (4)

where py’, qp and v’ denote translation, quaternion and
velocity of the body. Bolded b, and b, are biases of the
accelerator and gyroscope. dg. ., represents the depth of m
features from the frame.

The visual constraints in the factor graph are reprojec-
tion residuals, which reflect the coordinate error between

the matches predicted by the network and the matches pro-
jected under current states. We construct reprojection resid-
uals for each feature, and the network provides the confi-
dence of each residual.

Reprojection residuals:

Z 9% — KTid(ps) K" pi 6))
i,j€G
where p;, p t7 are a pair of matching points predicted by the
network. 7% denotes the coordinate transformation between

the frames of the matching points in the image. K is in-
trinsic to the camera. All such matching points constitute
visual constraints in the factor graph G.

IMU constraints can be categorized into two types:
preintegration residuals and bias residuals. For two consec-
utive image frames Ij and I 1, the following expressions
are given:
= {rApf,gHarAv;gH TARE o TA®ML L, TA®, )k+1}

k
Ik+1

Preintegration residuals:

b w w w
I‘AIDQH =Ry (pbk=+1 — Pu, — Y, Aty
LgUAR) — &b (b, b "
+ 59 tk) Q. (ba, by)
TAVE :Rb" (V;;LH — Vv, + gwAtk)
ﬁbk+1(ba7bg)

®)

rang,, ~Loz (RO, (b)) TRERE,) )

where al le ,Ble, ’ka , denotes Prelntegratlon terms and
“ is gravity under the world coordinate.
Bias residuals:

Eaat,, = (ba)" = (ba)" (10)

= (by)¥ — (by)* (11)

where Ba, Bg are the bias predicted by the network.

We model accelerator and gyroscope bias as a Gaussian
distribution with the network-predicted bias value as the
mean, and the variance is manually set. Similar methods
are also elaborated in [4]. In addition to the differences in
bias residuals compared to traditional random walk meth-
ods, there are other distinctions in treating bias. Firstly, we
only conduct preintegration by the network-predicted bias
(Ba, Bg). We never reintegrate measurements by the up-
dated bias (b, by) after optimization. Second, the updated
bias from the current frame serves as inputs to the predictor,
along with measurements from the next frame, generating a

UL
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new bias prediction instead of being directly passed to the
next time step.

The final optimization objective is composed of IMU
residuals and visual residuals, which can be written as:

n
xr = argmin([r 3, + > ez 12, ) (2
X E—0 k+1

Considering the Gauss-Newton method is naturally dif-
ferentiable, we use it to solve the factor graph, iterating
twice for each timestamp. This facilitates gradient back-
propagation to the neural network during training and on-
line adaptation.

3.2. Feedback and self-supervised update

In our approach, factor graph optimization can provide
feedback signals for visual and IMU networks, enabling
self-supervised learning updates.

The feature encoder and visual correspondence predictor
adopt similar network structures to DPVO [35]. The differ-
ence is that our predictor does not compose a hidden state,
making the inference of the correspondences in each itera-
tion an independent process irrelevant to the previous net-
work state. The modifications make our pipeline more akin
to the classic SLAM, enhancing system interpretability.

The poses and depths optimized by VIBA can be used to
construct photometric loss through reprojection:

Lyisual = Z ”It(p;k) - Is(pl)” (13)
Y
pi = KTid(p)K~'p; (14)

where [ represents the intensity of the pixel.

The bias prediction network consists of normalization
layers, fully connected layers, and a GRU [8] module. The
bias updated from the previous timestamp is initially nor-
malized and then encoded as hidden states for the GRU. Si-
multaneously, the IMU measurements are normalized and
concatenated with the normalized bias. After encoding by
a fully connected layer, they serve as inputs to the GRU.
The GRU’s output is then transformed into the current bias
estimation via another fully connected layer.

After visual-inertial bundle adjustment, the refined poses
and velocities are feedback to the network, generating loss
function as:

Lipu = Lap + Lay +Lar (15)

_Rbn-— w w w
LAP _Rw ! (pbn - pbn—l - Vbn—lAt

16)
1 o (
+ §gwAt2> — &b (by, by)

Lay =Rl (vie = vii_, + g At)

LN (17)
- ﬁb::_l (bm bg)

Lar =Log (R(37 7 (b,) "R Ry ) (18)

The IMU loss is almost the same with preintegration
residuals Eq.(7)-(9), while the constrained entities shifted
from the system’s states to the parameters of the networks.
Besides, there are some other slight differences to be no-
ticed. 1) The loss function constrains the bias predicted by
the network rather than the bias updated by VIBA. 2) In the
feedback loop, we manually set the weights for each loss
function (all set to 1 here), while in VIBA, the weights for
each residual are determined by the covariance [11]. 3) Bias
residuals Eq.(10)-(11) are not included in the loss function.

The feedback-based self-supervised update mechanism
enhances the consistency between the learning and clas-
sic optimization modules, collectively improving the overall
performance.

3.3. Online continual learning and VIO system

Performance degradation is often encountered when a learn-
ing algorithm is transferred to an unseen environment. In
such cases, adaptive fine-tuning of the network is a common
practice. However, in our scenario, network fine-tuning
often requires customized data preprocessing and training
strategy, posing an additional workload and delaying the de-
ployment of the VIO system.

To reconcile the contradiction between VIO deployment
and network adaptation, we propose a “learning within
VIO” strategy known as online continual learning. In this
mechanism, the VIO system can be considered an automatic
dataloader, responsible for organizing and optimizing train-
ing data and feeding it to the neural network. In addition
to being able to run continuously alongside VIO, our online
continual learning mechanism is also highly flexible. 1) We
can start or stop it at any time without interrupting the exe-
cution of VIO. 2) We can train the visual correspondence or
the IMU bias predictor independently or simultaneously.

The VIO system can be summarized as follows:

Initialization: Our VIO system starts with an initializa-
tion process, which includes map initialization and IMU
initialization. After IMU initialization, we align the body
coordinate and recover the metric scale of the pose and the
map. The initialization process provides the system with a
good initial state and builds the platform for online learning.

Tracking: The pipeline of tracking are mainly shown in
Fig.2. We compute the initial pose of the incoming frame by
IMU state propagation and add it to the factor graph. The
factor graph maintains a sliding window containing states
of the latest 10 keyframes. For efficiency considerations,
during online continual learning, the visual constraints for
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Methods Online adaptation to EuRoC [5] Online adaptation to TUM-VI [27]
MHI1 MH2 MH3 MH4 MH5 | rooml room2 room3 room4 room5 room6
DPVO [35] | 0.087 0.055 0.158 0.137 0.114 | 0.251 0503 0.261 0.085 0.197 0.059
Vpr+1Igw | 0093 0070 0.154 0.141 0.137 | 0.271 0.487 0.258 0.073 0.245 0.068
Vap + L 0.043 0.042 0.108 0.107 0.095 | 0.143 0369 0.237 0.063 0.165 0.053
54% 1t 40% 1 30% 1 24% 1t 31% 1 | 47% T 24% 1 8%t 14% 7T 33% 1 22% 1
Vpr+Tup 0.085 0.065 0.150 0.130 0.136 | 0.249 0460 0.251 0.067 0.242 0.059
9% * 7% 3% 1 8% 1 1% 1 8% 1 6% 1t 3% 1 8% 1 1%t 13% 1
Vap + Lip 0.041 0.039 0.109 0.100 0.094 | 0.138 0.351 0.231 0.065 0.158 0.052
56% 1t 4%t 29% 1 29% 1t 31% 1 | 49% 1t 28% 1 10% 1t 1%+ 36% 1 24% 1

Table 1. Evaluation of online adaptation ability of the proposed modules to new environments, reported with metric-scaled RMSE ATE. In
this table, PT, RW denotes the pre-trained visual model and IMU bias model of random walk, and AD is the abbreviation of adaptation.
We statistic the improvements of each adaptation module than our baseline model V pr 4+ Irw in percentage.

each keyframe are only derived from several keyframes pre-
ceding and following it. Otherwise, the visual constraints
of each keyframe may encompass several keyframes with
optical flow magnitudes below a threshold, forming a co-
visibility relationship.

Feedback: After tracking, we utilize the feedback-based
self-supervised updates described in Sec.3.2 to implement
online continual learning for the networks. During online
adaptation, we fix the weights of the feature encoder and
fine-tune the predictors for both visual and IMU. All in-
puts and constraints for the networks come from the factor
graph, including the images, IMU measurements, and state
estimates, generating loss functions as Eq.(13-18)

Keyframing: After each tracking session, keyframe
culling is performed. Our keyframing strategy is similar to
DPVO [35]. However, considering the temporal constraints
of IMU, the gap between two keyframes should not exceed
3 frames.

4. Experiments
4.1. Implementation details

Our method is implemented by Python and PyTorch [23],
with specific components like VIBA utilizing C++ and
CUDA programming for acceleration. The visual network
requires pre-training, while the IMU bias network does not.
In the following content, we will present the methods of pre-
training and online continual learning separately, primarily
focusing on the latter.

Datasets: The TartanAir[41] dataset is adopted to pre-
train our visual model, which is a large-scale simulated
dataset widely used in visual learning tasks. We choose
the EuRoC [5] and TUM-VI [27] datasets for online con-
tinual learning and validation. The EuRoC is captured by
a UAV visual-inertial platform, while the TUM-VI is col-
lected by a handheld visual-inertial device. Both datasets

include environments with complex lighting conditions and
intricate motion patterns, making them widely used in VIO.
To give the quantified results, we align the estimated trajec-
tories with the provided ground-truth and compute the Root
Mean Square Error (RMSE) of the Absolute Trajectory Er-
ror (ATE) [31].

Pre-training settings: The visual part of our network
(module (A)and(C) in Fig.2) requires pre-training. Follow-
ing the strategy in DPVO [35], we train our visual model on
the TartanAir dataset [41] for 240000 iterations with a batch
size of 1. Note that due to minor modifications in our net-
works compared to DPVO [35](discussed in Sec.3.2), the
performance after pre-training may not be identical.

Online continual learning settings: After pre-training
the visual network, we perform online continual learning
on the EuRoC and TUM-VI datasets. Our PC configuration
includes an Intel 19-9900 CPU and an NVIDIA GTX 3090
GPU with 24GB of VRAM.

During online continual learning, our VIO performs
tracking and carries out gradient backpropagation for each
incoming frame. This process constitutes one iteration of
training. For tracking stability, we may not update the net-
works at every iteration. Completing an entire sequence is
considered as one epoch, and online continual learning re-
quires training multiple epochs, involving the continuous
replay of one sequence.

For the EuRoC dataset, we perform online continual
learning in MH_0O1. Similarly, we conduct continual learn-
ing in room1 of the TUM-VI dataset. In both settings, we
replay the sequences for 60 epochs. The visual predictor’s
network weights update every 100 iterations, while the IMU
bias predictor’s weights update with each iteration. The
learning rate for the visual predictor is set to be 1 x 107°.
For the IMU bias predictor, since it is not pre-trained, we
conduct visual BA for the first 30 epochs to ensure tracking
stability, with the learning rate of 1 x 10™*. After that, we
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Sequence Sensor | MH1I MH2 MH3 MH4 MH5 V11 V12 VI3 V21 V22 Avg.
MSCKF[17] M+I 042 045 023 037 048 034 020 067 010 0.16 034
OKVIS[16] M+ 033 037 025 027 039 0.094 014 021 009 0.17 0.23
ROVIO[2] M+I 021 025 025 049 052 0.10 010 0.14 0.12 0.14 0.23
VINS-Mono[24]  M+I 015 015 022 032 030 0.079 011 018 0.08 0.10 0.17
Kimera[20] S+1 011 010 016 024 035 005 008 007 0.08 0.10 0.13
Online VIO[15] M+I 0.14 013 020 022 020 005 007 016 0.04 0.11 0.13
VI-DSO[37] M+l | 0.062 0.044 0.117 0.132 0.121 0.059 0.067 0.096 0.040 0.062 0.08
DM-VIO[30] M+I | 0.065 0.044 0.097 0.102 0.096 0.048 0.045 0.069 0.029 0.050 0.06
iSLAM[12] S+1 0.500 0.391 0.656 1.285 1.088 0.521 0.405 0.397 0.421 0.580 0.58
SelfVIO[ 1] M+I 0.19 015 021 016 029 008 0.09 0.1 0.11  0.08 0.15
Ours M+l | 0.050 0.055 0.069 0.092 0.124 0.035 0.045 0.073 0.052 0.086 0.07

Table 2. Evaluation of visual-inertial odometry systems on EuRoC dataset, with RMSE ATE (m), SE(3)-aligned. The upper list is all
classic VIO methods; the bottom is learning-based systems. The letters “M”, “S”” and “I”” denote monocular, stereo, and IMU.
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Figure 3. RMSE ATE changes in MH_01 (EuRoC) and room1
(TUM-VI) during online continual learning of visual and IMU.

perform VIBA with the learning rate of 1 x 1076,

4.2. Evaluation of online continual learning

To evaluate the effectiveness of online continual learning
for visual and IMU bias networks, we take the pre-trained
visual model and IMU bias random walk as our baseline
model and then compare it with visual adaptation, IMU
adaptation, and joint adaptation. The results are summa-
rized in Tab.1. To eliminate the influence of the metric
scale, all results are Sim(3) aligned and averaged over five
trials. Additionally, since the visual networks of our method
are mainly borrowed from DPVO [35], it’s reasonable to
present their results for reference, as shown in the first row
of Tab.1, where the results are Sim(3) aligned and are the

median of five trials.

Compared to the baseline, online continual learning for
either visual or IMU networks improves trajectory accuracy,
and the joint adaptation achieves the best performance, re-
sulting in over 10% improvements across all sequences.

To further validate the continual adaptability of our
method, we perform additional statistical tests during on-
line continual learning. We conduct 10 validation experi-
ments for the visual model after every 10 epochs to assess
its trajectory accuracy and distribution. The overall statisti-
cal results are illustrated in Fig.3(a). We can observe that
the ATE distribution of trajectories continually decreases
during adaptation. For the IMU model, although the con-
tinual learning of IMU bias contributes less significantly to
the improvement of trajectory accuracy compared to the vi-
sual model, we statistically compare its errors with those of
the random walk model in 10 experiments after every 30
epochs. As shown in Fig.3(b), the IMU bias model presents
lower trajectory drift and variance than bias random walk,
thus leading to more robust performance.

Two examples of each dataset are selected for trajectory
comparison of our model, with and without online contin-
ual learning. As shown in Fig. 4, the trajectories of our
online adaptation model are closer to the ground-truth than
that of our pre-trained model on four sequences, as clearly
indicated by the red boxes.

4.3. Evaluation of overall performance

To evaluate the overall performance of our VIO system, we
compare our method with state-of-the-art VIO approaches
on the EuRoC [5] and TUM-VI [27] datasets. Our system
constructs a more extensive set of keyframe association con-
straints containing temporally adjacent keyframes and spa-
tially neighboring keyframes, as described in Sec. 3.3. We
perform online continual learning on MH_01 of the EuRoC
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Figure 4. Estimated trajectories comparison on EuRoC (two sub-figures on the left) and TUM-VI dataset (two sub-figures on the right).

Seq. ROVIO VINS OKVIS DM-VIO Ours
stereo mono  stereo mono mono

corr. 1 0.47 0.63 0.33 0.19 0.14
corr.2 0.75 0.95 0.47 0.47 0.28
corr.3 0.85 1.56 0.57 0.24 0.50
corr.4 0.13 0.25 0.26 0.13 0.27
corr.5 2.09 0.77 0.39 0.16 0.21
mag.1 4.52 2.19 3.49 2.35 1.18
mag.2 13.43 3.11 2.73 2.24 1.17
mag.3 14.80 0.40 1.22 1.69 3.74
mag.4 39.73 5.12 0.77 1.02 2.49
mag.5 3.47 0.85 1.62 0.73 1.43
mag.6 X 2.29 3.91 1.19 3.12
room1 0.16 0.07 0.06 0.03 0.05
room?2 0.33 0.07 0.11 0.13 0.04
room3 0.15 0.11 0.07 0.09 0.02
room4 0.09 0.04 0.03 0.04 0.04
room5 0.12 0.20 0.07 0.06 0.04
room6 0.05 0.08 0.04 0.02 0.04

Avg. | 5071  1.099  0.949 0.634 0.867

Table 3. Evaluation of VIO methods on TUM-VI dataset, with
RMSE ATE (m), SE(3)-aligned. The corr. and mag. represent
corridor and magistrale sequences, respectively.

dataset and room1 of the TUM-VI dataset, then generalize
to other sequences in the same dataset. The results are com-
puted as the median of three trials. All trajectories are in
metric scale and SE(3)-aligned with the ground-truth.

Results on EuRoC: As presented in Tab.2, we choose
the state-of-the-art classic VIO methods and learning-based
approaches as comparison. Compared with classic meth-
ods, our method outperforms most approaches in terms of
RMSE ATE and is comparative to the performance of the
DM-VIO [30]. Furthermore, our method exhibits signif-
icantly superior performance compared to other learning-
based VIO methods. We also observe the performance of
our method exceeds the VIO system Kimera [26] and iS-
LAM [12], both with stereo-inertial settings.

Results on TUM-VI: To evaluate the generalization

ability of our method, we also conduct experiments on an-
other TUM-VI dataset [27], which is a highly challenging
handheld dataset with large-scale scenes, compared with the
EuRoC dataset [5].

We compare our method to the classic state-of-the-art
VIO methods as presented in Lukas et al. [30]. The results
are reported in Tab.3. Our method can achieve better ac-
curacy on 7 sequences than alternative methods, even com-
pared to the DM-VIO method, which shows the best result
among all methods. However, in other sequences, DM-VIO
reported better results than ours, which can be attributed
mainly to its more robust initialization and long-term scale
refinement.

5. Conclusion

This paper presents a novel VIO system named Adaptive
VIO, which combines online continual learning with clas-
sic optimization. We employ neural networks to predict
visual correspondence and IMU bias and then construct
visual-inertial bundle adjustment to tightly couple both sen-
sor measurements to refine the state estimation. The refined
estimates can be fed back to the front-end networks that
are updated through online continual learning, enabling our
system to adapt to new environments. Experimental results
illustrate that the online continual learning of our method
can improve the overall system performance, whether for
visual adaptation, IMU adaptation, or joint of them. Com-
pared with classic and learning-based state-of-the-art VIO
systems, our method can achieve competitive results and
show potential adaptation to unseen scenarios. In the future,
we plan to explore extending the online feedback mecha-
nism to various networks and improving the robustness and
efficiency of the system.
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