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Abstract

This paper endeavors to advance the precision of snap-
shot compressive imaging (SCI) reconstruction for multi-
spectral image (MSI). To achieve this, we integrate the ad-
vantageous attributes of established SCI techniques and an
image generative model, propose a novel structured zero-
shot diffusion model, dubbed DiffSCI. DiffSCI leverages the
structural insights from the deep prior and optimization-
based methodologies, complemented by the generative ca-
pabilities offered by the contemporary denoising diffusion
model. Specifically, firstly, we employ a pre-trained diffusion
model, which has been trained on a substantial corpus of
RGB images, as the generative denoiser within the Plug-and-
Play framework for the first time. This integration allows
for the successful completion of SCI reconstruction, espe-
cially in the case that current methods struggle to address
effectively. Secondly, we systematically account for spec-
tral band correlations and introduce a robust methodology
to mitigate wavelength mismatch, thus enabling seamless
adaptation of the RGB diffusion model to MSIs. Thirdly, an
accelerated algorithm is implemented to expedite the reso-
lution of the data subproblem. This augmentation not only
accelerates the convergence rate but also elevates the quality
of the reconstruction process. We present extensive testing
to show that DiffSCI exhibits discernible performance en-
hancements over prevailing self-supervised and zero-shot
approaches, surpassing even supervised transformer coun-
terparts across both simulated and real datasets. Code is at
https://github.com/PAN083/DiffSCI.

1. Introduction
Contrary to conventional RGB images, multispectral images
(MSIs) incorporate an expanded array of spectral bands, en-
abling the retention of more comprehensive and detailed
information. Therefore, MSIs are widely applied in remote
sensing [4, 21, 34, 57], medical imaging [2, 30, 36], en-
vironmental monitoring [47], etc. Owing to the advance-
ment of snapshot compressive imaging (SCI) systems [9, 18,
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Figure 1. Comparison of Transformer (MST [5]), Deep Unfolding
(TSA-Net [35]), and the proposed DiffSCI for real SCI reconstruc-
tion. The RGB image from the same scene serves as the reference.
DiffSCI can reconstruct some unsampled and compressed scene
contents by rethinking SCI through the generative diffusion model.

29, 33, 50, 51, 54], it has become feasible to acquire two-
dimensional measurements of MSIs. The decoding stage of
the SCI system aims to reconstruct the three-dimensional
MSIs from its degraded two-dimensional measurement.

Given the ill-posed nature of SCI reconstruction as an
inverse problem, existing methods still face several key chal-
lenges in accurately reconstructing certain aspects. For in-
stance, inadequately illuminated regions or areas with sharp
edges remain problematic as shown in Fig. 1. The underly-
ing reason may be that insufficient sampling occurred in the
above areas, then the reconstruction algorithm may not be
able to accurately recover the detail information. Moreover,
contemporary end-to-end (E2E) models [23, 35, 36, 39],
while processing both two-dimensional measurements and
three-dimensional MSIs maps, may inadvertently lose cru-
cial high-dimensional information due to necessary dimen-
sionality reduction. And current unsupervised methods also
fail to achieve satisfactory results. Furthermore, the perfor-
mance of the reconstruction on real-world datasets frequently
deviates from the ideal, primarily attributable to discrep-
ancies between the training dataset and the novel, unseen
testing images, as evidenced in Fig. 1.

Diffusion model [12, 16, 27, 42] has demonstrated no-
table proficiency in generating content from RGB im-
ages [59]. Leveraging its generative capacity to address
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challenging-to-reconstruct segments holds promise for en-
hancing MSIs SCI results [1, 12, 13, 22, 44]. Nonetheless,
two significant challenges must be confronted: (i) MSIs lack
extensive training data compared to RGB images due to
their broad band spectrum, amplifying temporal and GPU
resource requirements for training. Consequently, directly
training a diffusion model on MSIs is a formidable task. (ii)
Utilizing pre-trained diffusion models, primarily trained on
large RGB datasets with three channels, poses challenges
for MSI reconstruction due to their extensive band spectrum.
The task involves decoding a spatial-spectral MSI from a
single measurement, presenting significant differences in in-
put and output dimensions. Consequently, directly applying
diffusion models to MSI reconstruction is non-trivial.

Plug-and-Play (PnP) [10, 37, 43, 55, 56, 58] framework
incorporates pre-trained denoising networks into traditional
model-based methods, due to its interpretability of the prin-
ciples underlying SCI and its flexibility across different SCI
systems, has emerged as one of the most predominant recon-
struction techniques in the current scenario. Also because
the noise type in the iterative steps is additive Gaussian noise
with variance σ2

n [49], we thought of using PnP framework to
apply the pre-trained diffusion model based on massive RGB
images as denoiser to the reconstruction of MSIs. However,
there are four key challenges to embedding the diffusion
model into MSIs at present. (i)It is impossible to input MSIs
involving dozens of spectral bands directly into existing dif-
fusion models pre-trained on RGB images. (ii) There exists
a spectral connection among the bands of MSIs, and many
existing denoisers trained on RGB do not have a good grasp
of this connection. (iii) The wavelength range of RGB im-
ages is much smaller than that of MSIs, making wavelength
mismatch issues inevitable. This discrepancy could signifi-
cantly impact the performance of the diffusion model. (iv)
The sampling time required by the diffusion model in RGB
images is already substantial. For our MSIs problem, the
time required will be even greater. In order to address these
challenges, this paper makes the following contributions:

• Initially, the proposed DiffSCI leverages a diffusion model
trained on a substantial corpus of RGB images for multi-
spectral SCI reconstruction through the PnP framework,
harnessing its generative potential to enhance SCI restora-
tion outcomes. This is the first attempt to fill the research
gap to fuse the diffusion model into the PnP framework
for multispectral SCI.

• Acknowledging the inherent spectral band correlations in
MSIs that are not present in RGB images, we embark on a
comprehensive modeling of spectral correlation.

• We introduce a method to address the inevitable issue of
wavelength mismatch, given the broader spectral range of
MSIs compared to RGB images.

• We implement an accelerated strategy to get the analytic
solution of the data subproblem within DiffSCI, which

improves the convergence rate and reconstruction quality.

We validate DiffSCI through experiments on simulated
and real datasets. Comparative assessments with state-of-the-
art methods confirm DiffSCI’s superior efficiency in restor-
ing MSIs, as demonstrated by visual examples in Fig. 1.

2. Background
2.1. Degradation Model of CASSI
In Coded Aperture Snapshot Spectral Compressive Imag-
ing (CASSI) systems [19, 35, 50], two-dimensional mea-
surements Y ∈ R

H×(W+d×(B−1)) can be modulated from
three-dimensional MSI X ∈ R

H×W×B as shown in Fig. 2,
where H,W, d and B denote the MSI’s height, width, shift-
ing step and total number of wavelengths. As [8, 32], we
denote the vectorized measurement y ∈ R

n with n =
H(W + d(B − 1)). Then, given vectorized shifted MSI
x ∈ R

nB and mask Φ ∈ R
n×nB , the degradation model can

be formulated as:

y = Φx+ n, (1)

where n ∈ R
n represents the noise on measurement. SCI

reconstruction is to obtain x from the captured y and the
pre-set Φ using a reconstruction algorithm [17, 26, 48].

2.2. Denoising Diffusion Probabilistic Models
Diffusion model includes two processes: forward process and
reverse process. The forward process is to continuously add
Gaussian noise to the clean image (x0) and eventually turn
the initial image into pure Gaussian noise. Thus sampling xt

at any given timestep t can be formulated as [22]:

xt =
√
ᾱtx0 +

√
1− ᾱtε, (2)

where αt = 1 − βt, ᾱt =
∏t

k=1 αk, ε ∼ N (0, I) and βt

is a gradually increasing arithmetic sequence. The reverse
process is to gradually restore a clean image from Gaussian
noise. One reverse step of Denoising Diffusion Probabilistic
Models (DDPM) is [22]:

xt−1 =
1√
αt

(xt − βt√
1− ᾱt

εθ(xt, t)) +
√
βtεt, (3)

where εθ(xt, t) is the noise predicted by the network at tth
step and εt is standard Gaussian noise. Briefly, DDPM can be
interpreted as a process of gradually subtracting the predicted
noise from xt to restore a clean image x0.

2.3. Score-based Diffusion Model
Compared to DDPM, the score-based model can use methods
like Langevin dynamics for more efficient sampling [46],
and at the same time learn the data distribution (i.e., score
function) under various noise levels, thus acquiring more
training signals. This could help to improve the performance
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Figure 2. Top Left: Obtaining 2D measurements y of 3D MSI through the SCI system with mask Φ. Bottom Left: DiffSCI generates
desired reconstructed MSI (x0) with y and Φ through reverse diffusion and PnP framework. Right: Integrating diffusion model with PnP
method with wavelength matching (WM) method as a module of our DiffSCI method.

of the model. The forward process can also be described in
the form of a Stochastic Differential Equation (SDE):

dx = f(x, t)dt+ g(t)dw, (4)

where dw is infinitesimal white noise, f(·, t) is a vector func-
tion called the drift coefficient, and g(·, t) is a real-valued
function called the diffusion coefficient. The reverse process
can be written as:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, (5)

where pt(x) is terminal distribution density [1], and the only
unknown part ∇xlogpt(x) can be predicted through a score-
based model sθ(x, t) [25, 45].

2.4. Denoising Diffusion Implicit Models
In order to accelerate the reverse diffusion process, Denois-
ing Diffusion Implicit Models (DDIM) generates new sam-
ples with a non-Markovian process. At each step, the model
computes a denoised version of the image and then mixes
this denoised version with some noise to generate the im-
age for the next step. This process allows for more efficient
estimation and sampling of multiple future states within
the same time step, thus improving sampling efficiency and
saving time. Therefore, Eq. (3) can be rewritten as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtεθ(xt, t)√

ᾱt

)

+
√
1− ᾱt−1 − σ2

ηt
· εθ(xt, t) + σηt

εt,

(6)

the term inside the first bracket can be treated as denoised
image x̃t predicted via current xt, σηt

controls randomness.

2.5. Conditional Diffusion Model
In the context of conditional generation tasks, we are pre-
sented with a condition y, and our objective is to optimize
the probability of p(x|y). Applying Bayes’ theorem, we can

rewrite Eq. (6) as [46]:

dx = [f(x, t)− g2(t)∇x(log pt(x) + log pt(y|x))]dt+ g(t)dw,

(7)
where the unconditionally pre-trained diffusion model
achieves conditional generation by adding a classifier. So
that, given Eq. (7), one step of reverse sampling under condi-
tional circumstances can be accomplished by first taking one
reverse sampling step in the unconditional diffusion model,
and then merging it with the conditional constraint.

3. Proposed Method
3.1. Problem Definition and Solution
Diffusion-based methods could theoretically recover the de-
tails of dark areas better through their powerful generative
ability [41, 52]. Unfortunately, the existing diffusion-based
methods are mostly designed for RGB images in which the
input and output are with three channels, while the task of
SCI reconstruction involves decoding a complete multi-band
MSI from a single-band measurement. Meanwhile, limited
by the inadequate datasets of MSI and high dimension of the
data, resource consumption required for retraining diffusion
model on MSIs is high. To leverage the generative power
of diffusion models and thus compensate for the shortcom-
ings of current methods, our idea is to insert the pre-trained
diffusion model on RGB images as a denoiser into the PnP
framework to accomplish SCI reconstruction.

There are now four key problems: (i) How can diffusion
models, trained on RGB images, be effectively applied to
MSIs? (ii) How does one capture spectral correlation in
MSIs that do not exist in RGB images? (iii) What strategies
mitigate wavelength mismatching arising from inconsisten-
cies between MSI and RGB wavelengths? (iv) How can fast
and efficient sampling be achieved for MSIs with numerous
bands? To address the above issues, we proposed the DiffSCI
method with three modules: Denoising Diffusion PnP-SCI
Model, Diffusion Adaptation for MSI, and Acceleration Al-
gorithm. See Fig. 2 for an overall view.
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3.2. Denoising Diffusion PnP-SCI Model
The inversion problem of SCI can be modeled as:

x̂ = argmin
x

1

2
‖y −Φx‖2 + λP(x), (8)

where P(x) denotes diffusion MSI prior, λ is a trade-off pa-
rameter. By adopting the half-quadratic splitting (HQS) [20]
algorithm and introducing an auxiliary variable z, Eq. (8) can
be solved by iteratively solving following two subproblems:

xk+1 = argmin
x

‖y −Φx‖2 + μ‖x− zk‖2, (9)

zk+1 = argmin
z

μ

2
‖z− xk+1‖2 + λP(z). (10)

Closed-form Solution to Data Subproblem. In CASSI
system, ΦTΦ is a diagonal matrix [8, 58], so that by using
matrix inversion theorem (Woodbury matrix identities), the
closed-form solution of Eq. (9) can be easily found with fast
operation guarantee [14]:

xk+1 = zk +ΦT [y −Φzk]� [Diag(ΦΦT ) + μ], (11)

where Diag(·) extracts the diagonal elements of the ensured
matrix, � is the element-wise division of Hadamard division.
Diffusion Models as Generative Denoiser Prior. Unlike
conventional denoisers, diffusion models possess powerful
generative capabilities [15]. To utilize this generative capa-
bility, our DiffSCI model explores diffusion as the generative
denoiser prior as shown in Fig. 2 to address hard-to-recover
parts of SCI reconstruction, such as low-light and sharp
edges. We firstly establish the correlation between Eq. (10)
and diffusion model. Let x(b)

k be a three-channel image cor-
responding to bth band of MSI xk, from Eq. (10) we have:

z
(b)
k+1 = argmin

z(b)

1

2(
√

λ/μ)2
‖z(b) − x

(b)
k+1‖2 + P(z(b)),

(12)
where z

(b)
k+1 can be treated as clean image from noisy image

x
(b)
k+1 with noise level σ̄t =

√
1−ᾱt

ᾱt
. Letting σ̄t =

√
λ/μ,

with ∇xP(x) = −∇x log p(x) = −sθ(x) [59], Eq. (12)
can be rewritten as:

z
(b)
k+1 ≈ x

(b)
k+1 +

1− ᾱt

ᾱt
sθ(x

(b)
k+1, t). (13)

Hence, we can perceive z
(b)
k+1 as the clean three-channel

image x̃
(b)
k+1 reversed from x

(b)
k+1.

3.3. Diffusion Adaptation for MSI
Applying an RGB pre-trained denoising diffusion model di-
rectly to MSI would cause issues such as band number mis-
matching, insufficient spectral correlation, and wavelength
mismatching. This section will investigate these problems.

a

b

c

Figure 3. Visual effects and PSNR/SSIM presentation of (a) inde-
pendently selecting non-overlapping bands method, (b) spectral cor-
relation modeling, and (c) wavelength matching method of Scene
1 of 3 (out of 28) spectral channels.

Spectral Correlation Modeling. MSIs exhibit spec-
tral correlation between neighboring bands, denoted as
[Bi−1, Bi, Bi+1]. One approach to address this correlation
is to partition the MSIs into distinct, non-overlapping bands,

Ck = [Bi−1, Bi, Bi+1], Ck+1 = [Bi+2, Bi+3, Bi+4], (14)

but it just models the part spectral correlation which may
cause pixel jump between Bi+1 and Bi+2. Here, to model
the spectral correlation, for each band reconstruction, we
extract adjacent bands for combination,

Ck = [Bi−1, Bi, Bi+1], Ck+1 = [Bi, Bi+1, Bi+2], (15)

the combined representation serves as the input for the diffu-
sion model. Subsequently, the corresponding band from the
output is selected as the recovered band Ri for the MSIs,

Ri = D(C). (16)

Quality Comparison: The quality (Q) of the reconstructed
MSIs obtained through the spectral correlation modeling
method is significantly superior compared to individually
selecting non-overlapping bands as shown in Fig. 3, i.e.,

Q(D(C)) > Q(D([Bi−1, Bi, Bi+1])). (17)

Wavelength Matching. Based on previous experiments illus-
trated in Fig. 3, it was observed that the reconstruction perfor-
mance of forward bands was significantly inferior compared
to later bands. Analyzing the Spectral Bands and Range
within the simulated dataset revealed the division of MSIs
into 28 spectral bands spanning from 450nm to 720nm,

Bands = {Bi}28i=1, λ(Bi) ∈ [450, 720]. (18)

While the spectral bands of the RGB image are only a subset
of these, i.e.,

λ(RGB) = {660, 520, 450} ⊂ [453, 720],RGB ⊂ MSIs. (19)

Hence, establishing wavelength matching (WM) between
MSIs and RGB images is imperative. In the context of re-
covering bands with wavelengths significantly distant from
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20 31.04 30.36
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100 128.03 130.15
2.12

200 250.83 251.98
1.12

300 395.69 372.77
22.92

500 899.20 721.50
177.7

st
ep

s

Time of each step
Figure 4. Effect of sampling steps and acceleration algorithm on
scene5 of simulation dataset on PSNR and time.

RGB images, our DiffSCI method integrates them with two
bands featuring matched wavelengths, thereby mitigating
interference arising from wavelength mismatching,

WM(Bi) = Merge(Bi, Bi+n, Bi+m). (20)

Enhanced Metrics: Experimental findings demonstrate sig-
nificant improvement in both PSNR and SSIM when em-
ploying this approach in conjunction with previous spectral
correlation modeling methods, as illustrated in Fig. 3.
3.4. Acceleration Algorithm
Motivated by the fact that the sampling process of diffusion
model is time-consuming and unconditional, we employ an
acceleration algorithm to achieve faster and more efficient
sampling. As mentioned in Eq. (11), current methods usually
calculate residuals by (y − Φzk), which only uses informa-
tion about the current zk for iterative updates. As a result,
this approach leads to slow convergence speed and fails to
effectively address the issue of data proximity.

On this basis, we introduce a variable y1, which can
be defined as y1 = y1 + (y − Φzk), can be treated as
the accumulation of residuals and calculate residuals by
calculating (y1 − Φzk) iteratively. On the one hand, y1

can be used to incorporate more residual information for
updating z, thereby improving reconstruction quality. On the
other hand, a form similar to Nesterov acceleration [40] is
employed to expedite the convergence speed.
Accumulation of Residuals. Since y1 is updated at each
iteration, it contains all the residual information from pre-
vious iterations. This means that when we update z using
y1, we are effectively utilizing information from all previous
iterations, not just the most recent one.
Methods Pertaining to Nesterov-Type Acceleration. The
closed-form solution Eq. (11) can be rewritten as:

xk+1 = zk +ΦT [y1 −Φzk]� [Diag(ΦΦT ) + μ] (21)

= zk +ΦT [
k∑

i=1

(y −Φzi)−Φzk]� [Diag(ΦΦT ) + μ].

Thus, we can approximate that xk+1 is derived from∑k
i=1(y−Φzi) and zk, resembling Nesterov’s acceleration

Algorithm 1 DiffSCI sampling

Require: sθ, T ,B, y, Φ, σn, {σ̄t}Tt=1, ζ, λ
1: Initialize xT ∼ N (0, I), y1 = 0, pre-calculate ρt �

λσ2
n/σ̄

2
t .

2: for t = T to 1 do
3: for b = 1 to B do
4: x(b)

t = WM(Bb) // wavelength mathcing method
5: x̃(b)

t = 1√
ᾱt
(x(b)

t + (1 − ᾱt)sθ(x
(b)
t , t)) //predict

clean image from x(b)
t with score based model

6: end for
7: Get x̃t // combination
8: y1 = y1 + (y − Φx̃t) // calculate and accumulate

residuals
9: x̂

(t)
0 = x̃t+sc ·ΦT (y1−Φx̃t)� [Diag(ΦΦT )+ρt]

// acceleration for data subproblem
10: ε̂ = 1√

1−ᾱt
(xt −√

ᾱtx̂
(t)

0 )

11: εt ∼ N (0, I)
12: xt−1 =

√
ᾱt−1x̂

(t)

0 +
√
1− ᾱt−1(

√
1− ζε̂+

√
ζεt)

// diffusion to xt−1 to finish one step sampling
13: end for
14: return x0

concept. This enhances the efficacy of the data fidelity term
and accelerates the overall convergence rate of the algorithm,
as evidenced by experimental comparisons in Fig. 4.

Meanwhile, we define guidance scale (sc) as the itera-
tive step size as the data subproblem and test the effect of
different sc on the results, which are shown in Fig. 10.

3.5. DiffSCI Method
In DiffSCI, we embed diffusion model into SCI via PnP
framework. To elaborate, we can rewrite it as:

x
(b)
t

WM(Bb)←−−−−− xt, (22)

x̃
(b)
t = argmin

z(b)

1

2σ̄2
t

‖z(b) − x
(b)
t ‖2 + P(z(b)), (23)

x̃t
combination←−−−−−− x̃

(b)
t , (24)

x̂
(t)
0 = argmin

x
‖y −Φ(x)‖2 + ρt‖x− x̃t‖2, (25)

xt−1 ← x̂
(t)
0 , (26)

where ρt = λ(σn/σ̄t)
2, xt is noisy MSI at timestep t, x(b)

t

denotes the three-channel image at timestep t obtained by
WM(Bb) from xt, x̃

(b)
t is noiseless three-channel image of

x
(b)
t and x̃t denotes noiseless MSI through combination.

DiffSCI Sampling. According to previous discussion, the
clean estimated MSI x̂(t)

0 can be obtained from xt with the
condition y. However, this estimation is not accurate, we can
add noise and diffusion to timestep t − 1 as Eq. (26). x̂(t)

0

with condition y can be firstly gotten, whose conditional
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Table 1. Comparisons between DiffSCI and SOTA methods on 10 simulation scenes (S1∼S10). Category, PSNR (upper entry in each cell),
and SSIM (lower entry in each cell) are reported. The best and second best results are highlighted in bold and underlined, respectively.

Algorithms Category Reference S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TwIST [3] Model TIP 2007
25.16
0.700

23.02
0.604

21.40
0.711

30.19
0.851

21.41
0.635

20.95
0.644

22.20
0.643

21.82
0.650

22.42
0.690

22.67
0.569

23.12
0.669

GAP-TV [53] Model ICIP 2016
26.04
0.817

21.66
0.724

24.86
0.732

30.51
0.875

24.33
0.778

25.11
0.790

18.28
0.730

23.94
0.780

21.77
0.732

23.08
0.721

23.96
0.768

DeSCI [28] Model TPAMI 2019
28.38
0.803

26.00
0.701

23.11
0.730

28.26
0.855

25.41
0.778

24.66
0.764

24.96
0.725

24.15
0.747

23.56
0.701

24.17
0.677

25.27
0.748

λ-Net [39]
CNN

(Supervised) ICCV 2019
30.10
0.849

28.49
0.805

27.73
0.870

37.01
0.934

26.19
0.817

28.64
0.853

26.47
0.806

26.09
0.831

27.50
0.826

27.13
0.816

28.53
0.841

TSA-Net [35]
CNN

(Supervised) ECCV 2020
32.31
0.894

31.03
0.863

32.15
0.916

37.95
0.958

29.47
0.884

31.06
0.902

30.02
0.880

29.22
0.886

31.14
0.909

29.18
0.861

31.35
0.895

HDNet [23]
Transformer
(Supervised) CVPR 2022

34.96
0.937

35.64
0.943

35.55
0.946

41.64
0.976

32.56
0.948

34.33
0.954

33.27
0.928

32.26
0.945

34.17
0.944

32.22
0.940

34.66
0.946

MST-L [5]
Transformer
(Supervised) CVPR 2022

35.30
0.944

36.13
0.948

35.66
0.954

40.05
0.976

32.84
0.949

34.56
0.955

33.80
0.930

32.74
0.950

34.37
0.944

32.63
0.943

34.81
0.949

MST++ [7]
Transformer
(Supervised) CVPR 2022

35.57
0.945

36.22
0.949

37.00
0.959

42.86
0.980

33.27
0.954

35.27
0.960

34.05
0.936

33.50
0.956

36.17
0.956

33.26
0.949

35.72
0.955

CST-L+ [6]
Transformer
(Supervised) ECCV 2022

35.64
0.951

36.79
0.957

37.71
0.965

41.38
0.981

32.95
0.957

35.58
0.966

34.54
0.947

34.07
0.964

35.62
0.959

32.82
0.949

35.71
0.960

DGSMP [24]
Deep Unfolding

(Supervised) CVPR 2021
33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

ADMM-Net [32]
Deep Unfolding

(Supervised) ICCV 2019
34.03
0.919

33.57
0.904

34.82
0.933

39.46
0.971

31.83
0.924

32.47
0.926

32.01
0.898

30.49
0.907

33.38
0.917

30.55
0.899

33.26
0.920

GAP-Net [38]
Deep Unfolding

(Supervised) IJCV 2023
33.63
0.913

33.19
0.902

33.96
0.931

39.14
0.971

31.44
0.921

32.29
0.927

31.79
0.903

30.25
0.907

33.06
0.916

30.14
0.898

32.89
0.919

PnP-CASSI [58]
PnP

(Zero-Shot) PR 2021
29.09
0.799

28.05
0.708

30.15
0.850

39.17
0.939

27.45
0.798

26.16
0.752

26.92
0.736

24.92
0.710

27.99
0.752

25.58
0.664

28.55
0.771

DIP-HSI [37]
PnP

(Zero-Shot) ICCV 2021
31.32
0.855

25.89
0.699

29.91
0.839

38.69
0.926

27.45
0.796

29.53
0.824

27.46
0.700

27.69
0.802

33.46
0.863

26.10
0.733

29.75
0.803

HLRTF [31]
Tensor Network

(Self-Supervised) CVPR 2022
34.82
0.909

33.83
0.887

34.16
0.958

38.67
0.979

32.27
0.924

32.52
0.906

32.69
0.913

31.28
0.871

36.62
0.958

30.06
0.855

33.69
0.916

DiffSCI PnP-Diffusion
(Zero-Shot) Ours

34.96
0.907

34.60
0.905

39.83
0.949

42.65
0.951

35.21
0.946

33.12
0.917

36.29
0.944

30.42
0.887

37.27
0.931

28.49
0.821

35.28
0.916

distribution is p(x|y), and estimated clean image can be
used to calculate the noise with condition y, which is ε̂ =

1√
1−ᾱt

(xt −√
ᾱtx̂0(t)). Then, the diffusion expression like

Eq. (6) is:

xt−1 =
√
ᾱt−1x̂

(t)
0 +

√
1− ᾱt−1 − σ2

ηt
ε̂+ σηt

εt. (27)

Based on previous experience [59], the noise term σηt could
be set to 0, and hyperparameter ζ can be used to introduce
noise to balance εt and ε̂, and Eq. (27) can be rewritten as:

xt−1 =
√
ᾱt−1x̂

(t)
0 +

√
1− ᾱt−1(

√
1− ζε̂+

√
ζεt), (28)

where ζ controls the variance of the noise added at each step,
when ζ = 0, our method becomes a deterministic process.

Finally, we summarize the algorithm for DiffSCI-based
MSI reconstruction in Algorithm 1. Further details regarding
the model are presented in the supplementary materials.

4. Experiments
4.1. Experiment Setup
Similar to most existing methods [8, 23, 24, 35], we select
10 scenes with spatial size 256×256 and 28 bands from
KAIST [11] as simulation dataset. Meanwhile, we select 5
MSIs with spatial size 660×660 and 28 bands, captured by
the CASSI system for real dataset [35], then we crop data

blocks of size 256×256 for testing. The pre-trained diffusion
model uses a model trained by [59].
Parameter Setting. Through all our experiments, we use
the same linear noise schedule {βt}, and DDIM sampling.
The shift step is set to 2. And in the wavelength matching
method, we choose 21th and 28th bands to form a three-
channel image. Meanwhile, we set the reverse initial time
step to 600 and set the sampling steps to 20, 100, 200, 300
and 500 respectively for testing. After experiments, we find
setting λ = 15, η = 1, ζ = 1 in DDIM process and sc = 1
in data proximal subproblem can achieve the best results.
Comparisons with SOTA Methods. We test the perfor-
mance of our proposed DiffSCI method on the simulation
dataset. We compare the results of our DiffSCI method with
15 SOTA methods set up strictly according to the paper code
including three model-based methods (TwIST [3], GAP-
TV [53], DESCI [28]), six E2E methods (λ-Net [39], TSA-
NET [35], HDNET [23], MST-L [5], MST++ [7], CST-L-
PLUS [6]), three deep unfolding methods (DGSMP [24],
GAP-NET [38], ADMM-NET [32]), two PnP methods (PnP-
CASSI [58], DIP-MSI [37]) and one tensor network method
(HLRTF [31]) on 10 simulation scenes. From Table 1, it can
be observed that our unsupervised method has a significant
improvement compared to other unsupervised methods. The
gap between its performance on PSNR and current super-
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Scene 1

GT Patch ADMM-Net CST-L+ DGSMP DIP-HSI GAP-Net HDNet

HLRTF λ-Net MST-L MST++ PnP-CASSI TSA-Net DiffSCI

Scene 2

GT Patch ADMM-Net CST-L+ DGSMP DIP-HSI GAP-Net HDNet

HLRTF λ-Net MST-L MST++ PnP-CASSI TSA-Net DiffSCI
Figure 5. Visual comparison on KAIST dataset. Top is Scene 1 at wavelength 487.0nm. Bottom is Scene 2 at wavelength 575.5nm

Figure 6. Spectral Density Curves.
vised SOTA methods such as MST-L [5] and MST++ [7]
is also narrowing. Moreover, we do not need to retrain a
model on MSIs. Therefore, the proposed DiffSCI achieves a
balance between flexibility and performance.

4.2. Qualitative Experiments
Results on Simulation Dataset. Fig. 5 shows the display
effects of MSI reconstruction between our DiffSCI method
and other SOTA methods on the 8th band of Scene 1 (top)
and 21th band of Scene 2 (bottom). From the enlarged part
of the Scene 1 image, we can see that our DiffSCI provides
superior visual effects of detailed contents, cleaner textures,
and fewer artifacts compared to other SOTA methods. Fur-
thermore, to demonstrate the powerful generative capabilities
of the diffusion model, we can observe the magnified sec-
tion of Scene 2. Our method makes the edges of the blocks
sharper, the shapes and patterns closer to the GT, whereas
previous methods either generate over-smoothed results thus
losing the complexity of fine-grained structures or introduce
artifacts. This suggests that the generative capabilities of
diffusion can be effectively applied to reconstruct darker
regions, thereby filling in the gaps in the current method.

Fig. 6 presents the density-wavelength spectral curves. The
spectral curves from DiffSCI achieve the highest correlation
with the reference curves, even exceeding the performance
of the current leading method, DAUHST-9 [8]. This demon-
strates the superiority of our proposed DiffSCI in terms of
spectral-dimension consistency.
Results on Real Dataset. We also test the reconstruction
capability of DiffSCI on real dataset. Fig. 7 and Fig. 11 show
the visual comparison between DiffSCI and other SOTA
methods. It is evident that our reconstruction results are more
detailed and have fewer artifacts. Compared to the blurred
results reconstructed by other methods, our method Diff-
SCI demonstrates that the generative ability of the diffusion
model can provide good robustness against noise, leading to
enhanced results in MSI reconstruction. More experimental
results are shown in the supplementary materials.

5. Ablation Study
Effects of Acceleration Algorithm. We propose a resid-
ual accumulation method aimed at achieving acceleration.
Through experimentation, employing this accelerated al-
gorithm showcases enhancements not only in convergence
speed but also in performance, maintaining consistent param-
eters. Figure 4 demonstrates the impact of the acceleration
algorithm on both PSNR and time, utilizing an identical num-
ber of sampling steps. Evidently, the accelerated algorithm
yields an improvement of 5-6dB in average performance
while expediting convergence.
Effects of tstart. Our DiffSCI can perform the reverse pro-
cess from partially noisy images instead of starting the recov-
ery from pure Gaussian noise. To demonstrate the impact of
tstart on performance briefly, we show how PSNR changes
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Real Measurement

RGB Ref. Meas CST-L DGSMP GAP-Net HDNet

HLRTF λ-Net MST-L MST++ TSA-Net DiffSCI
Figure 7. Visual comparison of SCI reconstruction methods on Scene 1 of real dataset at wavelength 536.6nm.

tstart (steps)

PS
N

R
/d

b

SS
IM

(a) 200 (b) 400 (c) 600 (d) 1000
Figure 8. Effect of tstart on Scene 5 of KAIST.

λ
ζ

0.1 1.0 10 100 1000

1.0
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Figure 9. Visual comparison (left) and PSNR comparison (right) of
the effect of hyperparameters ζ and λ on Scene 3 of KAIST.

in Fig. 8. We select sampling steps with 100 for all experi-
ments and find that our method achieves the best results in
terms of PSNR and SSIM at tstart = 600.
Effects of Sampling Steps. To study the impact of the num-
ber of sampling steps on the reconstruction quality assess-
ment parameters PSNR and SSIM, and thus balance the
sampling speed with the recovery quality, we conduct experi-
ments with different numbers of sampling steps. As shown in
Fig. 4, we set sampling steps T ∈ [20, 100, 200, 300, 500].
Effects of λ, ζ and sc. DiffSCI has three hyperparameters
λ, ζ and sc, which manage the strength of the condition
guidance, the level of noise added at each timestep and the
update step size in data proximity subproblems. As shown
in the left figure of Fig. 9, when ζ approaches 1, we get

(a) GT (b) 0.5 (c) 1.0 (d) 2.0
Figure 10. Effect of sc (0.5, 1.0, 2.0) on Scene 7 of KAIST.

RGB Ref. DGSMP GAP-Net HDNet HLRTF

λ-Net MST-L MST++ TSA-Net DiffSCI
Figure 11. Visual comparison on Scene 1 of real dataset.

the best reconstruction quality. Meanwhile, Fig. 10 demon-
strates a close relationship between sc and the quality of the
reconstruction.

6. Conclusion
In this paper, we are the first to integrate diffusion model with
Plug-and-Play algorithm, applying the generative capabili-
ties of the diffusion model to MSI reconstruction, which com-
pensated for the shortcomings of current methods. Specif-
ically, by utilizing the wavelength matching method and
HQS method, we successfully applied the HQS-based dif-
fusion model, which was pre-trained on RGB images, as
a denoising prior in MSI reconstruction. Meanwhile, we
introduced acceleration algorithms when solving the data
subproblem. Experimental results on both simulated and real
datasets highlighted the superior adaptability, efficiency, and
applicability of DiffSCI compared to SOTA methods.
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[3] José M Bioucas-Dias and Mário AT Figueiredo. A new
TwIST: Two-step iterative shrinkage/thresholding algorithms
for image restoration. IEEE TIP, 2007. 6

[4] Marcus Borengasser, William S Hungate, and Russell
Watkins. Hyperspectral remote sensing: principles and appli-
cations. CRC press, 2007. 1

[5] Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin
Yuan, Yulun Zhang, Radu Timofte, and Luc Van Gool. Mask-
guided spectral-wise transformer for efficient hyperspectral
image reconstruction. In CVPR, 2022. 1, 6, 7

[6] Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin
Yuan, Yulun Zhang, Radu Timofte, and Luc Van Gool. Coarse-
to-fine sparse transformer for hyperspectral image reconstruc-
tion. In ECCV, pages 686–704. Springer, 2022. 6

[7] Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun
Zhang, Hanspeter Pfister, Radu Timofte, and Luc Van Gool.
Mst++: Multi-stage spectral-wise transformer for efficient
spectral reconstruction. In CVPRW, 2022. 6, 7

[8] Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Henghui
Ding, Yulun Zhang, Radu Timofte, and Luc V Gool.
Degradation-aware unfolding half-shuffle transformer for
spectral compressive imaging. In NeurIPS, 2022. 2, 4, 6,
7

[9] Xun Cao, Tao Yue, Xing Lin, Stephen Lin, Xin Yuan, Qiong-
hai Dai, Lawrence Carin, and David J. Brady. Computational
snapshot multispectral cameras: Toward dynamic capture of
the spectral world. IEEE SPM, 2016. 1

[10] Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-
play admm for image restoration: Fixed-point convergence
and applications. IEEE TCI, 3(1):84–98, 2016. 2

[11] Inchang Choi, MH Kim, D Gutierrez, DS Jeon, and G Nam.
High-quality hyperspectral reconstruction using a spectral
prior. In Technical report, 2017. 6

[12] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. Ilvr: Conditioning method for
denoising diffusion probabilistic models. arXiv preprint
arXiv:2108.02938, 2021. 1, 2

[13] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L
Klasky, and Jong Chul Ye. Diffusion posterior sam-
pling for general noisy inverse problems. arXiv preprint
arXiv:2209.14687, 2022. 2

[14] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An
iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Communications on Pure and Ap-
plied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 57(11):1413–1457, 2004. 4

[15] Kamil Deja, Anna Kuzina, Tomasz Trzcinski, and Jakub Tom-
czak. On analyzing generative and denoising capabilities of

diffusion-based deep generative models. In NeurIPS, pages
26218–26229, 2022. 4

[16] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, pages 8780–8794,
2021. 1

[17] David L Donoho. Compressed sensing. IEEE TIT, 2006. 2
[18] Hao Du, Xin Tong, Xun Cao, and Stephen Lin. A prism-based

system for multispectral video acquisition. In ICCV, 2009. 1
[19] Michael E Gehm, Renu John, David J Brady, Rebecca M Wil-

lett, and Timothy J Schulz. Single-shot compressive spectral
imaging with a dual-disperser architecture. Optics express,
2007. 2

[20] Donald Geman and Chengda Yang. Nonlinear image recovery
with half-quadratic regularization. IEEE TIP, 4(7):932–946,
1995. 4

[21] Alexander FH Goetz, Gregg Vane, Jerry E Solomon, and Bar-
rett N Rock. Imaging spectrometry for earth remote sensing.
Science, 228(4704):1147–1153, 1985. 1

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In NeurIPS, pages 6840–6851,
2020. 2

[23] Xiaowan Hu, Yuanhao Cai, Jing Lin, Haoqian Wang, Xin
Yuan, Yulun Zhang, Radu Timofte, and Luc Van Gool. Hdnet:
High-resolution dual-domain learning for spectral compres-
sive imaging. In CVPR, 2022. 1, 6

[24] Tao Huang, Weisheng Dong, Xin Yuan, Jinjian Wu, and
Guangming Shi. Deep gaussian scale mixture prior for spec-
tral compressive imaging. In CVPR, 2021. 6

[25] Aapo Hyvärinen and Peter Dayan. Estimation of non-
normalized statistical models by score matching. JMLR, 6(4),
2005. 3

[26] Shirin Jalali and Xin Yuan. Snapshot compressed sensing:
Performance bounds and algorithms. IEEE TIT, 2019. 2

[27] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising diffusion restoration models. In NeurIPS,
pages 23593–23606, 2022. 1

[28] Yang Liu, Xin Yuan, Jinli Suo, David Brady, and Qionghai
Dai. Rank minimization for snapshot compressive imaging.
IEEE TPAMI, 2019. 6

[29] Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David
Kittle, Lawrence Carin, Guillermo Sapiro, and David J Brady.
Coded aperture compressive temporal imaging. Optics Ex-
press, 2013. 1

[30] Guolan Lu and Baowei Fei. Medical hyperspectral imaging:
a review. Journal of Biomedical Optics, 2014. 1

[31] Yisi Luo, Xi-Le Zhao, Deyu Meng, and Tai-Xiang Jiang.
Hlrtf: Hierarchical low-rank tensor factorization for inverse
problems in multi-dimensional imaging. In CVPR, pages
19303–19312, 2022. 6

[32] Jiawei Ma, Xiao-Yang Liu, Zheng Shou, and Xin Yuan. Deep
tensor admm-net for snapshot compressive imaging. In ICCV,
2019. 2, 6

[33] Xiao Ma, Xin Yuan, Chen Fu, and Gonzalo R Arce. Led-based
compressive spectral-temporal imaging. Optics Express, 2021.
1

[34] Farid Melgani and Lorenzo Bruzzone. Classification of hyper-
spectral remote sensing images with support vector machines.
IEEE TGRS, 2004. 1

25305



[35] Ziyi Meng, Jiawei Ma, and Xin Yuan. End-to-end low
cost compressive spectral imaging with spatial-spectral self-
attention. In ECCV, 2020. 1, 2, 6

[36] Ziyi Meng, Mu Qiao, Jiawei Ma, Zhenming Yu, Kun Xu, and
Xin Yuan. Snapshot multispectral endomicroscopy. Optics
Letters, 2020. 1

[37] Ziyi Meng, Zhenming Yu, Kun Xu, and Xin Yuan. Self-
supervised neural networks for spectral snapshot compressive
imaging. In ICCV, 2021. 2, 6

[38] Ziyi Meng, Xin Yuan, and Shirin Jalali. Deep unfolding for
snapshot compressive imaging. IJCV, 131(11):2933–2958,
2023. 6

[39] Xin Miao, Xin Yuan, Yunchen Pu, and Vassilis Athitsos. l-net:
Reconstruct hyperspectral images from a snapshot measure-
ment. In ICCV, 2019. 1, 6

[40] Yurii Nesterov. A method for unconstrained convex mini-
mization problem with the rate of convergence o (1/k2). In
Dokl. Akad. Nauk. SSSR, page 543, 1983. 5

[41] Cindy M Nguyen, Eric R Chan, Alexander W Bergman,
and Gordon Wetzstein. Diffusion in the dark: A diffu-
sion model for low-light text recognition. arXiv preprint
arXiv:2303.04291, 2023. 3

[42] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, pages
8162–8171. PMLR, 2021. 1

[43] Mu Qiao, Xuan Liu, and Xin Yuan. Snapshot spatial–temporal
compressive imaging. Optics letters, 2020. 2

[44] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020. 2

[45] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In NeurIPS,
2019. 3

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456, 2020. 2, 3

[47] Prasad S Thenkabail, Murali Krishna Gumma, Pardhasaradhi
Teluguntla, and AM Irshad. Hyperspectral remote sensing
of vegetation and agricultural crops. Photogrammetric Engi-
neering & Remote Sensing (TSI), 80(8):695–723, 2014. 1

[48] Joel A Tropp and Anna C Gilbert. Signal recovery from
random measurements via orthogonal matching pursuit. IEEE
TIT, 2007. 2

[49] Singanallur V Venkatakrishnan, Charles A Bouman, and
Brendt Wohlberg. Plug-and-play priors for model based re-
construction. In 2013 IEEE global conference on signal and
information processing, pages 945–948. IEEE, 2013. 2

[50] Ashwin Wagadarikar, Renu John, Rebecca Willett, and David
Brady. Single disperser design for coded aperture snapshot
spectral imaging. Applied Optics, 2008. 1, 2

[51] Ashwin A Wagadarikar, Nikos P Pitsianis, Xiaobai Sun, and
David J Brady. Video rate spectral imaging using a coded
aperture snapshot spectral imager. Optics Express, 2009. 1

[52] Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma.
Diff-retinex: Rethinking low-light image enhancement with
a generative diffusion model. In ICCV, pages 12302–12311,
2023. 3

[53] Xin Yuan. Generalized alternating projection based total
variation minimization for compressive sensing. In ICIP,
2016. 6

[54] Xin Yuan, Tsung-Han Tsai, Ruoyu Zhu, Patrick Llull, David
Brady, and Lawrence Carin. Compressive hyperspectral imag-
ing with side information. IEEE JSTSP, 2015. 1

[55] Xin Yuan, Yang Liu, Jinli Suo, and Qionghai Dai. Plug-and-
play algorithms for large-scale snapshot compressive imaging.
In CVPR, 2020. 2

[56] Xin Yuan, Yang Liu, Jinli Suo, Fredo Durand, and Qionghai
Dai. Plug-and-play algorithms for video snapshot compres-
sive imaging. IEEE TPAMI, 2021. 2

[57] Yuan Yuan, Xiangtao Zheng, and Xiaoqiang Lu. Hyperspec-
tral image superresolution by transfer learning. IEEE JSTAE-
ORS, 2017. 1

[58] Siming Zheng, Yang Liu, Ziyi Meng, Mu Qiao, Zhishen Tong,
Xiaoyu Yang, Shensheng Han, and Xin Yuan. Deep plug-and-
play priors for spectral snapshot compressive imaging. PR, 9
(2):B18–B29, 2021. 2, 4, 6

[59] Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan
Wen, Radu Timofte, and Luc Van Gool. Denoising diffusion
models for plug-and-play image restoration. In CVPR, pages
1219–1229, 2023. 1, 4, 6

25306


