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Abstract

Depression Recognition (DR) poses a considerable chal-
lenge, especially in the context of the growing concerns
surrounding privacy. Traditional automatic diagnosis of
DR technology necessitates the use of facial images, un-
doubtedly expose the patient identity features and poses
privacy risks. In order to mitigate the potential risks as-
sociated with the inappropriate disclosure of patient fa-
cial images, we design a new imaging system to erase the
identity information of captured facial images while re-
tain disease-relevant features. It is irreversible for identity
information recovery while preserving essential disease-
related characteristics necessary for accurate DR. More
specifically, we try to record a de-identified facial image
(erasing the identifiable features as much as possible) by
a learnable lens, which is optimized in conjunction with
the following DR task as well as a range of face analy-
sis related auxiliary tasks in an end-to-end manner. These
aforementioned strategies form our final Optical deep De-
pression Recognition network (OpticalDR). Experiments on
CelebA, AVEC 2013, and AVEC 2014 datasets demonstrate
that our OpticalDR has achieved state-of-the-art privacy
protection performance with an average AUC of 0.51 on
popular facial recognition models, and competitive results
for DR with MAE/RMSE of 7.53/8.48 on AVEC 2013 and
7.89/8.82 on AVEC 2014, respectively. Code is available at
https://github.com/divertingPan/OpticalDR.

1. Introduction
Automated depression diagnosis (ADD) approaches

have emerged based on various biometric features, in-
cluding acoustics, expressions, and electroencephalogram
[1, 8, 31, 41]. Among these approaches, facial-based ADD
has become mainstream [10,11,26], offering the advantages
of easy access and non-contact assessment. However, facial
images from depression patients are particularly sensitive,
as they inherently encompass biometric identifiers and pose
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Figure 1. Different DR approaches: (a) conventional facial
recognition with no privacy preservation, (b) facial features-based
approaches with limited privacy preservation, and (c) our full
privacy-preserving approach that doesn’t generate facial images.
The DR approaches with regular cameras could be at the risk
of sensitive information access by attackers after the images are
captured. However, with our approach, no sensitive information
would be captured or stored, whether on the client or the server.

privacy risk. Consequently, it is of paramount importance to
address the safeguarding of facial information when devel-
oping ADD systems to uphold medical privacy and security.

To minimize these risks, previous studies [10, 11, 26]
introduce facial image anonymization techniques. Rather
than the full facial images, facial biometric features
(identity-protected) such as facial landmarks are used for
DR (Fig. 1). These endeavors, however, are still dependent
on the presence of visually accessible images for feature ex-
traction, which poses a significant threat to privacy. There-
fore, it is crucial to develop a more secure and robust facial
imaging approach at the initial stage of data collection.

In the field of Deep Optics [32], the lens can be param-
eterized to a distinct layer within the deep learning model.
Inspired by this, in this paper we integrate the Deep Op-
tics into deep learning network and advises an Optical deep
DR network – which we term a OpticalDR – that provides
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a graceful solution for privacy-protective DR. Compared
to the fixed blurring or defocus image processing meth-
ods, which might compromise depression-related features
when removing privacy information, the proposed lens is
learnable and can be optimized in an end-to-end manner,
like a specialized feature extractor on the front of deep net-
work. As demonstrated in Fig. 2, we develop a learnable
single-lens optical model to extract depression-related fea-
tures while erasing sensitive privacy information from the
observation. In the subsequent deep learning model, we de-
sign a progressive learning tactic to train our network. To
harness abundant supervision (label) information from var-
ious face datasets, we incrementally incorporate different
tasks, i.e.,identity recognition, emotion recognition and DR,
to assist our deep DR network training. It is worth noting
that acquiring a complete dataset with labels for identity,
emotion, and depression is extremely challenging in prac-
tice. Consequently, the adoption of progressive learning of-
fers a viable strategy to leverage the available supervision
information from existing datasets. Our contributions can
be summarized as follows:

1. We have successfully simulated a privacy lens with pa-
rameterized model. The simulated lens is co-optimized
alongside the subsequent model to ensure facial pri-
vacy protection while retaining valuable features.

2. We introduce OpticalDR, a novel framework that inte-
grates an optical lens with a deep learning model to
extract depression-related information from privacy-
preserving images. The entire pipeline operates with-
out the need for storing or transmitting facial images,
ensuring a heightened level of privacy protection.

3. Our experimental results demonstrate competitiveness
on the AVEC 2013 and AVEC 2014 datasets in com-
parison to existing DR approaches. Furthermore, the
optical component in OpticalDR exhibits robustness
against various types of attacks.

2. Related Works

Visual Depression Recognition. Contemporary research
in DR primarily relies on audio and video signals obtained
from volunteers during interviews. Datasets such as AVEC
2013 [40] and AVEC 2014 [39] contain original facial im-
ages within video recordings. Some studies [3, 25] have
concentrated on recognizing depression from video frames
that contain the original facial images. Early approaches
were centered on hand-crafted designed feature extraction
and appropriate regression models [13,40] for DR using vi-
sual data. Growing concerns about privacy have emerged.
As a result, the AVEC 2017 [28] dataset takes a privacy-
centric approach, providing only facial landmarks and other

manually engineered facial features. Some research em-
ployed facial landmarks and other physiological data as
facial features, often considering the motion of landmark
points [27] or incorporating factors like Action Units and
head pose [10, 35]. Furthermore, studies have shown that
human behavior representations [33, 34] can significantly
contribute to DR from facial data. More recently, deep
learning-based methods [42, 43], or a combination of hand-
crafted and deep features [30, 37], have been applied, re-
sulting in substantial improvements in recognition perfor-
mance. Nevertheless, approaches relying on facial features
may not necessitate the use of original images during infer-
ence, but these features still need to be extracted from facial
images, exposing potential risks of facial data leakage.

Deep Optics for Privacy Protection. Recently, Deep Op-
tics [32] has gained more of the spotlight in research com-
munities with the advancement of deep learning. It involves
the joint optimization of optical systems and downstream
tasks, and has demonstrated success in various computer
vision tasks such as depth estimation [18], 3D object de-
tection [5], extended depth of field, super-resolution imag-
ing [32], and image classification [4]. The underlying phi-
losophy is to capture the downstream task friendly images
to improve the performance of high-level applications.

To achieve a privacy protection high-level visual task, the
optical imaging system is designed to intentionally degrade
image quality and obscure private information, while still
enabling downstream tasks. This approach has been suc-
cessfully demonstrated in lensless camera facial recogni-
tion [14,19], deep optimized lens cameras for action recog-
nition [15], and pose estimation [16]. This work focuses
on exploring facial privacy protection using Deep Optics,
primarily on facial images. The goal is to extract facial de-
pression features from privacy-preserving images for a DR
system with enhanced privacy.

3. The Proposed Method
We are primarily focused on the task of privacy-

preserving DR. The main objective is to create a personal
information erased “face” image using a specially opti-
mized lens, which is achieved through joint optimization
with the DR model. Therefore, OpticalDR offers privacy
preservation at a hardware level, ensuring that no privacy
information is generated or stored in digital devices. This
entire process is illustrated in Fig. 2. The OpticalDR com-
prises two key components: the optical model and the deep
feature extraction model. In the optical model, we parame-
terize a learnable single optical element for generating pri-
vacy preserving image (Sec. 3.1). The deep feature model
is responsible for the subsequent extraction of emotional
and depression features and the fusion of these features for
the final prediction (Sec. 3.2). Following that, we explain
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Figure 2. The architecture of the proposed OpticalDR. The optical model comprises a thin lens for image capture in front of the sensor.
The deep learning model utilizes the captured image and is jointly optimized with the optical component for depression score recognition.

the auxiliary tasks and the corresponding loss functions de-
signed for optimizing the OpticalDR (Sec. 3.3).

3.1. Privacy Erasing Optical Model

The optical model corresponds to the image generation
process captured by the camera sensor. The objective of
this model is to produce an image that is visually unrecog-
nizable and doesn’t reveal the identity of the subject. Simul-
taneously, this process must preserve the important features
required for DR. This is achieved through end-to-end joint
optimization with the feature extraction model, utilizing ap-
propriate loss functions.

To accomplish this, we derive a wave-based image for-
mation model using a single thin lens, as discussed in [32].
The key variables in the optical model include the surface
profile denoted as H, represented by Zernike term coeffi-
cients α, and the PSF represented as P of the lens, which
can be derived from H. The image passing through the lens
can be calculated from P using the following equation:

Ic (x, y) =

∫
(Iλ ∗Pλ) (x, y)κc (λ) dλ+ η, (1)

where Iλ represents the original scene from the real world
with the particular light wavelength λ which corresponds
to the red, green, and blue light in the RGB image model.

κc represents the sensitivity of sensors to these three wave-
lengths. Ic represents the generated image on the sensor
plane. Additionally, we account for sensor noise by intro-
ducing the term η, which is modeled as Gaussian noise with
η ∼ N (0, σ2).

The phase change induced by the thin lens is given by

Φ (x′, y′) =
2π∆n

λ
H (x′, y′) . (2)

Here, ∆n represents the refractive index difference between
air and the lens material. H can be expressed as:

H =

q∑
j=1

αjZj , (3)

where Zj represents the j-th term of the Zernike polynomial
in Noll notation [24].

Assuming a point light source at optical infinity with am-
plitude A and phase Φd. The PSF P for the sensor at a
distance z can be formulated as follows:

Pλ (x, y) =
∣∣∣F {

A (x′, y′) eiΦ(x
′,y′)ei

π
λz (x

′2+y′2)
}∣∣∣2 .

(4)
In this way, the PSF P of the learnable optical element

can be simulated through the introduced wave-based image
formation module. Since the P is determined by the optical
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height map H, we learn from Eq. 3 that we only need to
learn the optimization variable {αj}qj=1.

3.2. Recognition from Privacy-Preserving Images

In this section, we elaborate on the proposed multi-task
deep network for the extraction of intrinsic facial features.
In the realm of DR, the incorporation of spatial feature re-
lationships of face image is very important and has shown
great efficacy [25, 30]. Therefore, we propose to leverage
the Spatial Attention Network (SANet) for the extraction
of intrinsic facial features. Importantly, this module can
be seamlessly integrated into any convolutional network ar-
chitecture. In the context of our SANet implementation,
we have chosen to adopt a ResNet [12] backbone enhanced
with the SA module.

Our approach unfolds in four progressive learning
stages. Initially, we pretrain the SANet for recognizing fa-
cial features from optically blurred images. This step will
harness the benefits of large-scale face recognition database
to erase the identity information as well as preserve the fa-
cial structure information by the landmark prediction loss.
Subsequently, the SANet undergoes fine-tuning to extract
emotional features from the blurred image to further extract
the DR-related information. Finally, we progressively train
the SANet by the DR score loss to represent the depression-
related features. The emotional and depression information
extracted from these two SANets is harmoniously fused us-
ing a multimodal transformer [36] layer to obtain the final
depression score.

The fusion of the emotional and depression feature is ex-
ecuted through the multimodal transformer. This operation
can be succinctly expressed in the following simplified for-
mulation for the two modalities, representing emotional and
depression conditions:

Z{E,D} = [ZE→D;ZD→E ], (5)

where ZE→D and ZD→E correspond to the cross-modality
attention information, respectively. In this way, the adop-
tion of progressive learning offers an efficient strategy to
leverage the available supervision information from differ-
ent tasks.

3.3. Joint Optimization of Optical Model and DR

In practical, it is very hard to obtain a full dataset with
the labels of identity, emotion and depression, simultane-
ously. Therefore, in this paper we introduce the progressive
learning to train our OpticalDR network, which requires
progressively training of the optical lens, a SANet for emo-
tion recognition and a SANet for DR. The final score is pre-
dicted by a fusion model with extra training with only the
DR dataset. In the following, we will present the details to
obtain our DR network.

Step 1: Pretrain the privacy preserving lens. To
achieve privacy preservation, we try to render the im-
ages that are visually indistinct from the input image, and
unidentifiable by deep learning face recognition models.
For visual degradation, we maximize the Mean Squared Er-
ror (MSE) between the generated image and the real image,
Lv = ||Ic − Iλ||22.

To further obfuscate the identity features in the images,
we adopt the inverse triplet loss defined as:

Lid = max(d(faid, f
n
id)− d(faid, f

p
id) +m, 0), (6)

where m is a margin value, faid, f
p
id, f

n
id denote the feature

embeddings extracted by SANet from the anchor image,
the image with the same identity as the anchor, and the im-
age with a different identity than the anchor after passing
through the lens. d(·) represents the feature distance. We
employ hypersphere distance [21] with a margin r to mea-
sure it, i.e., d(x, y) = |∥x∥22 − ∥y∥22|+ r.

Landmarks have proven to be crucial for conveying es-
sential features in DR [26]. To ensure that the blurred image
retains these landmarks and the vital depression-related fea-
tures, we introduce a landmark recognition loss Llm, which
can be calculated by the differences of coordinates of the
ground truth and predicted landmarks. We obtain the land-
marks followed the extracted facial embedding and using
non-linear mapping from embedding to landmarks.

The total loss for optimizing the identity information can
be formulated as:

Li = αLv + βLid + γLlm, (7)

where α, β, and γ are the balancing parameters and are set
to −0.1, 1 and 1, respectively.

Step 2: Integrate emotional information. In this step,
we incorporate emotional information for two primary pur-
poses. First, it serves as emotional prior knowledge to aid
in DR, as depression patients often exhibit abnormal emo-
tional arousal. Second, it facilitates the model in learning
emotional features from the image captured by the lens.
The SANet utilizes the weights obtained from the SANet
trained for identity obfuscation in Step 1 and then is trained
to discriminate the facial emotion classes ŷc with its predic-
tion probability of each class pc, using the following cross-
entropy loss:

Le = −
∑
c

ŷc log(pc). (8)

The last feature layer of the SANet is retained as the emo-
tional feature fe.

Step 3: Integrate depression information. To intro-
duce a coarse-grained feature of depression, and bridge the
features of emotion and depression, we employ a SANet
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Table 1. Mapping of depression levels to scores based on the BDI-
II criteria in the depression stage training for Ld

Score 0-13 14-19 20-28 29-63
Level 0 (minimal) 1 (mild) 2 (moderate) 3 (severe)

that utilizes the weights obtained from the SANet trained in
Step 2. The SANet is fine-tuned to gather information about
depression levels.

In contrast to prior label distribution designs [43], we
convert the real-valued depression score into a discrete
probability distribution, represented as p = [p1, p2, . . . , pc],
where c represents the classes of depression levels based on
depression scores, as outlined in Tab. 1. The fine-tuning
process minimizes the distribution similarity between the
SANet’s prediction pd and p̂d, and employs a histogram
loss for the label-aware similarity between positive feature
pairs (where both samples are from the same depression
level) and negative pairs, then define the histogram H+ and
H− as defined in [38]. Then the depression metric loss can
be defined as:

Ld = LAH(p̂d,pd,H
+,H−). (9)

The depression feature is extracted from the last feature
layer of the SANet and is represented as fd.

Step 4: Fuse emotional and depression features. Fi-
nally, a fusion model is expected to fuse the emotional
feature and the coarse-grained depression feature for fine-
grained depression score prediction. The complete Opti-
calDR comprises the pretrained weights of the optics model,
the emotion SANet, and the depression SANet. At this
stage, the network is frozen, and a final fusion layer is intro-
duced. This layer is trained using the depression score Ŝ to
enable the transformer to learn the mapping from emotional
and depression features to the predicted depression score S.
The optimization of the fusion layer is achieved using the
MSE loss:

Ls =
∑ 1

n
(Ŝ − S)2. (10)

Above-mentioned four steps are sequentially applied to
optimize the corresponding part of OpticalDR, as depicted
in Fig. 2, by the specified loss functions. The emotion
SANet is fine-tuned from the identity SANet, and the de-
pression SANet is fine-tuned from the emotion SANet to
incorporate prior information.

4. Experiments

4.1. Datasets

In our experiments, we utilized the following datasets:
i) CelebA [22]: This dataset comprises human face images

with corresponding identity labels, totaling 10,177 identi-
ties and 202,599 samples. We assigned the last 1,000 sam-
ples for the validation set and the remainder for training. ii)
CK+ [23]: It comprises 593 series of facial images from
123 identities, spanning 7 emotion classes for all samples.
We allocated 300 samples for validation and utilized the re-
mainder for training. iii) AVEC 2013 [40]: This dataset
includes 150 video clips with 82 unique participants, exclu-
sively employed in the validation and testing phases of our
experiment. iv) AVEC 2014 [39]: Comprising 300 video
clips from 83 individuals, both AVEC 2013 and AVEC 2014
record data in a human-computer interaction scenario. The
labels, assessed using the Beck Depression Inventory-II [2],
range from 0 to 63. Frames extracted from both datasets
are cropped, aligned, and employed for training, validation,
and testing based on the official split.

4.2. Analysis of Optical Lens

To assess the impact of DR when employing an opti-
mizable lens to distort images in comparison to conven-
tional image blurring methods, we established a pipeline
for images subjected to various privacy-preserving strate-
gies. We conducted comparisons of the results obtained
from Gaussian blurring with different σ of the Gaussian
kernel, and different defocus strengths using an approxi-
mate bokeh PSF with different bokeh ball diameters. To
evaluate the privacy-preserving efficacy of each solution,
we employed four widely used face recognition models:
IR152 [12], IRSE50 [17], ArcFace [7], and Facenet [29],
to measure the recognizability in terms of the Area Under
the Curve (AUC). Furthermore, Fig. 3 presents the Receiver
Operating Characteristic (ROC) curves for our OpticalDR
and alternative strategies. Detailed comparisons of DR and
privacy-preserving performance are provided in Fig. 4. It
is observed that increasing blurring strength enhances pri-
vacy preservation (closer to random guess ROC), but this
comes at the cost of a substantial decrease in DR perfor-
mance. Notably, our learnable privacy-preserving approach
demonstrates a significant advantage by achieving the low-
est prediction error in Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). This suggests that the
optical lens retains more useful features even when the im-
age is significantly distorted.

From the colored lines in Tab. 2, it is evident that while
Gaussian blur and defocus approaches show similar perfor-
mance to the optics solution in privacy preservation, the
recognition error increases (yellow lines), and vice versa
(blue lines). In the case of defocus with a diameter of 275
and the Gaussian blurring with σ is 50, the privacy pre-
serving performance is quite similar to the optics solution,
but the visualization in Fig. 5 reveals additional identify in-
formation such as skin color and a potential gender of the
subject. In the broader context of privacy, this information

1307



OpticalDR
Random Guess

None
Gaussian (σ=15)

Defocus (d=500)

Gaussian (σ=30)
Gaussian (σ=100)
Defocus (d=50)
Defocus (d=150)

Facenet

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

OpticalDR
Random Guess

None
Gaussian (σ=15)

Defocus (d=500)

Gaussian (σ=30)
Gaussian (σ=100)
Defocus (d=50)
Defocus (d=150)

IR152

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

OpticalDR
Random Guess

None
Gaussian (σ=15)

Defocus (d=500)

Gaussian (σ=30)
Gaussian (σ=100)
Defocus (d=50)
Defocus (d=150)

IRSE50

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

OpticalDR
Random Guess

None
Gaussian (σ=15)

Defocus (d=500)

Gaussian (σ=30)
Gaussian (σ=100)
Defocus (d=50)
Defocus (d=150)

ArcFace

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 3. ROC curves depicting the performance of facial recognition models under privacy-preserving approaches, including Gaussian
blur and defocus methods, alongside our OpticalDR.

Figure 4. Trade-off between privacy preservation and DR perfor-
mance among different privacy-preserving strategies.

is also considered sensitive and should be safeguarded. In
contrast, the optics solution exhibits a more robust image
against various sensitive information leakage.

4.3. Analysis of Privacy Robustness

We conducted a series of tests to evaluate the deconvo-
lution method on facial images captured through the lens.
These tests encompassed the following scenarios: i) Non-
blind deconvolution with known PSF: This test simulates
a scenario in which an attacker has access to the device and
can obtain the PSF of the camera. We applied the non-
blind Wiener deconvolution method under these conditions;
ii) Deblur GAN: We investigated the effectiveness of blind
restoration approaches using GAN-based image restoration
techniques, as outlined in [20]. This method simulates a
scenario in which an attacker has access to the camera and
can collect clear and blurred image pairs, but doesn’t get the
PSF. The attacker can employ these pairs to train a deblur-
ring model for image recovery.

The input data for these tests consisted of blurred im-
ages and their corresponding restored images, as illustrated
in Fig. 6. It is evident that both the deconvolution and de-
blurring approaches exhibited limitations in restoring the
images, characterized by a multitude of aberrations and sig-
nificant loss of visual information.

4.4. Analysis of Facial Features

We explored the cumulative impact of incorporating in-
formation from identity (I), emotions (E), depression fea-
tures (D), and the fusion model for depression score pre-
diction (S). Throughout the auxiliary task, we assessed the
performance of the respective tasks, and the results are pre-
sented in Tab. 3. Regarding Step 1 (I), our results reveal
that the generated images, after training the lens, effectively
erase identity information, as evidenced by an AUC of iden-
tity recognition near 0.5.

Subsequently, the emotion recognition task in Step 2 and
the DR task in Step 3 involve the incorporation of emotion
and depression-related information, which is utilized in the
final depression score prediction. We conducted tests us-
ing four training methods at Step 3: i) Training both the
lens and the SANet from scratch (D); ii) Training the lens
from scratch while initializing the SANet with the weights
obtained in Step 3 (E → D); iii) Training the SANet from
scratch while fine-tuning the lens acquired in Step 1 (I →
D); iv) Loading both the lens and SANet weights acquired
in Step 2 (I → E → D). These trained models only con-
tain the lens and the depression SANet, as shown in Step 3
in Fig. 2. Then the models underwent evaluation to assess
their performance in predicting depression scores.

Comparing cases with emotion recognition task (E → D
and I → E → D) to those without emotion recognition pre-
training information (D and I → D) signifies whether emo-
tional information stored in the network is utilized in ex-
tracting depression-related features. It is observed that uti-
lizing emotional information significantly improves the DR
performance, with an approximately 10% improvement, un-
derscoring the importance of incorporating emotional infor-
mation for extracting depression-related features.

Contrasting cases with lens pretraining (I → D and I →
E → D) and without lens pretraining (D and E → D) evalu-
ates the impact of the blend of identity features in the optical
lens on DR. The incorporation of these identity features ex-
tracted by the lens can boost the recognition performance,
but it is less crucial compared to the emotional features ex-
tracted from the SANet (7% vs. 10% improvement). This
suggests that information stored within the SANet is more
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Table 2. DR performance in terms of MAE and RMSE of different privacy-preserving methods evaluated on AVEC 2013 and AVEC
2014 datasets. Additionally, privacy-preserving performance assessed on the CelebA dataset, measuring the AUC under various facial
recognition models. Average error and AUC values are computed for a comprehensive comparison.

AVEC 2013 AVEC 2014 AUC (CelebA)Methods MAE RMSE MAE RMSE Facenet IR152 IRSE50 ArcFace Error AUC

None 7.25 9.57 7.27 9.53 0.99 0.98 0.80 0.87 8.41 0.91
Gaussian (σ=15) 7.81 9.94 7.82 9.83 0.90 0.94 0.72 0.69 8.85 0.81
Gaussian (σ=25) 8.37 10.06 8.47 9.93 0.67 0.61 0.55 0.51 9.21 0.59
Gaussian (σ=50) 9.44 11.33 9.13 11.34 0.58 0.57 0.54 0.52 10.31 0.55
Defocus (d=50) 7.67 9.84 7.78 9.73 0.97 0.97 0.79 0.72 8.76 0.86
Defocus (d=150) 8.13 10.39 8.14 10.29 0.71 0.60 0.53 0.53 9.24 0.59
Defocus (d=275) 8.66 10.73 8.64 10.56 0.53 0.54 0.50 0.51 9.65 0.52
OpticalDR 7.92 8.39 7.48 8.57 0.51 0.51 0.51 0.51 8.09 0.51

(b) Gaussian blur

50015 100

(c) Defocus (d) Optics(a) Original image

25 50 15050 275

Figure 5. The visual effects of (a) the original facial image, (b) Gaussian blur with different sigma values, (c) defocus with varying
diameters of bokeh balls, and (d) the optical solution for facial privacy preservation.

(b) Captured 

image

(d) Restored 

by DeblurGAN

(a) Original 

image

(c) Deconvolution 

with PSF

Figure 6. A quantitative comparison of samples from CelebA is
provided. The displayed images include the simulated captured
images along with their corresponding deblurred results. It is
noteworthy that the restored images generally exhibit poor visual
recognition of human faces and appearances.

critical in DR than that stored in the lens, although both
contribute to performance enhancement.

Furthermore, comparing the model with lens and SANet
trained from scratch (D), a noticeable performance im-
provement is observed when pretraining the emotion SANet
and concurrently training the lens from scratch (E → D).
However, pretraining the lens while omitting information

Table 3. Performance of the proposed auxiliary tasks during the
pretraining stages. I, E, D, S represent the Step 1 to Step 4 from
the previous joint optimization stages, respectively.

Task CelebA AVEC 2013 AVEC 2014
ErrorAUC MAE RMSE MAE RMSE

I 0.5036 - - - - -
D 0.5352 10.35 11.28 10.31 11.25 10.80
E → D 0.5328 9.18 10.04 9.06 9.88 9.54
I → D 0.5026 10.15 11.03 10.27 11.15 10.65
I → E → D 0.5038 8.54 9.63 8.87 9.97 9.25
S 0.5367 8.46 11.12 8.62 11.29 9.87
I → S 0.5013 8.24 10.19 8.60 10.62 9.41
I → E → D → S 0.5016 7.92 8.39 7.48 8.57 8.09

in the emotion SANet (I → D) results in only a slight per-
formance improvement. This underscores that the emotion
model already contains advanced features suitable for rec-
ognizing images obscured by the lens, particularly benefi-
cial for DR.

To demonstrate the necessity of the designed auxiliary
tasks in OpticalDR, we conducted tests with i) training the
entire model without any auxiliary task but only with Ls (S),
ii) pretraining only using the privacy-preserving lens in Step
1 (I → S), and iii) the full pretraining strategy (I → E → D
→ S). Comparison of DR errors indicates the effectiveness
of auxiliary tasks for improved DR performance. Moreover,
AUC values in Tab. 3 show that the model maintains privacy
preservation as training steps progress, evidenced by close
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Table 4. Comparison with previous methods for DR on the testing
sets of AVEC 2013 and AVEC 2014.

Method Privacy-
Preserving

AVEC 2013 AVEC 2014
MAE RMSE MAE RMSE

Baseline [39, 40] × 10.88 13.61 8.86 10.86
ViT [9] × 8.14 10.67 8.37 10.59
STA-DRN (SA) [25] × 7.25 9.57 7.27 9.53
LQGDNet [30] × 6.38 8.20 6.08 7.84
LQGDNet + lens √∖ 10.56 13.43 10.27 13.41
ViT + lens

√
8.16 10.49 8.25 10.53

STA-DRN (SA) + lens
√

8.62 9.53 8.67 9.68
OpticalDR

√
7.53 8.48 7.89 8.82

facial recognition AUC between I → S and I → E → D → S.
This demonstrates that training with emotional and depres-
sion information does not compromise privacy-preserving
ability.

4.5. Comparison with the State-of-the-Arts

We compared OpticalDR with state-of-the-art depres-
sion recognition (DR) methods on the AVEC 2013 and
AVEC 2014 test sets. The comparisons include (1) ViT [9]:
A state-of-the-art universal vision model. (2) LQGDNet
[30]: A state-of-the-art single-image facial DR approach.
(3) STA-DRN (SA) [25]: A state-of-the-art 3D video-based
DR approach utilizing the proposed spatial module. Ad-
ditionally, we jointly trained these models with a lens for
privacy-preserving purposes.

Analyzing Tab. 4 yields key insights. Firstly, integrat-
ing optical components directly into state-of-the-art ap-
proaches, without employing additional learning strategies
for feature enhancement, does not arise a significant im-
provement in performance. Furthermore, LQGDNet, the
utilization of quaternion representation of features within
facial images, still requires a visible facial image as in-
put. Thus, we denoted this approach as √∖ in Tab. 4. The
non-differentiable nature of the quaternion feature extractor
poses a challenge for joint optimization. Additionally, at-
tempting to optically blur the global facial image can nega-
tively impact the performance of DR. Conversely, when ViT
is coupled with a lens, there is a slight improvement in per-
formance, especially in terms of RMSE. This improvement
indicates that optical interventions can offer additional in-
formation prior to ViT’s processing, which can have a posi-
tive impact on DR.

Our OpticalDR achieves superior DR performance com-
pared to ViT + lens and STA-DRN (SA) + lens, underscoring
the effectiveness of our approach over directly joint train-
ing of optical and deep learning models. However, it falls
short of outperforming LQGDNet, which leverages quater-
nion representation for extracting local features, still de-
pending on visible clear facial images. This indicates that
LQGDNet benefits from explicit prior information on local
features like eyes and mouth. In contrast, OpticalDR, rely-
ing on the SANet, adaptively learns spatial features without

(c) OpticalDR(b) STA-DRN (SA) + lens(a) ViT + lens

AU15(Lip Corner Depressor)
AU28(Lip Suck)

AU07(Lid Tightener)
AU09(Nose Wrinkler)

AU20(Lip stretcher)

AU02(Outer Brow Raiser)
AU26(Jaw Drop)

AU26(Jaw Drop)

AU01(Inner Brow Raiser)
AU02(Outer Brow Raiser)
AU14(Dimpler)

AU02(Outer Brow Raiser)
AU20(Lip stretcher)

AU04(Brow Lowerer)
AU09(Nose Wrinkler)
AU20(Lip stretcher)

Figure 7. CAM results for optical privacy-preserving DR ap-
proaches.

the need for such explicit information, as shown in Fig. 7.
Visualizing CAM [6] results for OpticalDR and compar-

ing with ViT + lens and STA-DRN (SA) + lens (Fig. 7), Opti-
calDR actives on specific regions with clear borders, poten-
tially containing features for DR. Contrastingly, the simple
combination of optical and vision deep models results in
nonsensical or unchanging activation on the facial area, un-
derscoring the necessity and efficiency of OpticalDR’s joint
optimization strategy.

Overall, OpticalDR has proven to be the most effective
solution in terms of privacy preservation and DR. It suc-
cessfully protects facial privacy while achieving low MAE
and RMSE, demonstrating its outstanding performance in
DR tasks.

5. Conclusion

We present OpticalDR, an innovative privacy-preserving
method for DR. Unlike previous image-based approaches,
OpticalDR prioritizes capturing privacy-preserving images
using an optimized lens to preserve depression-related fea-
tures while concealing identity information. Crucially,
OpticalDR operates without relying on visually identifi-
able facial images during system inference, ensuring ro-
bust privacy protection. Experimental results showcase Op-
ticalDR’s state-of-the-art privacy-preserving performance
and competitive DR recognition on established bench-
marks. In the future, our efforts will involve the physical
deployment of the entire system and the integration of ad-
ditional modalities, including temporal information, EEG
data, and consultation transcripts, all within the framework
designed for privacy preservation.
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