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Figure 1. Diffusion Handles enable 3D-aware object edits (e.g., 3D translations and rotations), on images generated by diffusion models.
Edited images exhibit plausible changes in perspective, occlusion, lighting, shadow, and other 3D effects, without explicitly solving the
inverse graphics problem. Our method does not require training or fine-tuning and can be applied to real images through image inversion.

Abstract

Diffusion Handles is a novel approach to enable 3D ob-
ject edits on diffusion images, requiring only existing pre-
trained diffusion models depth estimation, without any fine-
tuning or 3D object retrieval. The edited results remain
plausible, photo-real, and preserve object identity. Diffu-
sion Handles address a critically missing facet of generative
image-based creative design. Our key insight is to lift dif-
fusion activations for a selected object to 3D using a proxy
depth, 3D-transform the depth and associated activations,
and project them back to image space. The diffusion process
guided by the manipulated activations produces plausible
edited images showing complex 3D occlusion and lighting
effects. We evaluate Diffusion Handles: quantitatively, on a
large synthetic data benchmark; and qualitatively by a user
study, showing our output to be more plausible, and better
than prior art at both, 3D editing and identity control.

1. Introduction

Text-to-image diffusion models [45, 46, 48] are the state-of-
the-art in image generation. They produce photo-real out-

puts, effortlessly generate complex, high-resolution images,
and support various forms of conditional generation [58].
Pretrained diffusion models can be repurposed to support
many image processing tasks [47], such as, image in- or
out-painting, superresolution, and denoising. However,
there is limited support for object-centric editing in such
images, where the 3D composition of scene objects can
be changed, while preserving their identity. Existing ap-
proaches treat such edits in image space, including: cut-
ting and pasting objects to desired locations using object
masks and regenerating the background [2]; using gradi-
ent domain edits with some identity control [13]; or lever-
aging novel view synthesis with fine-tuned diffusion mod-
els [30] that are costly to train and can reduce model gen-
erality. These approaches are particularly restrictive and
do not directly support 3D object edits involving transla-
tions, rotations, and changes in scene perspective. Moving
the car to a new location on the beach in Figure 1 for ex-
ample, is non-trivial if the car’s identity has to be retained.

Input Target 3D Edit Our Output

The 3D edit
should success-
fully capture
complex light
and shading
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effects, as well as a change in perspective (see gizmos in
inset), which is hard to achieve by enforcing object pixel
intensity invariance used in image-space identity control.

We propose Diffusion Handles to support object-level
edits aware of the underlying (hidden) 3D object structure.
We demonstrate how to generate plausible 3D edits without
solving the inverse graphics problem [22, 60] (i.e., without
needing to recover the full scene geometry, materials, and
illumination). In other words, we enable 3D-aware edits
directly on 2D images generated by a diffusion model or
actual photos that can be inverted [31] into a diffusion model.
At the heart of our method is a novel approach to lift diffusion
activations to 3D, encoded as coarse proxy depth that can
be estimated by a method (e.g., [6]). The lifted activations
can then be moved or transformed in 3D scene space and
projected back to the image plane using the estimated depth
maps. We use these projected activation maps to guide
the diffusion process to produce the final edited image (see
Figure 1). Our approach is simple and effective, leverages
pretrained diffusion models without fine-tuning or additional
training data, and produces plausible results even when the
estimated depths have moderate warps.

Our method enables a range of 3D modifications to ob-
jects, such as translations that affect perspective, scaling,
and some rotation. We accomplish this by converting the
depth map into a point cloud and then applying the desired
3D transformation. To obtain this point cloud, we need the
depth map of the object, either from a known template or by
estimating it from the image. When working with a known
template, precise alignment is necessary. When using an
estimated depth, disocclusions can result in unknown depth
regions, leading to uncertainty and loss of identity when the
transformation is too extreme, especially with large rotations.

We evaluate our method on various editing scenarios,
including real and generated images. Since our approach
allows for a new type of 3D-aware edits with diffusion-based
generated images, we compare it to other editing methods
capable of applying similar edits. Specifically, we compare
against a 2D editing method using a similar activation-based
guidance [13] and a 3D-aware editing method based on novel
view synthesis that fine-tunes a diffusion model using 3D
information [30]. In contrast, our method allows 3D-aware
editing without the need for fine-tuning (see Table 1). We
demonstrate the generalizability of our method on a large

Table 1. Comparison to related methods. Our approach is unique
in allowing 3D edits, without any additional training, or 3D data.
Our Zero123 baseline allows for 2.5D edits (denoted by *).

3DIT
[30]

DSG
[13]

Zero123
[27]

Obj.Stitch
[51] Ours

Training-free? × ✓ × × ✓
No 3D data? × ✓ × ✓ ✓

3D edits? ✓ × ✓∗ × ✓

number of qualitative examples. Additionally, we conduct a
user study to compare our results against existing baselines
and ablated versions of our approach. In summary, to the best
of our knowledge, we present the first editing framework that
supports fine-grained 3D control over the object layout in
diffusion images, without requiring any additional training.

2. Related Work
Text-Guided Image Generation. Seminal approaches for
creating images from text prompts relied on a combina-
tion of image retrieval and composition using user-created
layouts [10]. Later, several representation learning tech-
niques targeted creating joint representation for images and
text [32, 43, 52]. In the last few years, such multimodal ap-
proaches were scaled to hundreds of millions of text-image
pairs by using modern deep learning architectures and con-
trastive learning [44]. Using those representations, initial
attempts at image generation did so through a combination
of gradient-based optimization and image priors – some
hand-crafted [14], others data-driven [11, 40]. However,
they suffered from slow runtime and had trouble generating
visually appealing imagery. These issues were addressed by
several techniques that trained models for outputting images
from text prompts. Such approaches relied on autoregres-
sive [8, 12, 56] and diffusion models [15, 36, 45]. Follow-up
works also investigated how to provide finer-grained control
over the generative process (beyond text prompts) like us-
ing regional prompting [4, 57] and additional user-provided
image information like depth maps and edges [34, 58]. De-
spite the photo-real quality of the generated images, those
approaches do not allow users to manipulate existing im-
age elements and, more importantly, provide any 3D-aware
controls. While our approach relies on existing diffusion
models [46], we extend their capabilities (without the need
for any additional training) to allow users to manipulate
objects in real or generated images in a 3D-aware manner.

Image Editing with Generative Models. Generative mod-
els have been powering several image editing tasks, like in-
painting [28], object insertion and harmonization [25] and
stylization [54]. For these traditional tasks, data-driven mod-
els offer a way to achieve superior control with less user
intervention. They also enabled new tasks like synthesiz-
ing images from semantic segmentation maps [34, 39, 58]
and text-annotated layouts [3, 4, 9, 15, 26]. More recently,
open-ended text-guided image editing has been explored by
combining large language models with text-to-image gen-
erators [5, 7]. Despite the impressive results, the previous
methods do not allow users to preserve the appearance of
objects while manipulating the image elements. This issue
can be partially addressed by allowing users to edit images
by dragging relevant keypoints [33, 38]. Such controls are
adequate for performing object deformation but might be
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cumbersome for other tasks like changing object position-
ing in the scene. Closely related to our work, Epstein et
al. [13] address the problem of editing existing image ele-
ments by manipulating the intermediate representation of
text-to-image models. They demonstrate how to alter indi-
vidual object size and 2D position without resorting to any
additional training. Unfortunately, none of the aforemen-
tioned techniques target 3D object manipulation in images.
For that reason, they are incapable of addressing occlusions
between edited entities in an image, their 3D position and
out-of-plane rotation, for example. On the other hand, our
approach is specifically designed to handle these scenarios.

3D-aware Image Editing. Several works have investi-
gated editing 2D images in a 3D-aware manner by changing
the viewpoint in which a picture was taken. This was ini-
tially attempted with hand-crafted priors [19], but was lately
enhanced by data-driven models performing a combination
of inpainting and monocular depth estimation [21, 37, 49].
While those techniques allow users to perform fine-grained
camera motions, they do not investigate how to manipulate
particular objects in the scene. Early attempts were not fully
automatic but required significant user input [60] and exist-
ing 3D models [23]. More recent work relies in massive
3D object datasets [30] or in training regimes relying in
image-based models which hurt their interaction time [42]
or generality [35]. Zero123 [27], a notable recent method,
does allow pseudo-3D rotations but requires access to 3D
models to create a dataset in order to fine-tune a control-
Net [58] backend. In this work, we propose a technique that
does not rely on any additional training, does not require
large 3D datasets, has an inference time similar to generating
an image in text-to-image models, and allows editing in-
the-wild images without category-specific restrictions while
maintaining realistic image quality.

3. Overview
Our goal is to imbue text-to-image generation pipelines with
3D-aware object edit handles, without requiring any fine-
tuning of the generative model. In particular, given an image
of a 3D scene and a corresponding text prompt, our method
allows the user to perform a 3D transform, such as transla-
tion, rotation and scale, on any object described in the text
prompt. Figure 1 shows several examples.

The given image is first inverted with a diffusion model,
and an image of the edited scene is generated by the same
diffusion model, guided by additional loss terms that we
design to fulfill three tasks: (i) to generate a 3D-transformed
version of the edited object, (ii) to otherwise preserve the
appearance of all objects in the 3D scene, and (iii) to still
allow leveraging the prior of the diffusion model so that
the edited object realistically interacts with its environment
through lighting, shadows, etc.

We achieve these tasks by lifting activations of the diffu-
sion model to the 3D surface of scene objects, where we can
apply 3D transformations. The 3D-transformed activations
can then serve as guidance when generating the edited image.
We find that the strong prior of the diffusion model makes
our method robust to inaccuracies and artifacts of the 3D
surfaces we use in our edits, and that the approximate depth
obtained from existing depth estimators is sufficient to allow
for a wide range of 3D edits.

4. Diffusion Models
Training. During training, a fixed process adds a random
amount of noise to an image x to get a noisy image x̃(t):

x̃(t) =
√
α(t) x+

√
1− α(t) ϵ, (1)

where ϵ ∼ N (0, I) is Gaussian noise, and t ∈ [0, T ] param-
eterizes a noise schedule α that determines the amount of
noise in x̃(t), with α(0) = 1 (no noise) and α(T ) = 0 (pure
noise). A denoiser ϵθ with parameters θ is trained to predict
the noise ϵ using the following loss:

Ldiff = w(t)∥ϵθ(x̃(t); t, y, d)− ϵ∥22 (2)

where d is a depth map, y is an encoding of a text prompt,
and w(t) is a weighting scheme for different parameters
t. The parameter t is sampled uniformly from [0, T ] in
each training iteration. Once ϵθ is trained, −ϵθ(x̃(t); t, y, d)
defines a vector field in image space that points towards the
natural (non-noisy) image manifold.

Inference. At inference time, an image is generated by
starting from pure noise x̃(T ), and following the vector
field −ϵθ(x̃(t); t, y, d) towards the natural image manifold.
Multiple different samplers have been proposed [17, 50] to
find a trajectory xT , xT−1, . . . , x0 with a fixed number of
T discrete steps that starts at xT := x̃(T ) and ends in an
image x0 close to the natural image manifold. Our method
is compatible with any standard sampler; we describe the
sampler we use in our experiments in the supplemental.

Guidance. The vector field ϵθ(x̃(t); t, y, d) can be guided
to minimize a custom energy G(x̃(t); t, y, d) by biasing each
step with the gradient ∇x̃(t) G of the energy. Apart from
this form of guidance, most samplers also use classifier-
free guidance [16] to more closely follow the text prompt
y, by moving the vector ϵθ(x̃(t); t, y, d) away from the
vector ϵθ(x̃(t); t, ∅, d) obtained with the encoding ∅ of an
empty text prompt (also called null-text). Similar to previous
work [13], we combine the two forms of guidance:

ϵGθ (x̃(t); t, y, d) = (1 + µ) ϵθ(x̃(t); t, y, d) (3)
− µ ϵθ(x̃(t); t, ∅, d)
+ λ ∇x̃(t) G(x̃(t); t, y, d).
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Figure 2. Overview. Starting from an input image x, we first estimate depth d and invert the image into a depth-to-image diffusion model,
giving us activations Ψ that reconstruct the input image. A 3D transform supplied by a user can then be applied to Ψ by lifting them to the
3D surfaces given by the depth map (Figure 3 shows details). Using the 3D transformed Ψ′ as guidance in a diffusion model allows us to
generate an edited image that adheres to the edit, preserves the identity of the input image, and is plausible.

The main focus of our work is designing a guidance energy G
that biases the diffusion steps to produce a 3D-edited version
of an input image. Section 5 up to 5.1 describes how we
obtain the features needed for this energy, and Section 5.2
defines the energy.

Latent Diffusion. In our experiments, we use a latent dif-
fusion model where images xt contain features from a pre-
trained latent space, rather than RGB values; but our method
is also compatible with non-latent diffusion models, so we
keep our description general.

5. 3D Edits for Diffusion Models
To perform 3D image edits that preserve both realism and
identity of the original image, we 3D-transform the fea-
ture spaces of intermediate layers in a pre-trained diffusion
model, the activations Ψ. These activations describe the
appearance and identity of objects in a generated image. We
use activations in the decoder of the denoiser ϵθ, but only use
layers with sufficient resolution to avoid inaccurate guidance;
we use layers 2 and 3 (the last two layers) in the decoder of
the StableDiffusion v2 [46] depth-conditioned denoiser. We
denote activations of layer i in denoising step t as Ψi,t.

To apply a 3D edit to a given image x with text prompt
y, we proceed in three steps: (i) we invert the image to
reconstruct it with a diffusion model and save activations Ψ
of the generation process; (ii) we apply the 3D edit to the
activations; (iii) we re-generate the image using the edited
activations as guidance. In the remainder of this section we
are going to describe these three steps in more detail.

Inverting the Input Image. Given an input image x, cor-
responding text prompt encoding y, we obtain the activa-
tions by inverting the image with our diffusion model using
Null-Text Inversion [31]. As our diffusion model is also con-
ditioned by a depth map, the depth map can either be given
as input (for example, from a synthetic 3D scene), or we
estimate it using an existing monocular depth estimator [6].
Note that the depth-conditioned diffusion model is tolerant

Step 1: Lift Step 2: Transform Step 3: Project

d d 0d 0

ª0ª

Figure 3. 3D edit of depth and activations. (i) Activations Ψ are
lifted to 3D surfaces; (ii) the depth d is 3D-transformed, together
with the lifted Ψ; (iii) the transformed Ψ are projected back to the
image plane. Section 5.1 gives a detailed description of these steps.

to inaccuracies and noise in the depth map, as it was trained
on estimated depth maps. The inversion gives us an initial
noise xT and an updated null-text encoding ∅′ that we can
use to reconstruct the input image x in an inference pass
xT , . . . , x0 of the diffusion model, such that x0 ≈ x. Dur-
ing inference pass, we record activations Ψi,t of all relevant
layers i and time steps t.

5.1. Performing the 3D-Edit

To perform a 3D edit in our 2D image x, we define a simple
warping mechanism W . Given a flow field F : [0, 1]2 7→ R2,
and a signal X : [0, 1]2 7→ C, W is defined as

W[X,F ](u) = X(u− F (u)), (4)

where u is a coordinate in [0, 1]2. This operator will be
used throughout our method to warp signals defined on a 2D
domain, such as attention maps and activations.

3D-aware Flow Field. A key differentiating factor of our
approach is that we compute the flow field F in a 3D-aware
manner. This is done in three steps (see Figure 3).

Step 1 - Lift: the lifting function Ld : [0, 1]2 7→ R3

assigns a 3D coordinate to every point in the 2D domain of
the image X (assuming coordinates normalized to [0, 1]2),
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based on the depth map d. We assume the same 55◦ field of
view (fov) our depth estimator [6] was trained on.

Step 2 - Transform: the user defines a function T : R3 7→
R3 that modifies the position of the points in 3D space.
Groups of 3D points that correspond to an object can be
identified with the help of any off-the shelf image segmenta-
tion model. In our experiments, we opt for a SAM [24]-based
approach, see the supplemental for details. We call the mask
of the selected segment the object mask Mo. Lifting Mo to
3D identifies the 3D points corresponding to the object of in-
terest, which can then be manipulated by the user with a rigid
3D transformation. All other 3D points remain unchanged.

Step 3 - Project: the projection function P : R3 7→
R2 projects 3D coordinates back to the 2D image plane
assuming the same camera parameters as the lifting function.

By composing all three steps, we define an operation
that transforms 2D coordinates in the original image to the
corresponding position in the edited image. Our 3D-aware
flow F is based on the inverse of this operation:

F (u) = u− (P ◦ T ◦ Ld)
−1(u). (5)

Note that the inverse may not be defined for some 2D coordi-
nates, since the operation P ◦ T ◦Ld is not always bijective;
it may create overlapping regions (like occlusions) and holes
(like disocclusions). We handle overlapping regions by pick-
ing the coordinates closest to the camera. To handle holes,
we create a valid mask Mv of regions that are not holes
Mv := 1range(P◦T◦Ld), and only guide regions inside this
mask when generating the edited image.

Edited Maps. We warp the activations Ψi,t with this 3D-
aware flow field to get edited activations Ψ′

i,t:

Ψ′
i,t := W[ρ(Ψi,t), F ] (6)

where ρ denotes bilinear interpolation.

Edited Depth. To obtain an edited depth map d′, we sep-
arately construct the edited depth for the transformed ob-
ject d′o and for the remaining (static) scene d′b, before re-
compositing them. Treating them separately allows us to
inpaint any holes in the static part of the scene that might be
created by the 3D edit by leveraging the prior of a large 2D
diffusion model.

Specifically, the depth for the static part of the scene d′b is
obtained by removing the transformed object from the image
x using an existing object removal method [53], with the
object mask Mo as input, resulting in an image xb without
the transformed object. d′b is then estimated from xb using
a monocular depth estimator [6]. We obtain depth of the
transformed object d′o from the distance between the camera
and the transformed 3D points T ◦ Ld:

d′o(u) := ∥W[T ◦ Ld, F ](u)∥2, (7)

where we assume that the camera is at the origin.
The transformed object depth d′o and the depth of the

remaining scene d′b are then composited seamlessly using
Poisson Image Editing [41] to obtain the edited depth d′.

5.2. Generating the Edited Image

We generate the edited image x′
0 using a diffusion process

that is conditioned on the text prompt y and the edited depth
d′, and uses the initial noise xT and the null-text ∅ ob-
tained from the inversion described at the start of this section.
Without any additional guidance, the resulting image would
closely approximate the input image x. Thus, we guide the
diffusion process to follow the edited activations Ψ′.Guiding
the diffusion process to follow the edited activations encour-
ages the resulting image to preserve the identity of objects
from the original scene and to follow the edited object layout.
We add two energy terms.

The object guidance energy Go focuses on the edited
object only. It is the L2 distance between the activations of
the diffusion process Ψe and the edited activations Ψ′:

Go :=
∑
i,t

wo
i,t

∑
u

(
M ′

o(Ψ
e
i,t −Ψ′

i,t)
)2
(u), (8)

where Ψe are the activations of the denoiser in the diffusion
process, and M ′

o := W[Mo, F ] ·Mv is the valid part of the
warped object mask, i.e. the mask of the foreground object
in the edited image. wo

i,t is a per-step and per-layer weight
we set according to a schedule. See below for details.

The background guidance energy Gb is defined similarly
to the object guidance energy, but focuses on the static part
of the scene only:

Gb :=
∑
i,t

wb
i,t

(∑
u M

′
bΨ

e
i,t(u)−

∑
u M

′
bΨ

′
i,t(u)

)2∑
u M

′
b(u)

, (9)

where M ′
b := 1 −M ′

o and wb
t is set according to a similar

schedule as wo
i,t, see below for details. We compare the

average of the activations over the image, as we expect some
parts of the static scene to change, for example due lighting
or shadows, disocclusions, etc.

We set weights wo
i,t and wb

i,t according to a guidance
schedule. (i) We guide only up until time step 38/50, and
then zero the guidance. (ii) We cycle between guiding dif-
ferent layers in each time step, guiding layer 3 in the first
step, layer 2 in the second step, both layers in the third step,
and repeat this cycle in subsequent steps. (iii) Finally, we
adjust the relative weighting of wo

i,t and wb
i,t according to

the desired level of foreground and background preservation.
Section 6 discusses and motivates these design choices and
gives examples of different settings in an ablation.

We define the final guidance energy G as, G := Go +
Gb. We use the gradient of this guidance energy to bias
each step of the diffusion process, as described in Eq.(3) as,
ϵGθ (xt; t, y, ∅′, d) resulting in the edited image x′

0.
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Figure 4. Qualitative comparison. We compare our method to three baselines. A target edit (from solid to dotted axes) is applied to an
object from the input image . We show that our method better achieves our three goals: identity preservation, edit adherence, and plausibility.

6. Results

Datasets. We created two datasets to evaluate our method.
The PhotoGen dataset consists of 31 edits in 26 images
images (five of the images have two different edits) that
we either generated, photographed, or licensed and down-
loaded. It contains 5 photographs and 21 generated images.
In the Benchmark dataset we aim at minimizing our (the
author’s) bias in the choice of images and edits. It consists of
50 edits in 50 images (one edit per image) that we generated
with a depth-to-image diffusion model using depth from syn-
thetic 3D scenes. The 3D scenes are generated automatically
by randomly choosing a 3D asset from 10 categories in the
ModelNet40 [55] dataset, and placing the asset at a random
location on a ground plane. Edits are randomly chosen from
3D translations and 3D rotations. Both the parameters of
the initial placement and of the edit are constrained to en-
sures objects remain withing the view frustum and exhibit a
limited amount of disocclusion after the edit.

Baselines. We compare to several state-of-the-art methods
that share our goal of image editing with generative models.
Object3DIT [30] fintunes Zero123 [27] with synthetic data
to enable either 3D rotations, scaling, or translation on a
ground plane. ObjectStitch [51] allows transplanting objects
from one image to a given 2D position in another image;
we use it to transplant objects to a different location in the
same image and remove the original, unedited object using
the same object removal method [53] we use in our depth
edit. We create another baseline that uses Zero123 to get a

novel view of the foreground object, removes the original
foreground object [53], moves the novel view to a new im-
age location, and inpaints a 15-pixel-wide region around the
novel view using Firefly [1] to improve image coherence.
We also experimented with Diffusion Self-Guidance [13],
but found that the public code performs far worse in terms
of identity preservation and edit adherence than the pub-
lished version (which uses the proprietary Imagen [48]), as
confirmed by the authors. For fairness, we instead show an
ablation that comes close to this method.

Qualitative Comparison. See Figure 4. ObjectStitch gen-
erates scenes with good plausibility, but as it does not provide
3D controls, we observe low edit adherence (i.e., the output
does not match the target edit); we also observe relatively low
identity preservation. Zero123 and 3DIT have better identity
preservation, but Zero123 struggles to generate good novel
views for objects that are for from the dataset it was fine-
tuned on (like the somewhat blurry red car), and the fixed
inpainting region limits the plausibility of secondary effects
like shadows and lighting in the edited scene (see for exam-
ple the lack of shadows for the coffee cup). 3DIT is biased
even more strongly than Zero123 by the synthetic scenes
it was fintuned on, in which objects have a limited range
of sizes and types, and are viewed from a limited range of
angles. 3DIT lacks generalization, for example, it fails to
perform an edit (e.g. the wine glasses), or places a novel
object into the scene (e.g. the car on the beach). Our method
shows better identity preservation and edit adherence due to
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Figure 5. Stop-motion edits. Intermediate edits along two edit
trajectories demonstrate consistency and identity preservation.

our detailed 3D-aware guidance, and better plausibility since
we do not perform any fine-tuning that would bias the prior
of the pre-trained diffusion model towards more constrained
scene types. The supplementary provides comparisons on
the full PhotoGen dataset. Figure 5 shows multiple inter-
mediate edits along two edit trajectories, demonstrating the
consistency and identity preservation of our method.

User Study. We quantitatively compare our method to
all baselines in terms of the three desirable goals: iden-
tity preservation, edit adherence, and plausibility, with a
user study on a subset of 11 edits in 11 images from our
PhotoGen dataset, including one photograph. We sepa-
rately evaluate each desirable goal by showing users pairs
of images and asking them to select the image that better
fulfills the goal. We form 66 random image pairs, where
each pair compares a random result from our method to the
corresponding result from a random baseline. We split these
66 pair into 3 groups of 22 pairs each, one group for each
goal. A total of 22 users participated in the study, with mixed
expertise in image editing. Each user compared all 22 pairs
for each goal (484 data points per goal, and an average of
161 data points for each of the three method pairings). For
the plausibility goal, we additionally compare to the original
input image as an upper bound for the achievable plausibil-
ity (average of 121 data points per method pair). Both the
order of pairs for each goal, and of methods in each pair was
randomized. See supplemental for details.

Results are shown in Figure 6. We can see that users
clearly preferred our method over the baselines in all three
goals. In some cases, users even found our results to be

0%

100% PlausibilityIdentity Preservation Edit Adherence

3DIT Zero123 Inputs OursObjectStitch

Figure 6. User study. We compare how well each method achieves
our three main goals. Each pair of bars show the percentage of
users that preferred our method (orange) or a baseline (other color)
with 95% confidence intervals. The inputs bar represents an upper
bound to the plausibility of an edited image.

more plausible than the original input images, although, as
we would expect, the original images were still more plausi-
ble on average. The results support our observations from
the qualitative results: ObjectStitch has good plausibiliy,
but relatively low identity preservation and edit adherence.
3DIT and Zero123 have better identity preservation and edit
adherence, but lower plausibility. 3DIT has especially low
plausibility due to its biased diffusion prior.

Input Target Edit Zero123 Zero123Ours Input Target Edit Ours

Figure 7. Synthetic benchmark. Comparison to Zero123 [27] on
a few examples of our Benchmark dataset.

Synthetic Benchmark. We automatically generate images
and edits to reduce selection bias in the results. We use syn-
thetic depth, which comes as a by-product of the automatic
image generation. This ensures that scene depth is reason-
able, which factors out the influence of errors in the depth
estimate from our experiments. The full benchmark on all
50 scenes is given in the supplementary, Figure 7 shows a
qualitative comparison on four scenes. We see good identity
preservation, edit adherence and plausibility in these scenes,
suggesting that our method works robustly on random scenes
given a reasonable depth. We additionally provide a quan-
titative comparison to Zero123, ObjectStitch and 3DIT on
the full benchmark dataset in Table 2 that evaluates edit
adherence and identity preservation. Edit adherence is eval-
uated using the Intersection over Union (IoU) between the
a SAM-based [24] segmentation of the foreground object
in the edited image and a ground truth segmentation mask
obtained from the synthetic depth. Identity Preservation is
evaluated using a cycle consistency metric that transform the
edited image back to the original object configuration and
measures the difference to the original input image using
both the L1 distance and LPIPS [59]. As seen in Table 2, our
method consistently outperforms the three baselines on both
edit adherence and identity preservation.

Table 2. Quantitative comparison on the Benchmark dataset.
We compare identity preservation, based on the cycle consistency
of performing the edit, followed by its inverse; and edit adherence,
as measured by the IoU between image region covered by the edited
foreground object and the corresponding ground truth image region.

Identity Preservation Edit Adherence

EL1
id (×10)↓ ELPIPS

id ↓ Sedit ↑

Obj.Stitch [51] 0.89 0.25 0.37
Zero123 [27] 1.05 0.31 0.52

3DIT [30] 0.74 0.27 0.15
Ours 0.71 0.19 0.85
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Figure 8. Ablation Study. We show the effect of several design
choices of our method. See the Ablation Study paragraph for details.

Ablation Study. We ablate four design choices, see Fig-
ure 8. (i) First, we compare our form of local guidance for
the foreground vs. using the average over the foreground
region in Eq. 8, similar to DSG [13]. Our local guidance sig-
nificantly improves identity preservation and edit adherence.
(ii) Second, we guide up to a different maximum number
of steps. Intuitively, the last time steps allow the model to
reconcile the edited object with the scene, by creating details
such as contact shadows and lighting. We found that giving
the model space to do this reconciliation without guidance
increases plausibility. Guiding too few steps, on the other
hand, reduces identity preservation. (iii) Third, we show the
effect of using different choices of layers in the guidance
schedule for each time step. Guiding the second layer of the
denoiser decoder only tends to preserve texture style, but
loses some identity preservation and edit adherence, while
guiding the third layer only tends to have the opposite ef-
fect. Ideally we want to preserve all three properties, but we
found that guiding both layers introduces artifacts, possibly
because the guidance of different layers can be contradictory.
Our cyclic schedule reduces artifacts by guiding both layers.
(iv) Finally, we balance foreground and background weights
wo and wb. In both scenes, the lighting of the foreground
object and background are at odds (e.g., on the left, the vase
is originally unlit and the background at the target position
has strong lighting). Setting wb low relative to wo preserves
foreground lighting, but changes background lighting, and
vice-versa for high wb.

7. Conclusion

We have presented Diffusion Handles to enable 3D-aware
object level edits on 2D images, which may be generated or

real photographs. We do not require additional training or
3D supervision data, and avoid explicitly solving the inverse
graphics problem. We demonstrated that by lifting interme-
diate diffusion activations to 3D using estimated depth, and
transforming the activations with user-specified 3D edits,
one can produce realistic images with a good balance be-
tween plausibility and identity control while respecting the
target edits. In our extensive tests, we demonstrated the supe-
riority of our proposed approach against other contemporary
baselines, both quantitatively and qualitatively.

Input Our Output Input Our Output

Figure 9. Limitations. Our method relies on a reasonable depth
map. Large edits that reveal strong distortions of a depth estimate
or missing parts of the depth result in low-quality output.

Limitations and Future Work. Although our method is
robust to the quality of the estimated depths, which are often
warped strongly in view direction, large edits that make this
warping apparent, and edits that reveal parts of the objects
hidden in the original view may give undesirable results
(see Figure 9). In the future, we would like to use shape
priors to infill the estimated depth maps in occluded regions.
One exciting option would be to use recent image-to-Nerf
models [20, 29] to perform such a regularization. Another
limitation of our method is that identity preservation, while
better than existing methods, is still not perfect. In the fu-
ture, we expect generative image models to also produce
additional channels (e.g., albedo, normal, specular, illumi-
nation) that would allow more physically grounded control
over object identity that is hard to achieve directly using
only RGB information. Additionally, we plan to experiment
with removing the text prompt, as it may not be necessary
for inversion. Finally, we would like to extend our method
to produce video output by animating 3D edits similar to
Figure 5, but with more frames. The challenging part will be
ensuring temporal smoothness while preserving object iden-
tity without additional training. We expect to use pre-trained
video diffusion models [18].
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