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Figure 1. Personalization results of our method using a single input image. Our method enables a variety of novel personalized face
generations with high visual fidelity, such as facial expression editing, interaction with other individuals, and stylization. Moreover, it
significantly speeds up the personalization process by reducing the optimization steps from 5,000 to 320.

Abstract

Recently, there has been a surge in face personaliza-
tion techniques, benefiting from the advanced capabilities
of pretrained text-to-image diffusion models. Among these,
a notable method is Textual Inversion, which generates per-
sonalized images by inverting given images into textual em-
beddings. However, methods based on Textual Inversion
still struggle with balancing the trade-off between recon-
struction quality and editability. In this study, we examine
this issue through the lens of initialization. Upon closely
examining traditional initialization methods, we identified a
significant disparity between the initial and learned embed-
dings in terms of both scale and orientation. The scale of
the learned embedding can be up to 100 times greater than
that of the initial embedding. Such a significant change in
the embedding could increase the risk of overfitting, thereby
compromising the editability. Driven by this observation,
we introduce a novel initialization method, termed Cross
Initialization, that significantly narrows the gap between
the initial and learned embeddings. This method not only
improves both reconstruction and editability but also re-
duces the optimization steps from 5,000 to 320. Further-
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more, we apply a regularization term to keep the learned
embedding close to the initial embedding. We show that
when combined with Cross Initialization, this regulariza-
tion term can effectively improve editability. We provide
comprehensive empirical evidence to demonstrate the su-
perior performance of our method compared to the base-
line methods. Notably, in our experiments, Cross Initial-
ization is the only method that successfully edits an indi-
vidual’s facial expression. Additionally, a fast version of
our method allows for capturing an input image in roughly
26 seconds, while surpassing the baseline methods in terms
of both reconstruction and editability. Code is available at
https://github.com/lyuPang/CrossInitialization.

1. Introduction

Recent advancements in large-scale diffusion models [43,
48, 51] have significantly advanced the field of text-to-
image generation, paving the way for a variety of genera-
tive tasks [7, 17, 23]. Text-to-image personalization [17],
when provided with several images of a target concept, en-
ables users to produce personalized images in novel con-
texts or styles. This personalization is achieved either
by inverting the target concept into the textual embedding
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Figure 2. The average of scale (left) and orientation (right) of the
textual embedding v⇤ of 10 examples, as initialized by the tra-
ditional method, along with some generated images. The term
E(v⇤) represents the output vector of the text encoder, and vinit

represents the initial state of the embedding. After optimization,
both the scale and orientation of v⇤ undergo substantial alterations,
aligning more closely with E(v⇤).

space [2, 17, 64] or by fine-tuning the pretrained diffusion
model [29, 49]. Among these, Textual Inversion [17] is one
notable method that learns the target concept by inverting
given images into textual embeddings.

Face personalization [18, 69, 70] focuses on the person-
alized generation of a particular individual. An effective
face personalization model should be able to synthesize the
individual in novel scenes or styles based on text prompts
while preserving the individual’s unique identity. However,
many existing methods are prone to overfitting the whole
input image [58], thus struggling to generate images that
align with the prompts accurately.

In this work, we investigate the overfitting problem in
Textual Inversion [17] through the lens of initialization.
Traditional methods typically initialize the textual embed-
ding with a super-category token (e.g., “face” or “per-
son”) [2, 17, 64]. However, after optimization, this ap-
proach often leads to significant deviations from the ini-
tial embedding in both scale and orientation, as depicted
in Fig. 2. The significant gap between the initial and
learned embeddings necessitates numerous optimization
steps, which in turn increases the risk of overfitting.

To address this issue, our approach aims to minimize the
disparity between the initial and learned embeddings. Our
method is inspired by two main observations. Firstly, af-
ter optimization, the learned embedding tends to align with
the output of the CLIP [40] text encoder in terms of both
scale and orientation, as illustrated in Fig. 2. Secondly, us-
ing the text encoder’s output as its input typically produces
an image nearly identical to the original, as shown in Fig. 3.
Drawing from these insights, we introduce Cross Initializa-
tion, a method where the textual embedding is initialized
with the text encoder’s output, as depicted in Fig. 4. This
approach effectively narrows the gap between the initial and
learned embeddings, facilitating more effective optimiza-
tions compared to traditional methods. Our results demon-

Conditioning Apple House Giraffe Face

c(v) =
E(v)

c(v) =
E(E(v))

Figure 3. Top row: Images generated using standard textual em-
beddings as input for the text encoder, for instance, vapple. Bottom
row: Images generated using the output of the text encoder as its
input, for instance, E(vapple). Here, c(v) denotes the conditioning
vector in diffusion models. The images produced by v and E(v)
are remarkably similar.

strate that Cross Initialization not only enhances reconstruc-
tion quality and editability but also significantly speeds up
the personalization process.

To further improve editability, we incorporate a regu-
larization term designed to keep the learned embedding
close to its initial state throughout the optimization pro-
cess. In Textual Inversion, the effectiveness of this regu-
larization is often limited due to the substantial disparity
between the initial and learned embeddings. In contrast,
when used in conjunction with Cross Initialization, this reg-
ularization strategy becomes significantly more effective.
This improvement is primarily attributed to the reduced gap
between the initial and learned embeddings facilitated by
Cross Initialization.

We demonstrate the superior performance of Cross Ini-
tialization compared to the baseline methods through both
qualitative and quantitative evaluations. Our method en-
ables a variety of novel personalized face generations with
high visual fidelity. Notably, in our experiments, Cross Ini-
tialization is the only method capable of editing an individ-
ual’s facial expression. Furthermore, a fast version of our
method allows for capturing an input image in roughly 26
seconds, while surpassing the baseline methods in terms of
both reconstruction and editability.

2. Related Works

Text-to-Image Synthesis. Text-to-image synthesis is the
task of generating realistic and diverse images from natu-
ral language descriptions. Various deep generative models
have been widely explored for this task, such as GANs [44,
52], VAEs [15, 42], and Autoregressive Models [43, 68].
Recently, diffusion models [24, 48, 57] have demonstrated
remarkable capabilities in generating high-fidelity images
aligned with textual prompts [7, 36, 43, 48, 51].
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Figure 4. Comparison of Textual Inversion Initialization and Cross Initialization techniques. Textual Inversion [17] (left) initializes the
textual embedding v⇤ with a super-category token (e.g., “face”). Cross Initialization (right) begins by obtaining the output vector from the
text encoder E(v⇤), which is subsequently used to initialize the embedding. This approach reduces the disparity between the initial and
learned embeddings.

Inversion. Image inversion involves reconstructing an
image by mapping it into the latent space of a pretrained
generator. This process can be accomplished either through
direct optimization of the latent code [1, 19, 72] or by em-
ploying an encoder network to map the image into a latent
space [6, 37, 39, 45, 59, 65, 71]. Image inversion has been
applied to various image manipulation tasks [19, 38, 53].
In the context of diffusion models, image inversion aims
to identify an initial noise latent code that can be denoised
back to the input image [14, 35, 43]. This inverted noise
latent code is then leveraged for text-guided image manipu-
lation, as explored in recent studies [12, 23, 28, 30, 60].

Personalization. Personalization adapts pretrained gen-
erative models to capture new concepts depicted in sev-
eral given images. In the realm of text-to-image diffu-
sion models, this allows for the creation of personalized
images guided by text prompts. Techniques for this task
include optimizing textual embeddings to learn new con-
cepts [2, 11, 16, 17, 62, 64], fine-tuning diffusion models
for concept acquisition [4, 10, 11, 21, 22, 29, 49, 50, 56, 58],
and training encoders for mapping new concepts to textual
representations [3, 9, 18, 26, 33, 55, 70]. These methods
facilitate applications like image editing [28, 61] and per-
sonalized 3D generation [31, 34, 41, 46]. Particularly, some
studies [8, 18, 20, 25, 66, 69, 70] focus on the personalized
generation of individual human images. However, existing
methods often face the overfitting problem, hindering the
creation of text-aligned personalized images. Our work ad-
dresses this challenge by examining the overfitting problem
through the lens of initialization.

3. Preliminaries
Latent Diffusion Models. We implement our method on
the publicly available Stable Diffusion (SD) model, a Latent
Diffusion Model (LDM) [48] for text-to-image synthesis.

This model is composed of an encoder, E , which maps an
image x to a latent code z = E(x), and a decoder, D, which
reconstructs the image from this code D(E(x)) ⇡ x. A
Denoising Diffusion Probabilistic Model (DDPM) [24] is
trained to generate latent codes within the latent space of
a pretrained autoencoder. For text-to-image generation, the
model is conditioned on a vector c(y) derived from a text
prompt y. The training objective of LDM is defined by:

Ldiffusion = Ez⇠E(x),y,"⇠N (0,1),t

h
k" � "✓ (zt, t, c(y))k22

i
.

(1)
Given the timestep t, the noised latent zt, and the condition-
ing vector c(y), the denoising network "✓ aims to remove
the noise that was added to the original latent code z0.

Text Embeddings. Given a text prompt y, the sentence
is first tokenized into several tokens. Each token is then
mapped to a textual embedding vi using a predefined em-
bedding lookup. Subsequently, these textual embeddings
are passed through a pretrained CLIP text encoder E, which
outputs a series of vectors that constitute the conditioning
vector c(y) = [E(v1), . . . , E(vn)]. For a textual embedding
vi 2 R1024, its corresponding output of the text encoder is
denoted by E(vi) 2 R1024. Note that in the SD v2.1 model,
the dimensionality of both vi and E(vi) is 1024.

Textual Inversion. Textual Inversion [17] is a technique
that captures novel concepts from a few example images.
It is achieved by injecting new concepts into the pretrained
diffusion models. Specifically, Textual Inversion introduces
a new token S⇤ and its corresponding textual embedding
v⇤, representing the new concept. To learn the new con-
cept, Textual Inversion fixes the LDM and optimizes only
v⇤, minimizing the objective of LDM given in Eq. (1). The
optimization objective is defined by:

v⇤ = arg min
v

Ez,y,",t

h
k" � "✓ (zt, t, c(y, v))k22

i
, (2)
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Input A sand sculpture of S⇤ S⇤ Funko Pop

Figure 5. Images generated by Textual Inversion. This method
fails to place the given individual in new styles, primarily due to
its tendency to overfit the input image.

where c(y, v) is the conditioning vector obtained from the
prompt y and the textual embedding v.

4. Method
Our method is based on the Textual Inversion technique, in
which the textual embedding is typically initialized with a
super-category token (e.g., “face”). In this section, we an-
alyze how Textual Inversion suffers from a severe overfit-
ting problem through the lens of initialization, as detailed
in Sec. 4.1. To address this issue, we propose a novel ini-
tialization method, named Cross Initialization, as described
in Sec. 4.2. This method facilitates more efficient optimiza-
tions, enhancing both reconstruction and editability. To fur-
ther improve editability, we introduce a regularization term
in Sec. 4.3.

4.1. Analysis
In Fig. 5, we show several examples generated by Textual
Inversion. This method fails to place the person in new
styles and generates images similar to the input image, in-
dicating a severe overfitting problem. In this section, we
delve into this overfitting problem in Textual Inversion from
the perspective of initialization. Existing methods based
on Textual Inversion typically initialize the textual embed-
ding with a super-category token [2, 17, 64]. However, our
experiments consistently show that, after optimization, the
learned embedding becomes significantly different from its
initial state, both in scale and orientation. Figs. 2 and 6 show
several examples where the scale of the learned embedding
can be up to 100 times greater than that of the initial embed-
ding. Such drastic changes in the embedding may increase
the risk of overfitting and degrade the editability of the em-
bedding.

Given that the learned embedding significantly differs
from the initial embedding of a coarse descriptor, a question
arises: How does the learned embedding manage to produce
images that accurately represent the given concept? To in-
vestigate this, we examine the outputs of the intermediate
layers in the text encoder. The text encoder comprises sev-
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Figure 6. More examples illustrating that, after optimization, the
textual embedding v⇤ experiences significant changes in both scale
(left) and orientation (right). Here, vinit denotes the embedding’s
initial state, and vlearned denotes the embedding’s final state.

eral self-attention blocks [54], with a LayerNorm layer [5]
preceding the input of each sub-block. We observe that the
LayerNorm layer normalizes the scale of the embedding,
while the self-attention layer modifies its orientation. Fig. 7
illustrates this process: each sub-block progressively alters
the scale and orientation of the embedding, and ultimately
the output vectors of the initial and learned embeddings ex-
hibit a similarity in both scale and orientation.

To mitigate the overfitting issue in Textual Inversion, this
analysis motivates us to seek an initial embedding that can
be close to the learned embedding.

4.2. Cross Initialization

Based on the analysis in Sec. 4.1, our goal is to design an
initial embedding that meets two criteria: 1) it is close to
the learned embedding, and 2) it roughly captures the target
concept. Our method is inspired by two key observations.
First, as shown in Fig. 2, the learned embedding becomes
similar to the output of the text encoder after optimization.
Second, when we use the text encoder’s output as its input,
the diffusion model produces an image nearly identical to
the original, as shown in Fig. 3. The reason for these two
phenomena is that the LayerNorm and self-attention layers
in the text encoder gradually alter the scale and orientation
of the embedding, making it converge to a specific vector, as
discussed in Sec. 4.1. Based on these insights, we propose
initializing the textual embedding with the output of the text
encoder, a method we term Cross Initialization, as depicted
in Fig. 4.

Formally, given a single face image, we first set the tex-
tual embedding to the mean of 691 well-known names’ em-
beddings, denoted as v̄691. The computation of v̄691 is elab-
orated in the following subsection. Subsequently, we feed
v̄691 into the text encoder E, obtaining the output vector
E(v̄691). We then initialize the textual embedding vinit with
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Figure 7. Scale (left) and orientation (right) of the textual em-
bedding processed by the k-th self-attention block of the text en-
coder. The symbols vkinit and vklearned denote the outputs of the k-th
self-attention block using the initial and learned embeddings as
inputs, respectively. Note that an additional LayerNorm layer is
present after the final block. In each block, the LayerNorm layer
and the self-attention layer gradually modify the scale and orien-
tation of the embedding. After optimization, the output vectors
derived from the initial and learned embeddings exhibit a similar-
ity in both scale and orientation.

this output vector:

vinit = E(v̄691). (3)

Finally, we optimize the textual embedding by minimizing
the LDM loss given in Eq. (2).

The aforementioned two observations ensure that the
initial embedding E(v̄691) is close to the learned embed-
ding, while also roughly representing the target concept.
As shown in Fig. 8, using Cross Initialization, the learned
embedding retains proximity to its initial state throughout
the optimization process. This facilitates more efficient
optimizations, leading to more identity-preserved, prompt-
aligned, and faster face personalization.

Mean Textual Embedding. We follow [69] to construct
the mean textual embedding v̄691. A total of 691 well-
known names are used to form an embedding set C =
{v1, . . . , vm}, where m = 691 and each textual em-
bedding vi is obtained from the pre-defined embedding
lookup. The mean textual embedding is calculated as
v̄691 = 1

m

Pm
i=1 vi. Moreover, we represent each name

with two tokens (i.e., the first and last names), resulting in
the final mean textual embedding as v̄691 = [v̄f691, v̄

l
691],

where v̄f691 and v̄l691 are calculated using the embedding sets
of the first and last names, respectively.

Comparison with Directly Optimizing E(v). In Cross
Initialization, we set the text encoder’s output as its input,
i.e. vinit = E(v̄), and optimize the input vector vinit. An
alternative method is to directly optimize the output vector
E(v̄). However, this approach eliminates the interaction be-
tween the new concept and other prompt tokens, as the new
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Figure 8. Scale (left) and orientation (right) of the textual embed-
ding v⇤, as initialized by Cross Initialization. Here, E(v⇤) repre-
sents the output vector of the text encoder, and vinit represents the
initial state of the embedding. In contrast to the examples in Fig. 2,
Cross Initialization maintains the learned embedding close to the
initial state in terms of both scale and orientation.

concept is not passed through the text encoder along with
the other prompt tokens, leading to poor editability. This is-
sue is also indicated in [2]. In contrast, Cross Initialization
optimizes the input vector, thereby preserving the ability to
create new compositions for the new concept.

4.3. Regularization
As illustrated in Sec. 4.2, the initial embedding is con-
structed using the mean center of embeddings from 691
well-known names. We assume that the region around this
central embedding represents the subspace corresponding to
the concept of the individual. High editability is expected
when the learned embedding lies close to this subspace.
Therefore, we introduce a regularization term to keep the
learned embedding close to the central embedding through-
out the optimization process. Specifically, we minimize the
L2 distance between them, defined as:

Lreg = ||v � vinit||22. (4)

Overall, our final optimization objective is defined as:

v⇤ = arg min
v

Ldiffusion + �Lreg. (5)

Note that this regularization approach, also investigated
in [17], faces challenges when applied in Textual Inversion.
This is primarily due to the significant disparity between the
initial and learned embeddings, as well as the coarseness of
the super-category token. These factors limit the effective-
ness of this regularization approach.

5. Experiments
In this section, we first present the implementation details of
our method. Subsequently, we demonstrate its effectiveness
by conducting a comparative analysis with four state-of-
the-art personalization methods, focusing on aspects such
as identity preservation, editability, and optimization time.
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Real Sample Textual Inversion DreamBooth NeTI Celeb Basis Ours

“S⇤ with
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expression”
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an angry

expression”

“S⇤ and Elon
Musk are eating
bread in front of
the Eiffel Tower”

“S⇤ as
Captain
Marvel”

“S⇤ latte
art”

Figure 9. Qualitative comparisons. Given a single input image, we present four images generated by each method using identical random
seeds. Our approach demonstrates superior performance in identity preservation and editability. Notably, Cross Initialization is the only
method that successfully edits an individual’s facial expression.

5.1. Implementation and Evaluation Setup
Implementation. We utilize the publicly available Stable
Diffusion v2.1 [48] as our base model. Images are gener-
ated at a resolution of 512 ⇥ 512. The hyper-parameter �
is set to 10�5 for all experiments. Given a single image
as input, our experiments are conducted on a single A800
GPU, using a batch size of 8 and a learning rate of 0.005.
All results are obtained using 320 optimization steps.

Evaluation Setup. We evaluate each method using the
images from CelebA-HQ test set [27, 32]. The prompts
used are primarily sourced from [69] and [18]. We compare
our method with four state-of-the-art personalization meth-

ods: Textual Inversion [17], DreamBooth [49], NeTI [2],
and Celeb Basis [69]. The implementation details of base-
lines are presented in Appendix A. All methods are imple-
mented for one-shot personalization. For quantitative eval-
uation, each method is evaluated on the first 200 images
from CelebA-HQ test set using two metrics, including iden-
tity similarity and prompt similarity. For identity similar-
ity, ArcFace [13], a pretrained face recognition model, is
used to measure the identity preservation in generated im-
ages. Prompt similarity is measured by computing the CLIP
score between generated images and text prompts. We ex-
clude the prompts for stylization in the identity similarity
assessment, as ArcFace is trained on real images.
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with Elon Musk
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S⇤ and Barack Obama
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candlelight dinner

Real Sample A sand sculpture
of S⇤

Greek sculpture
of S⇤

S⇤ Funko Pop Manga drawing
of S⇤

Pointillism painting
of S⇤

Figure 10. Examples of personalized text-to-image generation obtained with Cross Initialization.

5.2. Results

Qualitative Evaluation. In Fig. 9, we present a visual
comparison of personalized generation using four types of
prompts: expression editing, background modification, in-
dividual interaction, and artistic style. Textual Inversion ex-
hibits an overfitting problem, failing to compose the given
individual in novel scenes. DreamBooth struggles to recon-
struct the individual for complex editing prompts such as
background modification and artistic style. It tends to dis-
regard the new concept and generate images based solely
on the remaining prompt tokens. In contrast, NeTI gener-
ates images based solely on the new concept without in-
corporating the other prompt tokens, indicating a severe
overfitting problem. Both Celeb Basis and our method are
capable of generating novel compositions of personalized
concepts. Compared to Celeb Basis, our method shows
superior identity preservation and excels in editing the in-
dividual’s expression. For all prompts, Cross Initializa-
tion achieves high-fidelity reconstruction of the individual’s
identity while providing superior editability. Notably, it is
the only method that successfully edits an individual’s fa-
cial expression. Fig. 10 shows more results with different
prompts from our method. Additional qualitative results can
be found in Appendices D and F. We also provide results on

synthetic facial images in Appendix G.

Quantitative Evaluation. We quantitatively evaluate our
approach in two aspects: 1) identity similarity between
the generated and input images, and 2) prompt similarity
between the generated image and the given text prompt.
All methods are evaluated over 20 text prompts, see Ap-
pendix B for a full list. These prompts cover expression
editing (e.g., “S⇤ with a sad expression”), background mod-
ification (e.g., “S⇤ on the beach”), individual interaction
(e.g., “S⇤ shakes hands with Anne Hathaway in news con-
ference”), and artistic style (e.g., “S⇤ latte art”). For each
prompt, we generate 32 images using the same random seed
for all methods.

The results are shown in Tab. 1. DreamBooth excels
in prompt similarity but ranks lowest in identity similar-
ity. This is consistent with the qualitative observations,
where DreamBooth often overlooks the new concept, fo-
cusing solely on the other prompt tokens. In contrast, NeTI
achieves the highest identity similarity scores but ranks low-
est in prompt similarity, as NeTI tends to overfit the in-
put image. Besides these two extreme cases, our method
demonstrates superior performance in both identity and
prompt similarity metrics.
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Table 1. Quantitative comparisons. “Identity” denotes the iden-
tity similarity between the generated and input images. “Prompt”
denotes the prompt similarity between the generated image and
the given text prompt. “Time” denotes the average personalization
time in seconds.

Methods Identity" Prompt" Time#
Textual Inversion [17] 0.2115 0.2498 6331
DreamBooth [41] 0.2053 0.3015 623
NeTI [2] 0.3789 0.2325 1527
Celeb Basis [69] 0.2070 0.2683 140

Ours-fast 0.2225 0.2800 26
Ours 0.2517 0.2859 346

Table 2. User study results. We asked the participants to select the
image that better preserves the identity and matches the prompt.

Baselines Prefer Baseline Prefer Ours

Textual Inversion [17] 22.0% 78.0%
DreamBooth [41] 9.3% 90.7%
NeTI [2] 24.7% 75.3%
Celeb Basis [69] 26.7% 73.3%

Personalization Time. The average time for personaliza-
tion using each method is reported in Tab. 1. Compared
to Textual Inversion, our method significantly reduces the
optimization time from 106 minutes to 6 minutes. Addi-
tionally, We develop a fast version of our method, denoted
as “Ours-fast”, with a learning rate of 0.08. This fast ver-
sion allows for learning the new concept in merely 25 op-
timization steps, taking only 26 seconds. As demonstrated
in Tab. 1, this fast version achieves the quickest personal-
ization while surpassing Celeb Basis and Textual Inversion
in both identity similarity and prompt similarity. The visual
results of this fast version are presented in Appendix E.

User Study. We also evaluate our method from a human
perspective by conducting a user study. We randomly se-
lected one prompt from the prompt set and one image from
the CelebA-HQ test set. These were used to generate per-
sonalized images for each method. In each question of the
study, participants were presented with the input image and
text prompt, as well as two generated images: one from
our method and another from the baseline method. Partic-
ipants were asked to select the image that better preserves
the identity and matches the prompt. In total, we collected
600 responses from 30 participants, as shown in Tab. 2. The
results show a clear preference for our method.

5.3. Ablation Study
We conduct an ablation study by separately removing each
sub-module from our method. Specifically, we sequentially
remove the following sub-modules: 1) Cross Initialization,

Input w/o CI w/o Mean w/o Reg Full

Figure 11. Ablation study. The prompt is “S⇤ plays the LEGO
toys”. We compare the models trained without Cross Initializa-
tion (w/o CI), without mean textual embedding (w/o Mean), and
without regularization (w/o Reg). As can be seen, all sub-modules
are essential for achieving identity-preserved and prompt-aligned
personalized face generation.

2) mean textual embedding, and 3) the regularization term.
In Fig. 11, we present a visual comparison of the person-
alized images generated by each variant. The results indi-
cate that all sub-modules are crucial for achieving identity-
preserved and prompt-aligned personalized face generation.
Specifically, the model without Cross Initialization pro-
duces results similar to those by Textual Inversion. This
variant tends to generate images focusing either solely on
the given concept or exclusively on the other prompt tokens.
The models without mean textual embedding or the regular-
ization term lead to degradation in editability, struggling to
create consistent scenes as described in the prompt. More
ablation study results are provided in Appendix H.

6. Conclusions and Future Work

We introduced a new initialization method for personalized
text-to-image generation. We identified a significant dis-
parity between the initial and learned embeddings in Tex-
tual Inversion, which often leads to an overfitting problem.
Our approach, “Cross Initilization”, addresses this issue by
initializing the textual embedding with the output of the
text encoder. Cross Initialization enables more identity-
preserved, prompt-aligned, and faster face personalization.
In this work, we mainly examined the performance of Cross
Initialization on the human being concept. For general con-
cepts, we found that Cross Initialization is not as effective
as it is for the human being concept. In future work, we plan
to further investigate the applicability of Cross Initialization
to a broader range of concepts.
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